用导数求函数的最大值与最小值.ppt
合集下载
3.3.3函数的最大(小)值与导数 课件

函数最值的逆向问题 例 2 已知函数 f(x)=ax3-6ax2+b,问是否存在实数 a、 b,使 f(x)在[-1,2]上取得最大值 3,最小值-29?若存在, 求出 a,b 的值;若不存在,请说明理由.
[分析] 函数最值的逆向问题,通常是已知函数的最值 求函数关系式中字母的值的问题.解决时应利用函数的极 值与最值相比较,综合运用求极值、最值的方法确定系数 的方程(组),解之即可.
所以 f(x)在(0,12),(2,+∞)内是增函数,在(-∞,0),(12,
2)内是减函数.
(2)由条件 a∈[-2,2]可知 Δ=9a2-64<0,从而 4x2+3ax +4>0 恒成立.
当 x<0 时,f′(x)<0;当 x>0 时,f′(x)>0. 因此函数 f(x)在[-1,1]上的最大值是 f(1)与 f(-1)两者中 的较大者.
2.函数 y=|x-1|,下列结论正确的是( ) A.y 有极小值 0,且 0 也是最小值 B.y 有最小值 0,但 0 不是极小值 C.y 有极小值 0,但 0 不是最小值 D.因为 y 在 x=1 处不可导,所以 0 既非最小值也非极 值
解析:最小值与极小值定义的应用.故选 A. 答案:A
3.函数 f(x)=x(1-x2)在[0,1]上的最大值为( )
当 a=-130时,f′(x)=x(4x2-10x+4)=2x(2x-1)(x-2).
令 f′(x)=0,解得 x1=0,x2=12,x3=2.
当 x 变化时,f′(x),f(x)的变化情况如下表:
x (-∞,0)
0
(0,12)
1 2
(12,2)
2
(2,+∞)
f′(x) -
0
高等数学课件5第五节(2)函数的最大值最小值ppt

故 在 x2 2 2 处 达 到 最 大 利 润.
例7. 由直线 y 0, x 8 及抛物线 y x2 围成一个 曲边三角形, 在曲边 y x2 上求一点, 使曲线在该 点处的切线与直线 y 0 及 x 8 所围成的三角形 面积最大.
解: 如图,
y
设所求切点为P( x0, y0 ),
解: 设A点到水面的垂直距离为AO h1,
B点到水面的垂直距离为BQ h2 , OQ l. 设OP x,
则光线从 A 到 B 所需要的传播时间为 A
T( x) h12 x2 h22 (l x)2 , x [0, l]. h1
v1
v2
Ox P
T( x) 1 x 1 l x v1 h12 x2 v2 h22 (l x)2
计算 f (3) 23;
f (2) 34;
f (1) 7;
f (4) 142;
比较得 最大值 f (4) 142, 最小值 f (1) 7.
例2. 求函数 f ( x) x2 3x 2 在 [3,4] 上的 最大值与最小值.
解:
x2 3x 2,
f
(
x)
x2
3
x
2,
x [3,1] [2,4] x (1,2).
解: 由力学分析知矩形梁的抗弯截面模量为
1 b(d 2 b2 ), b(0,d) 6
令 W 1 (d 2 3b2 ) b 1 d
6
3
从而有
2
h
d 2 b2
d 3
dh b
即
d :h:b 3 : 2 :1
由实际意义可知 , 所求最值存在 , 驻点只一个, 故所求
结果就是最好的选择 .
A 若 f ( x0 ) 0 且 f ( x0 ) 0, 则 f ( x)在 x0(
例7. 由直线 y 0, x 8 及抛物线 y x2 围成一个 曲边三角形, 在曲边 y x2 上求一点, 使曲线在该 点处的切线与直线 y 0 及 x 8 所围成的三角形 面积最大.
解: 如图,
y
设所求切点为P( x0, y0 ),
解: 设A点到水面的垂直距离为AO h1,
B点到水面的垂直距离为BQ h2 , OQ l. 设OP x,
则光线从 A 到 B 所需要的传播时间为 A
T( x) h12 x2 h22 (l x)2 , x [0, l]. h1
v1
v2
Ox P
T( x) 1 x 1 l x v1 h12 x2 v2 h22 (l x)2
计算 f (3) 23;
f (2) 34;
f (1) 7;
f (4) 142;
比较得 最大值 f (4) 142, 最小值 f (1) 7.
例2. 求函数 f ( x) x2 3x 2 在 [3,4] 上的 最大值与最小值.
解:
x2 3x 2,
f
(
x)
x2
3
x
2,
x [3,1] [2,4] x (1,2).
解: 由力学分析知矩形梁的抗弯截面模量为
1 b(d 2 b2 ), b(0,d) 6
令 W 1 (d 2 3b2 ) b 1 d
6
3
从而有
2
h
d 2 b2
d 3
dh b
即
d :h:b 3 : 2 :1
由实际意义可知 , 所求最值存在 , 驻点只一个, 故所求
结果就是最好的选择 .
A 若 f ( x0 ) 0 且 f ( x0 ) 0, 则 f ( x)在 x0(
2019-2020学年人教A版选修2-2 函数的最大(小)值与导数 课件(50张)

这些命题中,真命题的个数是________. 【解析】 ②③正确. 【答案】 2
(2)[a,b]上连续不断的函数 f(x)在(a,b)上满足 f′(x)>0,则 f(a)是函数的最______值,f(b)是函数的最______值.
【答案】 小,大
题型二 闭区间上函数的最值
例 2 求下列函数的最大值和最小值. ππ
y′
+
0
-
0+
y -2
2
-2
2
由上表知 f(x)最大值为 2.
【答案】 C
x-1 (2)求 y= ,x∈[0,4]的最大值和最小值.
x2+1 【解析】 y′=-(xx2+2+21x)+21,
令 y′=0,得 x=1+ 2和 x=1- 2(舍). 又 f(0)=-1,f(4)=137,f(1+ 2)= 22-1, ∴ymax= 22-1,ymin=-1.
x f′(x)
f(x)
π -2
π 2
ππ (- 2 ,- 6 )
π -6
-
0
π-3 3 6
ππ (- 6 , 6 )
+
π x
6
f′(x)
0
3 3-π f(x)
6
ππ (6,2)
-
π 2
π -2
π
π
从上表可知,最大值为 2 ,最小值为- 2 .
(2)f′(x)=3x2-3,令 f′(x)=0,得 x=±1. ∵f(-3)=(-3)3-3×(-3)+3=-15, f(-1)=(-1)3-3×(-1)+3=5, f(1)=13-3×1+3=1, f(32)=(32)3-3×32+3=185, ∴函数的最大值是 5,最小值是-15.
互动 2 函数的最大(小)值可以有多个吗?最大(小)值点 呢?
(2)[a,b]上连续不断的函数 f(x)在(a,b)上满足 f′(x)>0,则 f(a)是函数的最______值,f(b)是函数的最______值.
【答案】 小,大
题型二 闭区间上函数的最值
例 2 求下列函数的最大值和最小值. ππ
y′
+
0
-
0+
y -2
2
-2
2
由上表知 f(x)最大值为 2.
【答案】 C
x-1 (2)求 y= ,x∈[0,4]的最大值和最小值.
x2+1 【解析】 y′=-(xx2+2+21x)+21,
令 y′=0,得 x=1+ 2和 x=1- 2(舍). 又 f(0)=-1,f(4)=137,f(1+ 2)= 22-1, ∴ymax= 22-1,ymin=-1.
x f′(x)
f(x)
π -2
π 2
ππ (- 2 ,- 6 )
π -6
-
0
π-3 3 6
ππ (- 6 , 6 )
+
π x
6
f′(x)
0
3 3-π f(x)
6
ππ (6,2)
-
π 2
π -2
π
π
从上表可知,最大值为 2 ,最小值为- 2 .
(2)f′(x)=3x2-3,令 f′(x)=0,得 x=±1. ∵f(-3)=(-3)3-3×(-3)+3=-15, f(-1)=(-1)3-3×(-1)+3=5, f(1)=13-3×1+3=1, f(32)=(32)3-3×32+3=185, ∴函数的最大值是 5,最小值是-15.
互动 2 函数的最大(小)值可以有多个吗?最大(小)值点 呢?
5.3.2函数的极值与最大(小)值课件(人教版)

最小值.
高中数学
探究新知
问题4 最大(小)值与极值有什么区分和联系?
最大(小)值与极值的区分是:
1.极值是函数的局部性质,最大(小)值是函数
的整体性质;
高中数学
探究新知
2.函数的极大(小)值可以有多个,而最大(小)值
是唯一的;
高中数学
探究新知
3.函数的极大值不一定大于极小值,极小值不
一定小于极大值,而最大值一定大于最小值(常值函
解: 函数定义域为(∞,+∞).
1
3
因为 f(x)= x34x+4,所以f′(x)=x24=(x+2)(x2).
令 f′(x)=0,解得x=2或x=2.
当x变化时,f′(x),f(x)的变化情况如下表所示
高中数学
知识应用
x (∞,2) 2
f′(x)
+
0
f(x) 单调递增
(2,2)
那么,我们称M是函数y=f(x)的最大值
(maximum value).
高中数学
探究新知
问题1 函数的最大值与最小值的定义是什么?
一般地,设函数y=f(x)的定义域为I,如果存在
实数m满足:
(1)∀x∈I,都有f(x)≥m;
(2)∃x0∈I,使得f(x0)=m.
那么,我们称m是函数y=f(x)的最小值
0
+
f(x) 单调递减 0 单调递增
所以,当x=1时,f(x)取得最小值.
1
所以f(x)≥f(1)=0. 即 1+lnx≥0.
1
所以当x>0时,1 ≤lnx.
高中数学
知识应用
小结 求函数在某区间上的最大(小)值,
高中数学
探究新知
问题4 最大(小)值与极值有什么区分和联系?
最大(小)值与极值的区分是:
1.极值是函数的局部性质,最大(小)值是函数
的整体性质;
高中数学
探究新知
2.函数的极大(小)值可以有多个,而最大(小)值
是唯一的;
高中数学
探究新知
3.函数的极大值不一定大于极小值,极小值不
一定小于极大值,而最大值一定大于最小值(常值函
解: 函数定义域为(∞,+∞).
1
3
因为 f(x)= x34x+4,所以f′(x)=x24=(x+2)(x2).
令 f′(x)=0,解得x=2或x=2.
当x变化时,f′(x),f(x)的变化情况如下表所示
高中数学
知识应用
x (∞,2) 2
f′(x)
+
0
f(x) 单调递增
(2,2)
那么,我们称M是函数y=f(x)的最大值
(maximum value).
高中数学
探究新知
问题1 函数的最大值与最小值的定义是什么?
一般地,设函数y=f(x)的定义域为I,如果存在
实数m满足:
(1)∀x∈I,都有f(x)≥m;
(2)∃x0∈I,使得f(x0)=m.
那么,我们称m是函数y=f(x)的最小值
0
+
f(x) 单调递减 0 单调递增
所以,当x=1时,f(x)取得最小值.
1
所以f(x)≥f(1)=0. 即 1+lnx≥0.
1
所以当x>0时,1 ≤lnx.
高中数学
知识应用
小结 求函数在某区间上的最大(小)值,
人教版高中数学选择性必修2《函数的极值与最大(小)值》PPT课件

根据以上信息,我们画出f(x)的大致图象如图所示.
(3)方程()=( ∈ )的解的个数为函数=()的图象与直线=的
交点个数.
1
由(1)及图可得,当= − 2时,()有最小值( − 2)=− e2.
所以,关于方程()=( ∈ )的解的个数有如下结论:
1
当 < − e2时,解为0个;
结合上面两图以及函数极值中的例子,不难看出,只要把函数=()的所有极值连同
端点的函数值进行比较,就可以求出函数的最大值与最小值.
在开区间(,)上函数的最值常见的有以下几种情况:
图(1)中的函数=()在(,)上有最大值而无最小值;
图(2)中的函数=()在(,)上有最小值而无最大值;
(2),(4),(6)是函数=()的极大值.
探究:进一步地,你能找出函数=()在区间[,]上的最小值、最大值吗?
从图中可以看出,函数=()在区间[,]上的最小值是(3 ),最大值是().
在下面两图中,观察[,]上的函数=()和=()的图象,它们在[,]上
当半径 < 2时, ′() < 0,()单调递减,即半径越大,利润越低.
(1)半径为6 cm时,利润最大.
(2)半径为2 cm时,利润最小,这时(2) < 0,表示此种瓶内饮料的利润还不
够瓶子的成本,此时利润是负值.
换一个角度:如果我们不用导数工具,直接从函数()的图象上观察,你
=()=0.2 ×
4
3
π
3
−
3
2
0.8π =0.8π
3
− 2 ,0 < ≤ 6.
所以 ′()=0.8π(2 − 2).
令 ′()=0,解得=2.
当 ∈ (0,2)时, ′() < 0;当 ∈ (2,6)时, ′() > 0.
人教A版高中数学选修1-1课件-函数的最大(小)值与导数

∴当 x=-23时, f(x)有极大值2227+c. 又 f(-1)=12+c,f(2)=2+c, ∴当 x∈[-1,2]时, f(x)的最大值为 f(2)=2+c. ∵当 x∈[-1,2]时, f(x)<c2 恒成立. ∴c2>2+c,解得 c<-1 或 c>2, ∴c 的取值范围是(-∞,-1)∪(2,+∞).
[解析] (1)解:f′(x)=-ax2+2eax-1x+2,f′(0)=2. 因此曲线 y=f(x)在(0,-1)处的切线方程是 2x-y-1=0. (2)证明:当 a≥1 时,f(x)+e≥(x2+x-1+ex+1)e-x. 令 g(x)=x2+x-1+ex+1,则 g′(x)=2x+1+ex+1. 当 x<-1 时,g′(x)<0,g(x)单调递减; 当 x>-1 时,g′(x)>0,g(x)单调递增. 所以 g(x)≥g(-1)=0.因此 f(x)+e≥0.
4.函数 f(x)=sin x+cos x 在 x∈[-2π,π2]上的最大值为___2___,最小值为 ___-__1__.
[解析] f′(x)=cos x-sin x, 令 f′(x)=0,即 cos x=sin x, ∵x∈[-π2,2π],∴x=4π. f(4π)= 2,f(-2π)=-1,f(2π)=1, ∴f(x)在区间[-2π,π2]上的最大值为 2,最小值为-1.
[思路分析] 本题主要考查导数的几何意义,极值的逆用和不等式的恒成立问题,求解第(2)小题的关 键是求出函数f(x)在[-1,2]上的最大值.
[解析] (1)f′(x)=3x2-x+b, f(x)的图象上有与 x 轴平行的切线,则 f′(x)= 0 有实数解,
即方程 3x2-x+b=0 有实数解, ∴Δ=1-12b≥0,解得 b≤112. 故 b 的取值范围为(-∞,112].
函数的最大值和最小值[1].ppt1
函数的最大值 和最小值
一、复习提问:
用导数来确定函数的极值步骤: (1)先求函数的导数 f / (x);(注意定义域) (2)再求方程 f /(x) = 0 的根; (3)列出导函数值符号变化规律表;
f’(x)符号
f (x)
+ 增函数
(-∞,a)
a
(a,b)
0
极大值
0 + 减函数 极小值 增函数
b
a 2 b 3 29 当x 0时.最大值为 3 ,求得b 3.
小
函数最小值为 16a b 29 可 可 - -1 0 0 + 2 能 能 f(x) a 2 3 小
-1 (-1,0)
0
(0,2)
2 (2,4)
4 3
f/(x)
五、练习题: 已知函数 y x3 3x 2 9 x a
f/(x)
-
0 4
+
0 5
-
五、练习题:
• 求下列函数在指定区间上的最大值与最小值:
( 1 ) y x 12 x 16 , x [ 3 ,3 ]
3
先求函数的导数 y 3( x 4 ) 驻点为x1 2、x2 2.
-3 (-3,-2)
/
2
-2 (-2,2)
2
(2,3)
-2 (-2,-1)
/
2
-1
(-1,1)
1
(1,2)
2
f/(x) f(x)
-1
+
0 11
0 -1
+
11
当x 1或2时,函数有最大值 11 ; 当x 2或1时,函数有最小值 1。
(3)求函数 f ( x ) 5 x 2 x 3 4 x的值域.
一、复习提问:
用导数来确定函数的极值步骤: (1)先求函数的导数 f / (x);(注意定义域) (2)再求方程 f /(x) = 0 的根; (3)列出导函数值符号变化规律表;
f’(x)符号
f (x)
+ 增函数
(-∞,a)
a
(a,b)
0
极大值
0 + 减函数 极小值 增函数
b
a 2 b 3 29 当x 0时.最大值为 3 ,求得b 3.
小
函数最小值为 16a b 29 可 可 - -1 0 0 + 2 能 能 f(x) a 2 3 小
-1 (-1,0)
0
(0,2)
2 (2,4)
4 3
f/(x)
五、练习题: 已知函数 y x3 3x 2 9 x a
f/(x)
-
0 4
+
0 5
-
五、练习题:
• 求下列函数在指定区间上的最大值与最小值:
( 1 ) y x 12 x 16 , x [ 3 ,3 ]
3
先求函数的导数 y 3( x 4 ) 驻点为x1 2、x2 2.
-3 (-3,-2)
/
2
-2 (-2,2)
2
(2,3)
-2 (-2,-1)
/
2
-1
(-1,1)
1
(1,2)
2
f/(x) f(x)
-1
+
0 11
0 -1
+
11
当x 1或2时,函数有最大值 11 ; 当x 2或1时,函数有最小值 1。
(3)求函数 f ( x ) 5 x 2 x 3 4 x的值域.
函数的极值与最大(小)值-第2课时 函数的最大(小)值 课件
() = −1 没有最值,选项C显然不正确;
选项D正确,故选BD.
3. [2021北京昌平高二模拟] 已知函数() = (2 + 2 − 2 )e ,则
(
)A
A. (2)是()的极大值也是最大值
B. (2)是()的极大值但不是最大值
C. (−2)是()的极小值也是最小值
当变化时,′(),()的变化情况如下表:
− 3Байду номын сангаас
′ ()
()
(− 3, −1)
-
0
-1
0
↘
极小
值
(-1,1
)
+
0
↗
(1,3)
1
-
极大
值
所以 = 1和 = −1是函数在[− 3, 3]上的两个极值点,
且(1) = 2, (−1) = −2,
又因为()在区间端点处的取值为(− 3) = 0, (3) = −18,
数的最值满足的方程或不等式求解.
1. 已知函数() = ( − 2)e 在 = 1处取得极值.
(1) 求实数的值;
[答案] ′ () = e + ( − 2)e = ( + − 2)e .
由已知得′(1) = 0,即(2 − 2)e = 0,解得 = 1,
3.对参数进行分类讨论的标准通常是函数在某一区间内是否具有单调性,是
否具有极值等.
类型2 由函数的最值求参数的值或取值范围
例2 [2021山东聊城高二质检] 已知函数() = ln + (1 − ), ∈ .
(1) 讨论()的单调性;
[答案] ()的定义域为(0, +∞),
(
选项D正确,故选BD.
3. [2021北京昌平高二模拟] 已知函数() = (2 + 2 − 2 )e ,则
(
)A
A. (2)是()的极大值也是最大值
B. (2)是()的极大值但不是最大值
C. (−2)是()的极小值也是最小值
当变化时,′(),()的变化情况如下表:
− 3Байду номын сангаас
′ ()
()
(− 3, −1)
-
0
-1
0
↘
极小
值
(-1,1
)
+
0
↗
(1,3)
1
-
极大
值
所以 = 1和 = −1是函数在[− 3, 3]上的两个极值点,
且(1) = 2, (−1) = −2,
又因为()在区间端点处的取值为(− 3) = 0, (3) = −18,
数的最值满足的方程或不等式求解.
1. 已知函数() = ( − 2)e 在 = 1处取得极值.
(1) 求实数的值;
[答案] ′ () = e + ( − 2)e = ( + − 2)e .
由已知得′(1) = 0,即(2 − 2)e = 0,解得 = 1,
3.对参数进行分类讨论的标准通常是函数在某一区间内是否具有单调性,是
否具有极值等.
类型2 由函数的最值求参数的值或取值范围
例2 [2021山东聊城高二质检] 已知函数() = ln + (1 − ), ∈ .
(1) 讨论()的单调性;
[答案] ()的定义域为(0, +∞),
(
高中数学(新课标)选修2课件1.3.3函数的最大(小)值与导数
当12<a<2e时,令 g′(x)=0,得 x=ln(2a)∈(0,1), 所以函数 g(x)在区间[0,ln(2a)]上单调递减,在区间(ln(2a),1] 上单调递增.
于是,g(x)在[0,1]上的最小值是 g(ln(2a))=2a- 2aln(2a)-b. 综上所述,当 a≤12时,g(x)在[0,1]上的最小值是 g(0)=1-b; 当12<a<2e时,g(x)在[0,1]上的最小值是 g(ln(2a))=2a-2aln(2a) -b; 当 a≥2e时,g(x)在[0,1]上的最小值是 g(1)=e-2a-b.
当 x 变化时,f′(x)与 f(x)的变化情况如下表:
x (-∞,- 2) - 2 (- 2, 2) 2 ( 2,+∞)
f′(x)
+
0
-
0
+
f(x)
极大值
极小值
因为 f(-1)=10,f(3)=18,f( 2)=-8 2,
所以当 x= 2时,f(x)取得最小值-8 2;
当 x=3 时,f(x)取得最大值 18.
对 f(x)求导,得 f′(x)=4ax3ln x+ax4×1x+4bx3= x3(4aln x+a+4b). 由题意知 f′(1)=0, 得 a+4b=0,解得 a=12. 因为 f′(x)=48x3ln x(x>0), 令 f′(x)=0,解得 x=1. 当 0<x<1 时,f′(x)<0,此时 f(x)为减函数; 当 x>1 时,f′(x)>0,此时 f(x)为增函数. 所以 f(x)在 x=1 处取得极小值 f(1)=-3-c, 并且此极小值也是最小值.
状元随笔 (1)函数的最值是一个整体性的概念.函数极值是
在局部上对函数值的比较,具有相对性;而函数的最值则是表示函 数在整个定义域上的情况,是对整个区间上的函数值的比较.
于是,g(x)在[0,1]上的最小值是 g(ln(2a))=2a- 2aln(2a)-b. 综上所述,当 a≤12时,g(x)在[0,1]上的最小值是 g(0)=1-b; 当12<a<2e时,g(x)在[0,1]上的最小值是 g(ln(2a))=2a-2aln(2a) -b; 当 a≥2e时,g(x)在[0,1]上的最小值是 g(1)=e-2a-b.
当 x 变化时,f′(x)与 f(x)的变化情况如下表:
x (-∞,- 2) - 2 (- 2, 2) 2 ( 2,+∞)
f′(x)
+
0
-
0
+
f(x)
极大值
极小值
因为 f(-1)=10,f(3)=18,f( 2)=-8 2,
所以当 x= 2时,f(x)取得最小值-8 2;
当 x=3 时,f(x)取得最大值 18.
对 f(x)求导,得 f′(x)=4ax3ln x+ax4×1x+4bx3= x3(4aln x+a+4b). 由题意知 f′(1)=0, 得 a+4b=0,解得 a=12. 因为 f′(x)=48x3ln x(x>0), 令 f′(x)=0,解得 x=1. 当 0<x<1 时,f′(x)<0,此时 f(x)为减函数; 当 x>1 时,f′(x)>0,此时 f(x)为增函数. 所以 f(x)在 x=1 处取得极小值 f(1)=-3-c, 并且此极小值也是最小值.
状元随笔 (1)函数的最值是一个整体性的概念.函数极值是
在局部上对函数值的比较,具有相对性;而函数的最值则是表示函 数在整个定义域上的情况,是对整个区间上的函数值的比较.
第3讲导数与函数的极值最值课件共83张PPT
2.导数与函数的最值 (1)函数 f(x)在[a,b]上有最值的条件 如果在区间[a,b]上函数 y=f(x)的图象是一条 07 ___连__续__不__断___的曲线, 那么它必有最大值和最小值. (2)求 y=f(x)在[a,b]上的最大(小)值的步骤 ①求函数 y=f(x)在(a,b)上的 08 _极__值___. ②将函数 y=f(x)的各极值与 09 __端__点__处__的__函__数__值__f(_a_)_,__f(_b_)_比较,其中 10 __最__大__的一个是最大值, 11 _最__小___的一个是最小值.
即 2x+y-13=0.
解
(2)显然 t≠0,因为 y=f(x)在点(t,12-t2)处的切线方程为 y-(12-t2)=
-2t(x-t),
令
x=0,得
y=t2+12,令
y=0,得
t2+12 x= 2t ,
所以 S(t)=12×(t2+12)·t2+2|t1| 2.
不妨设 t>0(t<0 时,结果一样),
例 1 (2021·南昌摸底考试)设函数 f(x)在 R 上可导,其导函数为 f′(x), 且函数 y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是( )
A.函数 f(x)有极大值 f(2)和极小值 f(1) B.函数 f(x)有极大值 f(-2)和极小值 f(1) C.函数 f(x)有极大值 f(2)和极小值 f(-2) D.函数 f(x)有极大值 f(-2)和极小值 f(2)
单调递减,所以 x=1 是 f(x)的极大值点.②若 a<0,由 f′(x)=0,得 x=1
或 x=-1a.因为 x=1 是 f(x)的极大值点,所以-1a>1,解得-1<a<0.综合①②