五年级数学上册《简易方程》知识点汇总

合集下载

五年级上册数学第五单元简易方程

五年级上册数学第五单元简易方程

第五章五年级上册数学第五单元简易方程【知识回顾】用字母表示数(1)用字母表示数量关系、运算定律和计算公式知识点一、用字母表示数用含有字母的式子表示数量关系时,如果出现字母与数相乘时,要省略乘号时,一般把数写在字母前面。

知识点二、用字母表示运算定律和计算公式(1)乘法交换律:a×b=b×a → a·b=b·a 或ab=ba乘法结合律:(a×b)×c=a×(b×c)→(a·b)·c=a·(b·c)或(ab)c=a(bc)乘法分配律:(a+b)×c =a×c+b×c→(a+b)·c =a·c+b·c或(a+b)·c =ac+bc(2)用S表示面积,用C表示周长。

1)如果用a表示正方形的边长 , 那么这个正方形的周长:C =a·4=4a(省略乘号时,一般把数写在字母前面)这个正方形的面积:S =a·a=(读作:a的平方,表示2个a相乘)2)如果用a表示长方形的长, b表示宽,那么这个长方形的周长:C =(a+b)·2=2(a+b)这个长方形的面积:S = a·b=ab【典题解析】例:(1)读出下面各式,并说明表示的意义.(2)把下面各式写成一个数的平方的形式.5×5(3)省略乘号,写出下面各式.(4)根据运算定律在□填上适当的字母或数.(□+□)+□□·(□·□)(5)如果用表示长方形的长,表示宽,那么这个长方形的面积 _____________________,这个长方形的周长 _____________________.【随堂练习】一、我会省略乘号写出下面各式。

a×12=b×b=a×b=x×y×7=5×x=2×c×c=7x×5=2×a×b=二、我会判断。

五年级数学简易方程知识点

五年级数学简易方程知识点

简易方程是指只含有一个未知数的方程,通常以字母x表示未知数,如:2x+3=7、在这个方程中,未知数x的值为多少,是需要我们求解的。

五年级学生会学习如何通过逆向思维推导未知数的值,从而解决简易方程问题。

下面是五年级数学简易方程的主要知识点:1.方程的定义:方程是由等号连接的两个代数式组成的数学式子。

例如:2x+3=72.未知数:在方程中,未知数是我们要求解的对象,通常用字母表示,如x、y 等。

3.等式:方程中等号左右两侧的代数式相等,表示方程的基本关系。

如2x+3=74.解方程的基本方法:解方程的目的是求出未知数的值。

通常需要通过“逆向运算”的方法,逐步将未知数“从一边移到另一边”,直到得到未知数的具体值。

5.逆向运算:在解方程时,当方程中有一项与未知数相乘(或相除)时,可以通过与这项相反的运算,将未知数的系数化为1、例如方程2x=8,可以通过除以2的运算将方程转化为x=46.两侧相等性质:方程中的等号两侧进行相同的运算,结果仍然相等,即方程仍然成立。

例如方程2x=8,如果两侧同时除以2,则得到x=4,这个方程的解与原方程相等。

7.减去常数、乘以常数:方程中可以进行减去常数和乘以常数的运算,不会改变方程的解。

例如方程2x-3=7,如果两侧同时加上3,则得到2x=10,这个方程的解与原方程相等。

8.联立方程:联立方程是指同时解多个方程的问题。

对于两个方程,可以利用消元法或代入法来求解。

9.检验答案:求解方程之后,需要对解进行检验以确认答案的正确性。

将解代入原方程中,检验等号两侧是否相等。

数学五年级上简易方程知识点总结

数学五年级上简易方程知识点总结

数学五年级上的简易方程是指具有一个未知数的方程,解方程的目的是确定未知数的值。

在五年级上,主要学习了一元一次方程的解法和应用。

接下来,我将对五年级上的简易方程知识点进行总结。

一、一元一次方程一元一次方程指的是只有一个未知数,并且未知数的最高次数为一的方程。

一元一次方程的一般形式如下:ax + b = 0其中,a和b为已知数,x为未知数。

二、解一元一次方程方法与步骤解一元一次方程的方法主要有逆运算法、解方程三大性质法以及方程图法。

下面是逆运算法的步骤:1.对方程两边采取相反的运算,使含有未知数的项变为零;2.化简式子,得到未知数的值。

三、逆运算法逆运算法是解一元一次方程最常用的方法,逆运算指的是对方程两边采取相反的运算。

1.加减法逆运算:对于a+b=c这个方程,如果想求出a的值,只需要对两边同时进行减法运算即可,即a=c-b。

2.乘除法逆运算:对于a*b=c这个方程,如果想求出a的值,只需要对两边同时进行除法运算即可,即a=c/b。

四、解一元一次方程的步骤1.对方程进行加减法逆运算,使含有未知数的项变为零;2.化简式子,得到未知数的值。

五、解方程三大性质法解方程三大性质法是指解一元一次方程时使用的三个性质:等式两边交换位置后仍然成立、等式两边同时加上或减去相同的数后仍然成立、等式两边同时乘以或除以相同的非零数后仍然成立。

1.等式两边交换位置后仍然成立的性质:例如,对于方程a+b=c,如果将a和b交换位置,得到b+a=c,仍然成立。

2.等式两边同时加上或减去相同的数后仍然成立的性质:例如,对于方程a+b=c,如果两边同时加上d,得到a+b+d=c+d,仍然成立。

3.等式两边同时乘以或除以相同的非零数后仍然成立的性质:例如,对于方程a+b=c,如果两边同时乘以d,得到a*d+b*d=c*d,仍然成立。

六、方程图法方程图法是通过绘制方程的解所在的点在平面直角坐标系中的图形,来求解一元一次方程。

首先,将方程的解表示为坐标图上的点,再根据点的特征绘制图形。

五年级上册解简易方程难点归纳

五年级上册解简易方程难点归纳

五年级上册解简易方程难点归纳一、一步方程只有一步计算的方程,直接逆运算除未知数外的部分.x—6=7 解:x-6+6=7+6x=133x=18解:3x÷3=18÷3x=6x÷4=5解:x÷4×4=5×4x=20难点:当未知数出现在减数和除数时,要先逆运算含未知数的部分.16—x=9 解:16—x+x=9+xx+9=16x+9—9=16—9x=724÷x=4 解:24÷x×x=4×x4x=244x÷4=24÷4x=6二、两步方程两步方程中,若是只有同级运算,也可以先计算,后当做一步方程求解.注意要“带符号移动”,增添括号时还要注意符号的变化.10+x—6=20 解:x+(10—6)=20x+4=20x+4—4=20—4x=16x÷4×8=9.6 解:x×(8÷4)=9.62x=9.62x÷2=9.6÷2x=4.8如果含有两级运算,就“逆着运算顺序”同时变化,如含有未知数的一边是“先乘后减”,则先逆运算减法(即两边同加),再逆运算乘法(即两边同时除以),依此类推.x÷4+6=7.8 解:x÷4+6—6=7.8-6x÷4=1.8x÷4×4=1.8×4x=7.23(x-6)=6.6 解:3(x-6)÷3=6.6÷3x—6=2.2x—6+6=2.2+6x=8.2难点:当未知数出现在减数和除数时,要先把含有未知数的部分看作一个整体(可以看成是一个新的未知数),就相当于简化成了一步方程.6+64÷x=10 解:6+64÷x—6=10—664÷x=464÷x×x=4×x4x=644x÷4=64÷4x=165(7.2—x)=6 解:5(7.2—x)÷5=6÷57.2—x=1.27.2—x+x=1.2+xx+1.2=7.2x+1.2—1.2=7.2—1.2x=6三、三步方程(1)应用乘法分配律,共同因数是已知数的具有乘法分配律的形式,即两个有共同因数的乘积(或具有相同除数的除法式子)相加或相减,而共同因数(或除数)是已知数的,既可以逆用乘法分配律提取共同因数而将其简化为两步方程,也可以直接算出已知部分而化简.2.4x+2.4×8=36解:2.4(x+8)=362.4(x+8)÷2.4=36÷2.4x+8=15x+8-8=15-8x=7 或2.4x+2.4×8=36解:2.4x+19.2=362.4x+19.2-19.2=36—19.22.4x=16.82.4x÷2.4=16.8÷2.4x=7通过比较可以看出,一般来说提取共同因数的方法确实计算量要少一些,不容易算错.(2)应用乘法分配律,共同因数是未知数的具有乘法分配律的形式,即两个有共同因数的乘积(或具有相同除数的除法式子)相加或相减,而共同因数(或除数)是未知数的,只能逆用乘法分配律提取共同因数而将其简化为两步方程.2.4x+3.6x=36解:(2.4+3.6)x=366x=366x÷6=36÷6x=68÷x+12÷x=4 解:(8+12)÷x=420÷x=420÷x×x=4×x4x=204x÷4=20÷4 x=5。

五年级上学期数学第五单元简易方程知识点及基本题型解析

五年级上学期数学第五单元简易方程知识点及基本题型解析

五年级上册第五单元简易方程知识点及基本题型解析1、在含有字母的式子里,字母中间的乘号可以记作“·”,也可以省略不写。

注:加号、减号除号以及数与数之间的乘号不能省略。

例1、省略乘号,写出下面各式。

a×3=(3a) 7×a×b=(7ab) b×3×a=(3ab)2、a×a可以写作a·a或a2读作a的平方。

注: 2a表示a+a ; a2表示a×a例2、7²=(7×7) x·x=(x²)3、方程:含有未知数的等式称为方程。

例3、(1)4X-8=10(是)方程,(2)4X-8<10(不是)方程,(3)4+2=6(不是)方程。

解析:(1)有未知数,有等式是方程。

(2)有未知数,不是等式不是方程。

(3)没有未知数有等式不是方程。

4、使方程左右两边相等的未知数的值,叫做方程的解。

例4、(X=3)是方程4X-8=4的解。

5、求方程的解的过程叫做解方程。

6、解方程原理:天平平衡。

等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。

例5、解下列方程.X+4.8=7.2 X-0.8=8解:X+4.8-4.8=7.2-4.8 解:X-0.8+0.8=8+0.8X=2.4 X=8.87、10个数量关系式:和=加数+加数;一个加数=和-两一个加数差=被减数-减数;被减数=差+减数;减数=被减数-差积=因数×因数;一个因数=积÷另一个因数商=被除数÷除数;被除数=商×除数;除数=被除数÷商例6、解方程:(1)2.5x-2.5=10 (2)1.4×6-3x=1.5解:2.5x-2.5+2.5=10+2.5 解:6.4-3x=1.52.5x=12.5 3x=6.4-1.52.5x÷2.5=12.5÷2.5 3x÷3=3.9÷3x=5 x=1.3(3)12.6x-4.6x-5=123 (4)3.6+(x-5)×1.2=18 解:(12.6-4.6)x-5=123 解:3.6+(x-5)×1.2-3.6=18-3.68x-5+5=123+5 (x-5)×1.2=14.48x=128 (x-5)×1.2÷1.2=14.4÷1.2X=16 x-5+5=12+5X=17 例7.、列方程解文字题:(1)一个数的5.8倍减去这个数本身,差是26.4,这个数是多少?解:设这个数是x。

小学五年级数学简易方程的知识点归纳

小学五年级数学简易方程的知识点归纳

小学五年级数学简易方程的知识点归纳数学方程是数学中常见的一个概念,它是一个等式,其中包含一个或多个未知数。

在小学五年级的数学学习中,学生开始接触简易方程的概念和解题方法。

本文将对小学五年级数学简易方程的知识点进行归纳。

一、方程的基本概念方程是由等号连接的两个代数式组成,其中至少包含一个未知数。

例如,下面的方程是一个简单的数学方程:2x + 3 = 9在这个方程中,未知数是x,左边的2x + 3是一个代数式,右边的9也是一个代数式。

二、方程的解解方程,就是要找到使得方程成立的未知数的值。

对于简易方程来说,解通常是一个特定的数。

在解方程时,我们必须使用逆运算来保持等式的平衡。

例如,对于上面的方程2x + 3 = 9,我们可以先减去3再除以2来解方程,即:2x + 3 - 3 = 9 - 32x = 62x ÷ 2 = 6 ÷ 2x = 3所以x=3是这个方程的解。

三、方程的变形及性质在解方程的过程中,我们经常需要进行方程的变形。

方程的变形即改变方程的形式,使得方程更易于求解。

常见的方程变形方法包括:1. 合并同类项:将方程中相同的项合并,以简化方程。

2. 移项:将方程中的项按照规则从一边移到另一边,以便合理组织方程形式。

3. 消元:通过适当的运算,使得方程中的某些项相互抵消,以简化方程。

四、常见的简易方程类型1. 一元一次方程:一元一次方程是最简单的方程类型,形式为ax +b = c,其中a、b、c都是已知的实数,且a不等于0。

例如:2x + 3 = 7解这个方程的步骤是:2x + 3 - 3 = 7 - 32x = 42x ÷ 2 = 4 ÷ 2x = 2所以,这个方程的解是x=2。

2. 带括号的一元一次方程:在一元一次方程中,有时方程中带有括号,解这类方程的关键是先去括号再进行求解。

例如:3(x + 2) = 15首先展开括号:3x + 6 = 15然后解方程:3x + 6 - 6 = 15 - 63x = 93x ÷ 3 = 9 ÷ 3x = 3因此,这个方程的解是x=3。

小学五年级上册数学《简易方程》知识点及练习题

小学五年级上册数学《简易方程》知识点及练习题

小学五年级上册数学《简易方程》知识点及练习题【#五年级# 导语】方程是指含有未知数的等式。

是表示两个数学式(如两个数、函数、量、运算)之间相等关系的一种等式,使等式成立的未知数的值称为“解”或“根”。

求方程的解的过程称为“解方程”。

简易方程是小学生应该掌握的必要知识之一。

为大家准备了以下内容,希望对大家有帮助。

【篇一】小学五年级上册数学《简易方程》知识点1、方程的意义含有未知数的等式,叫做方程。

2、方程和等式的关系3、方程的解和解方程的区别使方程左右两边相等的未知数的值,叫做方程的解。

求方程的解的过程叫做解方程。

4、列方程解应用题的一般步骤(1)弄清题意,找出未知数,并用表示。

(2)找出应用题中数量之间的相等关系,列方程。

(3)解方程。

(4)检验,写出答案。

5、数量关系式加数=和-另一个加数减数=被减数–差被减数=差+减数因数=积另一个因数除数=被除数商被除数=商除数【篇二】小学五年级上册数学《简易方程》练习题一、填空。

1、某厂计划每月用煤a吨,实际用煤b吨,每月节约用煤( )吨。

2、一本书100页,平均每页有a行,每行有b个字,那么,这本书一共有( )个字。

3、用字母表示长方形的周长公式()4、根据运算定律写出:9n+5n=( + )n= a×0.8×0.125=(×)ab=ba运用()定律。

5、实验小学六年级学生订阅《希望报》186份,比五年级少订a份。

186+a 表示()6、一块长方形试验田有4.2公顷,它的长是420米,它的宽是()米。

7、一个等腰三角形的周长是43厘米,底是19厘米,它的腰是()。

8、甲乙两数的和是171.6,乙数的小数点向右移动一位,就等于甲数。

甲数是();乙数是()。

二、判断题。

(对的打√,错的打×)1、含有未知数的算式叫做方程。

()2、5x表示5个x相乘。

()3、有三个连续自然数,如果中间一个是a,那么另外两个分别是a+1和a-1。

人教版小学数学五年级上册简易方程知识点总结

人教版小学数学五年级上册简易方程知识点总结

5简易方程
特别注意:
加号、减号、除号及数与
数之间的乘号不能省略。

提示:
2a与a2的区别:
2a表示a+a,a2表示a×a。

提示:
省略乘号时,一般把数字写
在字母的前面。

举例:x×6可以写成6x。

提示:
1×a省略乘号时,不能写成
1a,要写成a,这里的“1”我们要
省略不写。

温馨提示:
用含有字母的式子表示数
量关系,是加减关系时,如果后
面加单位,必须把这个含有字母
的式子用括号括起来。

注意:
方程必须满足的条件:必须
是等式,必须有未知数,二者缺
一不可。

易错点:
误认为含有未知数的式子
是方程。

举例:
3x-2>18是方程。

( )
正确解答:(✕)
提示:
等式的性质是解方程的重。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、在含有字母的式子里,数字和字母中间的乘号,字母和字母之间的乘号,可以记作“·”,也可以省略不写。

加号、减号,除号以及数与数之间的乘号不能省略。

2、a×a可以写作a·a或a ,a 读作a的平方。

2a表示a+a
3、方程:含有未知数的等式称为方程。

方程一定是等式,但等式不一定是方程。

使方程左右两边相等的未知数的值,叫做方程的解。

求方程的解的过程叫做解方程。

(解方程要先写“解”)
方程的解是一个数;解方程是一个计算过程。

4、解方程的原理:
(1)等式的基本性质
等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。

(2)10个数量关系式:
加法:和=加数+加数一个加数=和-两一个加数
减法:差=被减数-减数被减数=差+减数减数=被减数-差
乘法:积=因数×因数一个因数=积÷另一个因数
除法:商=被除数÷除数被除数=商×除数除数=被除数÷商
5、方程的检验过程:
检验:方程左边 =……
=方程右边
所以, x=…是方程的解。

6、列方程解应用题的步骤:
(1)弄清题意,找出未知数,用x表示。

(2)分析、找出数量之间的等量关系,列出方程;
(3)解方程。

(4)检验,写出答案。

7、和倍或差倍应用题的解答方法:
设一倍的量为x,另一个量根据倍数关系表示为几x。

再根据两个量的和或差列出方程。

相关文档
最新文档