全国2013年10月高等教育自学考试概率论与数理统计(经管类)试题

合集下载

概率论与数理统计(经管类) 复习题及答案

概率论与数理统计(经管类) 复习题及答案
A.p2(1-p)3 B.4p(1-p)3 C.5p2(1-p)3 D.4p2(1-p)3 答案:D 7.设A, B 是任意两个的互不相容事件, 则必有( )。 A.P(AB)=P(A)P(B) B.P(A-B)=P(A) C. 与 互不相容 D. 与 相容 答案:B 8.设某人向一个目标射击, 每次击中目标的概率为 0.8 , 现独立射击 3 次, 则 3 次中恰 好有 2 次击中目标的概率是( )。 A.0.384 B.0.64 C.0.32 D.0.128 答案:A 9.对掷一枚硬币的试验, “出现正面”称为( )。 A.样本空间 B.必然事件 C.不可能事件 D.随机事件 答案:D
D.n = 24,p = 0.1
答案:B
45.设随机变量X 的分布密度 A.-2;
,则D(2-X)=( )。
B.2 ; C.-4; D.4; 答案:B 46.设 X 为服从正态分布 N(-1, 2)的随机变量, 则 E(2X-1)= (
)。
A.9
B.6
C.4
D.-3
答案:D 47.设随机向量(X , Y)满足 E(XY) = EX·EY,则 ( )。
答案:
3、某市有 50%住户订日报,有 65%住户订晚报,有 85%住户至少订这两种报纸中的一种, 求 同时订这两种报纸的住户的概率。 答案:解:假设:A={订日报},B={订晚报},C=A+B 由 已知 P(A)=0.5,P(B)=0.65 ,P(C)=0.85 所以 P(AB)=P(A)+ P(B)-P(A+B)=0.5+0.65-0.85=0.3 即 同时订这两种报纸的住户的概率为 0.3。
)。
3.从装有2 只红球,2 只白球的袋中任取两球,记:A=“取到2 只白球”则 =( )。

(完整版)自考本概率论与数理统计真题10套

(完整版)自考本概率论与数理统计真题10套

全国2013年10月高等教育自学考试04183LSA .B 是枉》两个f®机班件,则FCAU S )为&设随机变fi X »从参数为4的泊松分布/!1下列姑论中正《的是 A T FCX> = O.S.£>(X) =0. 5 B.蓟X) =0.5.D<X)=0. 2& CE<X)=2<DCX) = 1D.£(X)^1*DCX)=4人设a 机变* X 与 Y 相互趣立>R X-B<36,y 5.则 OCX — Y+12C.9D,10、单项选择题(本大题共 10小题,每小题2分,共20分)d 玖A) +rtB>-F<AB)PCA>+PCBJ-PUa)G, PGA)十- HMB)D. FCA)+ P<B)乱已気随机?^件仏B 満足PtA) -C.3t P(B) =0.5T HA/m. 15*则B. PUMQ M HJOn. P 3|A S> = FWK. P(3|AB>=P(J3>3.做下函®中能成为挟髓机变■分布函数的是(Z T X O I 扎F (云)=■{5 X < 0-0, J < 0.C. F (工)fl - if"",D» FCr) =40,工vm氐设^ELS«tX~NWJhXW#ft 函数为况£ .则PCI X\>2y 的值対B. sets —1C. 2—血(打D. 1 一 2e(2)£ •设二维®机变的分布律与边绦分布律为E 设隧机变盘X 的Ed) = 80001 Pi7&00 < X<fi3OO}的值为 A. 0. 04 a. 0, £0 UA )=1OT,利用切KS 夫不零式tt 计 C. 0. S6 D. 1. 00则扎 ^=0.1SC. <:™ 0.叽 M=a 14久设CX|.Xj,-^.XJ是来自总休X~N33》的一亍样本.X足样木均値•那么C.10. S信度(1 一C表达了暨信邕冏的A.播册性圧箭确度 C.显善性 D.可黨®二、填空题(本大题共15小题,每小题2分,共30分)It «肘手射击的命中舉为a 6■在4次射击扌有且仪有3狀命审的柢率広设人与5是闊个郴互观立随机車件・P<A) =0.2 . PCB)-Q. 7S'J尸(A — B)=口・设A T H是网个剧机爭件’若卩〔人)=0•趴卩(A-B) -a氣则p(a|4)三M.SffiW变ffiX W分布律抑尸CX=k)二畀口4 = 1*2・3) *則a卩严心0,15.谊X的概華密度几为IE参® 0 *vo .^P{X < 11=^0. SPljPtX < 2}=lb设Wft变*X的分布律为IX-2 -1 0 10U 0.2 0.4 0. 1忆设/<Xry>为二维陆机变* CCY)的««函数.则匸匸和jCtyldzdy le.二堆随机变》(x,y》的分布律为则P{-Z<X< 1}=则rfxY =2}=19已知®机證*兀的分布律为X—21CP1 2 1 -4 4 4已a E (;O = l 侧常載C=巴知 E(X)=-l,t)(X)-3,KiJ EQW —2)= 2L —亍二项分布的re 机变ft ”其載学期龟与方蟹之比为W 阳刑该分布的参®22,设总体XJK 从iE 态分布N 〔宀屮〉・X, 刿圧样本・则參数^1^的笔估计值23■设制造某种炉件产品所需工时(璋位訂卜时》服从正蕊分布,为了估计M 造这沖产品所需的单件平均工时.现制造4件,记录每件所帚工时如下* L0.54ML,2若确定置蓿度为0+曹5•则平均工时的淹信国间为C fi,«C5) =2* 3534* (1011(3)工 3. 1624) 24.设总从正毎分布"3, m …“皿 为K 样本.卞輕%已知,丘倉样乘均1S-SW 于服设检腔冋膻H 才尸二丹,Hp 严护H.应薜用的统计®悬 麵已知一元性回归方程为yi +恳上・耳亍=氛y=9・WR L三、计算题(本大题共2小题,每小题8分,共16分)2札对同一目标进行三ft 独立射击,第一欢、第二》:•第三次射击的命中畢分别为0"、 ①5.0.7,衆在这三RBt 击中•恰好有一次击中目标的ft 耶.2匚设髓亂变竄X 在】.2▼氛4四个誥ft 中第可能的取ffi,另一随机变■ Y 在 g X 中 爭可ft 的耽值,试求x-y 的分布律,四、综合题(本大题共2小题,每小题12分,共24分)K<0* 0< j< 1,J m*起、2.试求dD 系数片I(2>X 的《率《度(⑶ p{xXMy .2缶设连aSK 机变* X 的分布函»为尸5)-彳0, AxS A J C羽•设甲・乙两射手.他们的射击技术分别如ffi 貂佔)表.題2900表所示•其中% , Y 分别 «示甲”乙肘手射击耳数的分茹悄况1X8 9 10 Y89 】0 P0.40.20*4P :0. 10.S5 1题295〉表fiS 29(b)表现耍从中选拔一名射手去奮加比奏,试讨邈选派哪位肘手鑫赛比敦合理?五、应用题(10分)30.某《居民日tt 入®从正®幷布,现ffi 机鞠査该K 姑位居民'得知他们的平均收人 i«66. 4元*标准差$ = 15元卜试问I<1: a = 0. 05下*是否可W 认为该镇居毘日平均收人为70 3c? (23ff a = 0,OSTi 是否耶氏认为该镇居民日收入的方签为16’?^fl.MsC24) = Z, 064 ,&耐(24)* 1, 7109*%咄* = 1* 96 * 划,=】* 65 述剛住4〉=39. 4,£M24〉=36. 4述刖二24〉= 12.4,x5.ii<24)=13, 84S金国201:?年・1月高竽教存口学莆试 概率论与数理统计(经管类)试题一、《念选摄题C 本尢H 其山小騒.毎小題2分,冀加分) 在毎小《列出的四个备a 项中只有一个堆符合Hl 目豪求的r 谓将其选出并郸“菩a 壤*的相应代码涤«・»途・茅涤或未滾均无分.L 耶,乙两人向剧一a 标射击* /董示-甲脂中a 極".fl 我示“乙饰中0标”,C* 示-ft 中a 标二wc-A. JB. BC. AB2*设为fifi 机■fb 尺舟・射,2)・0乳则尺4R)-A. 0JB. 02C. OJD ・0.43. ttffi 机$*rfn 分布瞒数为尺Q. W?i(i<rcfr)=A* 恥一0) — 卜'(—0)B, F9-0)-F(G C,尸O)-FGa-O)D.柯)-尸何血设二罐融杭变》CV ■门的分布律为X0 1 2 0 00J *2 10L 403B, 0-1G 0.2W^(v-o>A. 0绝空★考试结東前全国2013年4月高等教育口学考试概率论与数理统计(经管类)试题课程代码:»41«3a 考生按规定用«将所冇试a 的答«涂■写在笞a 維上。

自学考试真题:13-10概率论与数理统计(经管类)-含解析

自学考试真题:13-10概率论与数理统计(经管类)-含解析

全国2013年10月高等教育自学考试概率论与数理统计(经管类)试题(课程代码04183)一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题纸”的相应代码涂黑。

错涂、多涂或未涂均无分。

1.设A,B 为随机事件,则事件“A ,B 至少有一个发生”可表示为 A.AB B.AB C.ABD.AB2.设随机变量2~(,)X N μσ,Φ()x 为标准正态分布函数,则{}P X x >= A.Φ(x )B.1-Φ(x )C.Φx μσ-⎛⎫ ⎪⎝⎭D.1-Φx μσ-⎛⎫⎪⎝⎭3.设二维随机变量221212(,)~(,,,,)X Y N μμσσρ,则X ~ A.211(,)N μσ B.221()N μσ C.212(,)N μσD.222(,)N μσ4.设二维随机变量(X ,Y )的分布律为且{1|0}0.5P Y X ===,则 A. a =0.2, b =0.4 B. a =0.4, b =0.2 C. a =0.1, b =0.5D. a =0.5, b =0.1 5.设随机变量~(,)X B n p ,且()E X =2.4,()D X =1.44,则 A. n =4, p =0.6 B. n =6, p =0.4 C. n =8, p =0.3D. n =24, p =0.16.设随机变量2~(,)X N μσ,Y 服从参数为(0)λλ>的指数分布,则下列结论中不正确...的是 A.1()E X Y μλ+= B.221()D X Y σλ+=+C.1(),()E X E Y μλ==D.221(),()D X D Y σλ==0 a 0.2 1 0.2 b7.设总体X 服从[0,θ]上的均匀分布(参数θ未知),12,,,n x x x 为来自X 的样本,则下列随机变量中是统计量的为A. 11ni i x n =∑B. 11ni i x n θ=-∑C. 11()ni i x E X n =-∑D. 2111()n i x D X n =-∑8.设12,,,n x x x 是来自正态总体2(,)N μσ的样本,其中μ未知,x 为样本均值,则2σ的无偏估计量为A. 11()1n i i x n μ=--∑2B. 11()n i i x n μ=-∑2C. 11()1n i i x x n =--∑ 2 D.11()n i i x x n =-∑ 29.设H 0为假设检验的原假设,则显著性水平α等于 A.P {接受H 0|H 0不成立} B. P {拒绝H 0|H 0成立} C. P {拒绝H 0|H 0不成立}D. P {接受H 0|H 0成立}10.设总体2~(,)X N μσ,其中2σ未知,12,,,n x x x 为来自X 的样本,x 为样本均值,s 为样本标准差.在显著性水平α下检验假设0010:,:H H μμμμ=≠.令x t =A. 2||(1)a t t n <-B.2||()a t t n < C. 2||(1)a t t n >-D.2||()a t t n >二、填空题(本大题共15小题,每小题2分,共30分)11.设随机事件A 与B 相互独立,且()0,(|)0.6P B P A B >=,则()P A =______.12.甲、乙两个气象台独立地进行天气预报,它们预报准确的概率分别是0.8和0.7,则在一次预报中两个气象台都预报准确的概率是________.13.设随机变量X 服从参数为1的指数分布,则{1}P X >=__________. 14.设随机变量~(1,1),1X N Y X =-,则Y 的概率密度()Y f y =________. 15.设二维随机变量(X ,Y )的分布函数为(,)F x y ,则(,)F +∞+∞=_________.16.设随机变量X 与Y 相互独立,且都服从参数为1的泊松分布,则{1,2}P X Y ===_______. 17.设随机变量X 服从区间[0,2]上的均匀分布,则()E X =_______. 18.设随机变量X 与Y 的协方差Cov()=1X,Y -,则Cov(2,3)Y X -=________. 19.设随机变量12,,,n X X X 相互独立,2()(1,2,,)i D X i n σ==,则1()ni i D X =∑=________.20.设X 为随机变量,()1,()0.5E X D X ==,则由切比雪夫不等式可得{|1|1}P X -≥≤______. 21.设总体~(0,1)X N ,123,,x x x 为来自X 的样本,则222123~x x x ++_________.22.设随机变量~()t t n ,且{()}P t t n αα>=,则{()}P t t n α≤-=_________.23.设总体12~(,1),,X N x x μ是来自X 的样本.1122122111ˆˆ,3322x x x x μμ=+=+都是μ的估计量,则其中较有效的是_______.24.设总体20~(,)X N μσ,其中20σ已知,12,,,n x x x 为来自X 的样本,x 为样本均值,则对假设0010:,:H H μμμμ=≠应采用的检验统计量的表达式为_______.25.依据样本(,)(1,2,,)i i x y i n =得到一元线性回归方程01ˆˆˆ,y x ββ=+,x y 为样本均值,令1()nxx i i L x x ==-∑2,1()()nxy i i i L x x y y ==--∑,则回归常数0ˆβ=________.三、计算题(本大题共2小题,每小题8分,共16分) 26.设二维随机变量(,)X Y 的概率密度为1,03,02,(,)60,x y f x y ⎧<<<<⎪=⎨⎪⎩其他. 求:(1)(,)X Y 关于X ,Y 的边缘概率密度(),()X Y f x f y ;(2){2}P X Y +≤.27.假设某校数学测验成绩服从正态分布,从中抽出20名学生的分数,算得样本标准差s =4分,求正态分布方差2σ的置信度为98%的置信区间.20.01((19)36.191χ=,20.99(19)7.633)χ= 四、综合题(本大题共2小题,每小题12分,共24分)28.设某人群中患某种疾病的比例为20%.对该人群进行一种测试,若患病则测试结果一定为阳性;而未患病者中也有5%的测试结果呈阳性.求:(1)测试结果呈阳性的概率;(2)在测试结果呈阳性时,真正患病的概率. 29.设随机变量X 的概率密度为,04,()0,.cx x f x <<⎧=⎨⎩其他求:(1)常数c ;(2)X 的分布函数()F x ;(3){||2}P X ≤. 五、应用题(10分)30.某保险公司有一险种,每个保单收取保险费600元,理赔额10000元,在有效期内只理赔一次.设保险公司共卖出这种保单800个,每个保单理赔概率为0.04.求:(1)理赔保单数的分布律;(2)保险公司在该险种上获得的期望利润.2013年10月高等教育自学考试概率论与数理统计(经管类)试题答案(课程代码04183)一、单项选择题(本大题共10小题,每小题2分,共20分) 1——5:DDAAB 6——10:AACBC二、填空题(本大题共15小题,每小题2分,共30分)11、0.4 12、0.56 13、1-1-e 14、7 15、1 16、221-e17、1 18、6 19、n 2σ 20、0.521、()33x 22、α- 23、2μ 24、nx 0σμμ-=25、x y 1ˆβ- 三、计算题(本大题共2小题,每小题8分,共16分) y26.解:(1)⎰+∞∞-=dy y x f x f x ),()(当0)(时,0=≤x f x x ;当0<x<3时,x3126161),()(20=⨯===⎰⎰∞+∞-dy dy y x f x f x 当0)(时,3=≥x f x x ;即⎪⎩⎪⎨⎧=031)(x f x 其它30<<x同理(x,y )关于y 的边缘概率密度为⎰+∞∞-=dx y x f y f y ),()(当0)(时,0=≤y f y y ; 当0<y<2时,2136161),()(30=⨯===⎰⎰∞+∞-dx dx y x f y f y 当0)(时,2=≥y f y y ;即⎪⎩⎪⎨⎧=021)(y f y 其它20<<y(2){}⎰⎰=≤+Ddxdy y x f y xp ).,(2,其中积分区域D 如下图31)2221(6161.=⨯⨯⨯==⎰⎰Ddxdy dy 27.解:方差的置信度为98%的置信区间--->α=1-0.98=0.02,α/2=0.01,1-α/2=0.99置信区间=[ns^2/χ^20.01(19),ns^2/χ^20.99(19)]=[320/36.191 320/7.633]=[8.842 41.9]四、综合题(本大题共2小题,每小题12分,共24分) 28. 解:(1)未患病的被检测为阳性概率=0.8*0.05=0.04所以阳性概率=0.2+0.04=0.24(2)在呈阳性时真的患病概率=0.2/0.24=5/629.解:(1)首先密度函数应该满足性质:1)(=⎰+∞∞-dx x f ,而c x c cxdxdx x f 8042.)(241===⎰⎰∞+∞-于是8c=1,所以81=c (2)当x ≤0,显然有0)(=x F ,当x ≥4时,有1)(=x F当0<x<4时,有1602.8181)(220x x x dx dt t f x==⨯=⎰⎰∞+∞- 于是⎪⎪⎩⎪⎪⎨⎧=1160)(2xx F 4400≥<<≤x x x(3){}{}222≤≤-=≤x P x P{}{}{})0()2(2002002F F x P x P x P -=≤<+=≤<+≤≤-=4101622=-=五、应用题(10分)30.解:(1)设X 为理赔的保单数,则X 服从参数为800,0.04的二项分布,故其分布律为:,)04.01(04.0)(800800k k kC k X P --== k=0,1,…,800(2)令Y 表示保险公司的利润,则Y=600*800-10000X.于是期望利润即为Y 的数学期望:EY=E(600*800-10000X)=480000-10000EX=480000-10000*800*0.04=120000。

2013年1-4-7-10月自考概率论与数理统计(经管类)答案详解

2013年1-4-7-10月自考概率论与数理统计(经管类)答案详解

全国2013年1月自考概率论与数理统计(经管类)试题课程代码:04183一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

解:本题考查的是和事件的概率公式,答案为C.解:()()(|)1()()P B AB P AB P B AB P AB P AB ⋂===()()()0.50.15(|)0.5()()1()0.7P BA P B P AB P B A P B P A P A --=====- ()()0.15(|)0.3()()()0.5P B AB P AB P AB B P A P B P B ⋂=====()()(|)1()()P A AB P AB P A AB P AB P AB ⋂===故选B.解:本题考查的是分布函数的性质。

由()1F +∞=可知,A 、B 不能作为分布函数。

再由分布函数的单调不减性,可知D 不是分布函数。

所以答案为C 。

解:{||2}{2}{2}1{2}{2}1(2)(2)1(2)1(2)22(2)P X P X P X P X P X >=>+<-=-≤+<-=-Φ+Φ-=-Φ+-Φ=-Φ 故选A 。

解:因为(2)0.20.16P Y c ===+,所以0.04c =又(2)10.80.20.02P X c d ==-==++,所以10.020.040d =--= 故选D 。

解:若~()X P λ,则()()E X D X λ==,故 D 。

解:由方差的性质和二项分布的期望和方差:1512(1)()()3695276633D X Y D X D Y -+=+=⨯⨯+⨯⨯=+=选A 。

解:由切比雪夫不等式2(){|()|}1D X P X E X εε-<>-,可得21600{78008200}{|8000|200}10.96200P X P X <<=-<>-= 选C 。

概率论与数理统计(经管类)(有答案)

概率论与数理统计(经管类)(有答案)

实用文档04183概率论与数理统计(经管类)一、单项选择题1.若E(XY)=E(X))(Y E ⋅,则必有( B )。

A .X 与Y 不相互独立B .D(X+Y)=D(X)+D(Y)C .X 与Y 相互独立D .D(XY)=D(X)D(Y2.一批产品共有18个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为 A 。

A .0.1B .0.2C .0.3D .0.43.设随机变量X 的分布函数为)(x F ,下列结论错误的是 D 。

A .1)(=+∞FB .0)(=-∞FC .1)(0≤≤x FD .)(x F 连续4.当X 服从参数为n ,p 的二项分布时,P(X=k)= ( B )。

A .nk k m q p CB .kn k k n q p C -C .k n pq -D .k n k q p -5.设X 服从正态分布)4,2(N ,Y 服从参数为21的指数分布,且X 与Y 相互独立,则(23)D X Y ++= CA .8B .16C .20D .246.设n X X X 21独立同分布,且1EX μ=及2DX σ=都存在,则当n 充分大时,用中心极限定理得()1n i i P X a a =⎧⎫≥⎨⎬⎩⎭∑为常数的近似值为 B 。

A .1a n n μσ-⎛⎫-Φ⎪⎝⎭ B.1-Φ C .a n n μσ-⎛⎫Φ ⎪⎝⎭ D.Φ7.设二维随机变量的联合分布函数为,其联合分布律为则(0,1)F = C 。

A .0.2B .0.4C .0.6D .0.88.设k X X X ,,,21 是来自正态总体)1,0(N 的样本,则统计量22221k X X X ++服从( D )分布A .正态分布B .t 分布C .F 分布D .2χ分布9.设两个相互独立的随机变量X 与Y 分别服从)1,0(N 和)1,1(N ,则 B 。

A .21)0(=≤+Y X PB .21)1(=≤+Y X P实用文档C .21)0(=≤-Y X PD .21)1(=≤-Y X P10.设总体X~N (2,σμ),2σ为未知,通过样本n x x x 21,检验00:μμ=H 时,需要用统计量( C )。

10月概率论与数理统计(经管类)试题及答案

10月概率论与数理统计(经管类)试题及答案

全国2010年10月高等教育自学考试 概率论与数理统计(经管类)试题课程代码:04183一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设随机事件A 与B 互不相容,且P (A )>0,P (B )>0,则( ) (事件的关系与运算) A.P (B |A )=0 B.P (A |B )>0 C.P (A |B )=P (A ) D.P (AB )=P (A )P (B )解:A 。

因为P (AB )=0.2.设随机变量X ~N (1,4),F (x )为X 的分布函数,Φ(x )为标准正态分布函数,则F (3)=( ) A.Φ(0.5) B.Φ(0.75) C.Φ(1) D.Φ(3)(正态分布) 解:C 。

因为F(3)=)1()213(Φ=-Φ 3.设随机变量X 的概率密度为f (x )=⎩⎨⎧≤≤,,0,10 ,2其他x x 则P {0≤X ≤}21=( )A.41 B.31C.21D.43 (连续型随机变量概率的计算)解:A。

因为P {0≤X ≤}21412210==⎰xdx4.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤≤-+, ,0 ,01,21其他x cx 则常数c =( ) A.-3 B.-1 C.-21D.1解:D.(求连续型随机变量密度函数中的未知数) 由于1)(=⎰+∞∞-dx x f112121212121)(01201=⇒=-=⎥⎦⎤⎢⎣⎡+=+=--∞+∞-⎰⎰c c x cx dx cx dx x f5.设下列函数的定义域均为(-∞,+∞),则其中可作为概率密度的是( ) A. f (x )=-e -x B. f (x )=e -x C. f (x )=||-e 21xD. f (x )=||-e x解:选C。

(概率密度函数性质)A .0<--x e 不满足密度函数性质 由于1)(=⎰+∞∞-dx x f ,B 选项∞=-=+∞∞--+∞∞--⎰xx e dx eC选项12122100||||=-===+∞-+∞-+∞-+∞∞--⎰⎰⎰xx x x e dx e dx e dx eD选项2220||||=-===+∞-+∞-+∞-+∞∞--⎰⎰⎰x xx x edx e dx e dx e6.设二维随机变量(X ,Y )~N (μ1,μ2,ρσσ,,2221),则Y ~( )(二维正态分布)A.N (211,σμ) B.N (221,σμ) C.N (212,σμ)D.N (222,σμ)解:D 。

高等教育自学考试概率论与数理统计经管类真题2013年10月

高等教育自学考试概率论与数理统计经管类真题2013年10月

高等教育自学考试概率论与数理统计经管类真题2013年10月(总分:100.00,做题时间:150分钟)一、课程代码:04183 (总题数:10,分数:20.00)(分数:2.00)A.B.C.D. √解析:(分数:2.00)A.B.C.D. √解析:(分数:2.00)A. √B.C.D.解析:(分数:2.00)A. √B.C.D.解析:(分数:2.00)A.B. √C.D.解析:(分数:2.00)A.B. √C.D.解析:(分数:2.00)A. √B.C.D.解析:(分数:2.00)A.B.C. √D.解析:(分数:2.00)A.B. √C.D.解析:(分数:2.00)A.B.C. √D.解析:二、非选择题部分 (总题数:15,分数:30.00)(分数:2.00)填空项1:__________________ (正确答案:0.4)解析:(分数:2.00)填空项1:__________________ (正确答案:0.56)解析:(分数:2.00)填空项1:__________________解析:(分数:2.00)填空项1:__________________解析:(分数:2.00)填空项1:__________________ (正确答案:1)解析:(分数:2.00)填空项1:__________________解析:(分数:2.00)填空项1:__________________ (正确答案:1)解析:(分数:2.00)填空项1:__________________ (正确答案:6)解析:(分数:2.00)填空项1:__________________解析:(分数:2.00)填空项1:__________________ (正确答案:0.5)解析:(分数:2.00)填空项1:__________________解析:(分数:2.00)填空项1:__________________解析:(分数:2.00)填空项1:__________________解析:(分数:2.00)填空项1:__________________解析:(分数:2.00)填空项1:__________________解析:三、计算题(本大题共2小题,每小题8分,共16分)(总题数:2,分数:16.00)(分数:8.00)__________________________________________________________________________________________正确答案: )解析:(分数:8.00)__________________________________________________________________________________________正确答案:()解析:四、综合题(本大题共2小题,每小题12分,共24分)(总题数:2,分数:24.00)(分数:12.00)__________________________________________________________________________________________正确答案:)解析:(分数:12.00)__________________________________________________________________________________________正确答案:)解析:五、应用题(10分)(总题数:1,分数:10.00)(分数:10.00)__________________________________________________________________________________________正确答案:)解析:。

自考 概率论与数理统计(经管类)

自考 概率论与数理统计(经管类)

Ⅱ、综合测试题概率论与数理统计(经管类)综合试题一(课程代码4183)一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.下列选项正确的是( B ).A. A B A B+=+ B.()A B B A B+-=-C. (A-B)+B=AD. AB AB=2.设()0,()0P A P B>>,则下列各式中正确的是( D ).A.P(A-B)=P(A)-P(B)B.P(AB)=P(A)P(B)C. P(A+B)=P(A)+P(B)D. P(A+B)=P(A)+P(B)-P(AB)3.同时抛掷3枚硬币,则至多有1枚硬币正面向上的概率是( D ).A. 18B.16C.14D.124.一套五卷选集随机地放到书架上,则从左到右或从右到左卷号恰为1,2,3,4,5顺序的概率为( B ).A.1120B.160C.15D.125.设随机事件A ,B 满足B A ⊂,则下列选项正确的是 ( A ).A.()()()P A B P A P B -=-B. ()()P A B P B +=C.(|)()P B A P B =D.()()P AB P A =6.设随机变量X 的概率密度函数为f (x ),则f (x )一定满足( C ).A. 0()1f x ≤≤B. f (x )连续C.()1f x dx +∞-∞=⎰D. ()1f +∞=7.设离散型随机变量X 的分布律为(),1,2, (2)kbP X k k ===,且0b >,则参数b 的值为( D ).A.12B. 13C. 15 D. 18.设随机变量X , Y 都服从[0, 1]上的均匀分布,则()E X Y += ( A ). A.1 B.2 C.1.5 D.09.设总体X 服从正态分布,21,()2EX E X =-=,1210,,...,X X X 为样本,则样本均值101110ii X X ==∑~( D ).A.(1,1)N -B.(10,1)NC.(10,2)N -D.1(1,)10N - 10.设总体2123(,),(,,)XN X X X μσ是来自X 的样本,又12311ˆ42X aX X μ=++ 是参数μ的无偏估计,则a = ( B ). A. 1 B.14 C. 12D. 13二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密 ★ 考试结束前
全国2013年10月高等教育自学考试
概率论与数理统计(经管类)试题
课程代码:04183
请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分
注意事项:
1. 答题前,考生务必将自己的考试课程名称、姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。

2. 每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

不能答在试题卷上。

一、单项选择题(本大题共10小题,每小题2分,共20分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题纸”的相应代码涂黑。

错涂、多涂或未涂均无分。

1.设A,B 为随机事件,则事件“A ,B 至少有一个发生”可表示为 A.AB B.AB C.A B U
D.A B U
2.设随机变量2~(,)X N μσ,Φ()x 为标准正态分布函数,则{}P X x >= A.Φ(x )
B.1-Φ(x )
C.Φx μσ-⎛⎫ ⎪⎝⎭
D.1-Φx μσ-⎛⎫ ⎪⎝⎭
3.设二维随机变量221212(,)~(,,,,)X Y N μμσσρ,则X ~ A.211(,)N μσ B.221()N μσ C.212(,)N μσ
D.222(,)N μσ
4.设二维随机变量(X ,Y )的分布律为
0 a 0.2 1 0.2 b
且{1|0}0.5P Y X ===,则 A. a =0.2, b =0.4 B. a =0.4, b =0.2 C. a =0.1, b =0.5
D. a =0.5, b =0.1
5.设随机变量~(,)X B n p ,且()E X =2.4,()D X =1.44,则 A. n =4, p =0.6 B. n =6, p =0.4 C. n =8, p =0.3
D. n =24, p =0.1
6.设随机变量2~(,)X N μσ,Y 服从参数为(0)λλ>的指数分布,则下列结论中不正确...的是 A.1
()E X Y μ
λ
+= B.22
1
()D X Y σλ+=+
C.1
(),()E X E Y μλ
==
D.22
1
(),()D X D Y σλ
==
7.设总体X 服从[0,θ]上的均匀分布(参数θ未知),12,,,n x x x L 为来自X 的样本,则下列随机变量中是统计量的为 A. 1
1n
i i x n =∑
B. 11n
i i x n θ=-∑
C. 1
1()n
i i x E X n =-∑
D. 2
11
1()n i x D X n =-∑
8.设12,,,n x x x L 是来自正态总体2(,)N μσ的样本,其中μ未知,x 为样本均值,则2σ的无偏估计量为 A. 11()1n
i i x n μ=--∑2 B. 11()n
i i x n μ=-∑2
C. 1
1()1n i i x x n =--∑ 2 D.1
1()n
i i x x n =-∑ 2
9.设H 0为假设检验的原假设,则显著性水平α等于 A.P {接受H 0|H 0不成立} B. P {拒绝H 0|H 0成立} C. P {拒绝H 0|H 0不成立}
D. P {接受H 0|H 0成立}
10.设总体2~(,)X N μσ,其中2σ未知,12,,,n x x x L 为来自X 的样本,x 为样本均值,s 为样本标准差.在显著性水平
α下检验假设0010:,:H H μμμμ=≠.
令x t =
A. 2
||(1)a t t n <-
B.2
||()a t t n <
C. 2
||(1)a t t n >-
D.2
||()a t t n >
非选择题部分
注意事项:
用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。

二、填空题(本大题共15小题,每小题2分,共30分)
11.设随机事件A 与B 相互独立,且()0,(|)0.6P B P A B >=,则()P A =______.
12.甲、乙两个气象台独立地进行天气预报,它们预报准确的概率分别是0.8和0.7,则在一次预报中两个气象台都预报准确的概率是________.
13.设随机变量X 服从参数为1的指数分布,则{1}P X >=__________. 14.设随机变量~(1,1),1X N Y X =-,则Y 的概率密度()Y f y =________. 15.设二维随机变量(X ,Y )的分布函数为(,)F x y ,则(,)F +∞+∞=_________.
16.设随机变量X 与Y 相互独立,且都服从参数为1的泊松分布,则{1,2}P X Y ===_______. 17.设随机变量X 服从区间[0,2]上的均匀分布,则()E X =_______. 18.设随机变量X 与Y 的协方差Cov()=1X,Y -,则Cov(2,3)Y X -=________.
19.设随机变量12,,,n X X X L 相互独立,2
()(1,2,,)i D X i n σ==L ,则1
()n
i i D X =∑=________.
20.设X 为随机变量,()1,()0.5E X D X ==,则由切比雪夫不等式可得{|1|1}P X -≥≤______. 21.设总体~(0,1)X N ,123,,x x x 为来自X 的样本,则222123~x x x ++_________. 22.设随机变量~()t t n ,且{()}P t t n αα>=,则{()}P t t n α≤-=_________.
23.设总体12~(,1),,X N x x μ是来自X 的样本.1122122111
ˆˆ,3322
x x x x μμ
=+=+都是μ的估计量,则其中较有效的是_______.
24.设总体20~(,)X N μσ,其中20σ已知,12,,,n x x x L 为来自X 的样本,x 为样本均值,则对假设0010:,:H H μμμμ=≠应采用的检验统计量的表达式为_______.
25.依据样本(,)(1,2,,)i i x y i n =L 得到一元线性回归方程01ˆˆˆ,y x ββ=+,x y 为样本均值,令1()n
xx
i i L x x ==-∑2,1
()()n
xy i i i L x x y y ==--∑,则回归常数0
ˆβ=________. 三、计算题(本大题共2小题,每小题8分,共16分) 26.设二维随机变量(,)X Y 的概率密度为
1
,03,02,
(,)6
0,x y f x y ⎧<<<<⎪=⎨⎪⎩
其他. 求:(1)(,)X Y 关于X ,Y 的边缘概率密度(),()X Y f x f y ;(2){2}P X Y +≤.
27.假设某校数学测验成绩服从正态分布,从中抽出20名学生的分数,算得样本标准差s =4分,求正态分布方差2σ的置信度为98%的置信区间.20.01((19)36.191χ=,20.99(19)7.633)χ= 四、综合题(本大题共2小题,每小题12分,共24分)
28.设某人群中患某种疾病的比例为20%.对该人群进行一种测试,若患病则测试结果一定为阳性;而未患病者中也有5%的测试结果呈阳性.
求:(1)测试结果呈阳性的概率;(2)在测试结果呈阳性时,真正患病的概率. 29.设随机变量X 的概率密度为
,04,()0,.cx x f x <<⎧=⎨⎩
其他
求:(1)常数c ;(2)X 的分布函数()F x ;(3){||2}P X ≤. 五、应用题(10分)
30.某保险公司有一险种,每个保单收取保险费600元,理赔额10000元,在有效期内只理赔一次.设保险公司共卖
出这种保单800个,每个保单理赔概率为0.04.
求:(1)理赔保单数的分布律;(2)保险公司在该险种上获得的期望利润.。

相关文档
最新文档