函数的最值与导数PPT课件
合集下载
3.3.3函数的最大(小)值与导数 课件

函数最值的逆向问题 例 2 已知函数 f(x)=ax3-6ax2+b,问是否存在实数 a、 b,使 f(x)在[-1,2]上取得最大值 3,最小值-29?若存在, 求出 a,b 的值;若不存在,请说明理由.
[分析] 函数最值的逆向问题,通常是已知函数的最值 求函数关系式中字母的值的问题.解决时应利用函数的极 值与最值相比较,综合运用求极值、最值的方法确定系数 的方程(组),解之即可.
所以 f(x)在(0,12),(2,+∞)内是增函数,在(-∞,0),(12,
2)内是减函数.
(2)由条件 a∈[-2,2]可知 Δ=9a2-64<0,从而 4x2+3ax +4>0 恒成立.
当 x<0 时,f′(x)<0;当 x>0 时,f′(x)>0. 因此函数 f(x)在[-1,1]上的最大值是 f(1)与 f(-1)两者中 的较大者.
2.函数 y=|x-1|,下列结论正确的是( ) A.y 有极小值 0,且 0 也是最小值 B.y 有最小值 0,但 0 不是极小值 C.y 有极小值 0,但 0 不是最小值 D.因为 y 在 x=1 处不可导,所以 0 既非最小值也非极 值
解析:最小值与极小值定义的应用.故选 A. 答案:A
3.函数 f(x)=x(1-x2)在[0,1]上的最大值为( )
当 a=-130时,f′(x)=x(4x2-10x+4)=2x(2x-1)(x-2).
令 f′(x)=0,解得 x1=0,x2=12,x3=2.
当 x 变化时,f′(x),f(x)的变化情况如下表:
x (-∞,0)
0
(0,12)
1 2
(12,2)
2
(2,+∞)
f′(x) -
0
3.3导数与函数的极值最值课件高三数学一轮复习2

提醒:(1)极值反映了函数在某一点附近的大小情况,刻画的是函数的局部性质.极 值点是函数在区间内部的点,不会是端点.
(2)对于可导函数f(x),f ′(x0)=0是函数f(x)在x=x0处有极值的必要不充分条件. 例如f(x)=x3,f′(0)=0,但x=0不是极值点. (3)极大值(或极小值)可能不止一个,可能没有,极大值不一定大于极小值.
提醒:(1)极值是一个局部性概念,反映的是函数在某个点附近的大小情况,并不意 味它在函数的整个定义域内最大或最小;最值是一个整体性的概念,函数的最值是比较 某个区间内的所有函数值得出的.
(2)若函数在开区间(a,b)内的极值点只有一个,则相应极值点为函数最值点. (3)若函数在闭区间[a,b]的最值点不是端点,则最值点必为极值点. (4)连续函数的极值个数不确定,而函数在某一闭区间上的最大和最小值是唯一的.
②若 a<0,要使函数 f(x)在 x=a 处取得极大值,则需 f(x)在a+32b,a上单调递增,在 (a,+∞)上单调递减,此时需满足 a>a+32b,得 b<a<0,∴a2<ab.
综上可知,a2<ab,故选 D.
3.(角度 2)已知函数 f(x)=x3+6lnx,f ′(x)为 f(x)的导函数.求函数 g(x)=f(x)-f ′(x) +9的单调区间和极值.
3 值点,则实数 a 的取值范围是____-__∞__,__-__14_∪___14_,__+__∞__ ___.
【解析】
(1) 因 为
f′(x)
=
3x2
+
6mx
+
n
,
由
题
有
f′-1=0, f-1=0,
即
3-6m+n=0, -1+3m-n+m2=0,
2025年高考数学总复习课件23第三章第二节第2课时导数与函数的极值、最值

当a>0时,令f ′(x)=0,得x=1a.
当x∈
0,
1
a
时,f ′(x)>0,函数f (x)单调递增;
当x∈
1
a
,+∞
时,f ′(x)<0,函数f (x)单调递减,
故函数f (x)在x=1a处取得极大值,无极小值.
综上可知,当a≤0时,函数f (x)无极值点;当a>0时,f (x)有一个极大值点1a,无
必备知识 落实“四基”
核心考点 提升“四能”
课时质量评价
(2)讨论函数f (x)在定义域内极值点的个数.
解:由(1)知函数f (x)的定义域为(0,+∞),f ′(x)=1x-a=1-xax(x>0).
当a≤0时,f ′(x)>0在(0,+∞)上恒成立,即函数f (x)在(0,+∞)上单调递增,
此时函数在定义域上无极值点.
y′>0,解得x<-7或x>1;令y′<0,解得-7<x<1,所以函数y=13x3+(a+1)x2-(a2 +3a-3)x在(-∞,-7),(1,+∞)上单调递增,在(-7,1)上单调递减,所以x =1是函数的极小值点,符合题意.若a=-3,则y′=x2-4x+3.令y′>0,解得
x<1或x>3;令y′<0,解得1<x<3,所以函数y=13x3+(a+1)x2-(a2+3a-3)x在(- ∞,1),(3,+∞)上单调递增,在(1,3)上单调递减,所以x=1是函数的极大值 点,不符合题意.
A 解析:f ′(x)=(x-c)2+2x(x-c)=(x-c)·(3x-c),
由题知f ′(2)=(2-c)(6-c)=0,所以c=2或c=6.
导数与函数的极值、最值课件-2025届高三数学一轮复习

处的切线方程为y= x+b(其中a,b∈R,e是自然对数的底数),则
3
27e
f(x)在区间[-3,3]上的最大值为
,最小值为 0
解析:由 f(x)=
得 f′(x)=
- -
( )
=
依题可得f′(1)= = ,所以a=3.
故 f(x)=
.
考点二
利用导数解决函数的最值问题
[例4] (2024·江苏苏州模拟)已知函数f(x)=xln x-a(x-1),求函
数f(x)在区间[1,e]上的最小值.
解:f(x)=xln x-a(x-1),则f′(x)=ln x+1-a,
①当ea-1≤1,即a≤1时,x∈[1,e],
则f′(x)≥0,f(x)在[1,e]上单调递增,
所以Δ=(-2a)2-4×3×2>0,
解得 a> 或 a<- .
提升·关键能力
类分考点,落实四翼
考点一
利用导数解决函数的极值问题
角度一
根据函数图象判断函数极值
[例1] (多选题)(2024·重庆检测)函数y=f(x)的导函数y=f′(x)
的图象如图所示,则(
)
A.-3是函数y=f(x)的极值点
可知-3是函数y=f(x)的极值点,所以A正确;
因为函数y=f(x)在(-3,1)上单调递增,
可知-1不是函数y=f(x)的极小值点,-2也不是函数y=f(x)的极大值
点,所以B错误,C正确,D错误.故选AC.
由图象判断函数y=f(x)的极值,要抓住两点
(1)由y=f′(x)的图象与x轴的交点的横坐标,可得函数y=f(x)的可
2019-2020学年人教A版选修2-2 函数的最大(小)值与导数 课件(50张)

这些命题中,真命题的个数是________. 【解析】 ②③正确. 【答案】 2
(2)[a,b]上连续不断的函数 f(x)在(a,b)上满足 f′(x)>0,则 f(a)是函数的最______值,f(b)是函数的最______值.
【答案】 小,大
题型二 闭区间上函数的最值
例 2 求下列函数的最大值和最小值. ππ
y′
+
0
-
0+
y -2
2
-2
2
由上表知 f(x)最大值为 2.
【答案】 C
x-1 (2)求 y= ,x∈[0,4]的最大值和最小值.
x2+1 【解析】 y′=-(xx2+2+21x)+21,
令 y′=0,得 x=1+ 2和 x=1- 2(舍). 又 f(0)=-1,f(4)=137,f(1+ 2)= 22-1, ∴ymax= 22-1,ymin=-1.
x f′(x)
f(x)
π -2
π 2
ππ (- 2 ,- 6 )
π -6
-
0
π-3 3 6
ππ (- 6 , 6 )
+
π x
6
f′(x)
0
3 3-π f(x)
6
ππ (6,2)
-
π 2
π -2
π
π
从上表可知,最大值为 2 ,最小值为- 2 .
(2)f′(x)=3x2-3,令 f′(x)=0,得 x=±1. ∵f(-3)=(-3)3-3×(-3)+3=-15, f(-1)=(-1)3-3×(-1)+3=5, f(1)=13-3×1+3=1, f(32)=(32)3-3×32+3=185, ∴函数的最大值是 5,最小值是-15.
互动 2 函数的最大(小)值可以有多个吗?最大(小)值点 呢?
(2)[a,b]上连续不断的函数 f(x)在(a,b)上满足 f′(x)>0,则 f(a)是函数的最______值,f(b)是函数的最______值.
【答案】 小,大
题型二 闭区间上函数的最值
例 2 求下列函数的最大值和最小值. ππ
y′
+
0
-
0+
y -2
2
-2
2
由上表知 f(x)最大值为 2.
【答案】 C
x-1 (2)求 y= ,x∈[0,4]的最大值和最小值.
x2+1 【解析】 y′=-(xx2+2+21x)+21,
令 y′=0,得 x=1+ 2和 x=1- 2(舍). 又 f(0)=-1,f(4)=137,f(1+ 2)= 22-1, ∴ymax= 22-1,ymin=-1.
x f′(x)
f(x)
π -2
π 2
ππ (- 2 ,- 6 )
π -6
-
0
π-3 3 6
ππ (- 6 , 6 )
+
π x
6
f′(x)
0
3 3-π f(x)
6
ππ (6,2)
-
π 2
π -2
π
π
从上表可知,最大值为 2 ,最小值为- 2 .
(2)f′(x)=3x2-3,令 f′(x)=0,得 x=±1. ∵f(-3)=(-3)3-3×(-3)+3=-15, f(-1)=(-1)3-3×(-1)+3=5, f(1)=13-3×1+3=1, f(32)=(32)3-3×32+3=185, ∴函数的最大值是 5,最小值是-15.
互动 2 函数的最大(小)值可以有多个吗?最大(小)值点 呢?
4.3导数与函数的极值最值课件高三数学一轮复习

【解析】选AC.根据导函数的图象可知, 当x∈(-∞,-3)时,f'(x)<0,当x∈(-3,1)时,f'(x)≥0, 所以函数y=f(x)在(-∞,-3)上单调递减,在(-3,1)上单调递增, 可知-3是函数y=f(x)的极值点,所以A正确. 因为函数y=f(x)在(-3,1)上单调递增, 可知-1不是函数y=f(x)的极小值点,-2也不是函数y=f(x)的极大值点,所以B错误,C 正确,D错误.
条
件
在点x=x0附近的左侧f'(x)>0,
右侧f'(x)<0
f'(x0)=0 在点x=x0附近的左侧f'(x)<0, 右侧f'(x)>0
图象
极值 极值点
f(x0)为极_大___值 x0为极_大___值点
f(x0)为极_小___值 x0为极_小___值点
微点拨 ①函数的极大值和极小值都可能有多个,极大值和极小值的大小关系不 确定. ②对于可导函数f(x),“f'(x0)=0”是“函数f(x)在x=x0处有极值”的必要不充分条件.
【解析】选D.由题图知,当x∈(-∞,-3)时,y>0,x-1<0⇒f'(x)<0,f(x)单调递减; 当x∈(-3,1)时,y<0,x-1<0⇒f'(x)>0,f(x)单调递增; 当x∈(1,3)时,y>0,x-1>0⇒f'(x)>0,f(x)单调递增; 当x∈(3,+∞)时,y<0,x-1>0⇒f'(x)<0,f(x)单调递减. 所以函数有极小值f(-3)和极大值f(3).
x
(0,2)
2
(2,+∞)
人教A版高中数学选修1-1课件-函数的最大(小)值与导数

∴当 x=-23时, f(x)有极大值2227+c. 又 f(-1)=12+c,f(2)=2+c, ∴当 x∈[-1,2]时, f(x)的最大值为 f(2)=2+c. ∵当 x∈[-1,2]时, f(x)<c2 恒成立. ∴c2>2+c,解得 c<-1 或 c>2, ∴c 的取值范围是(-∞,-1)∪(2,+∞).
[解析] (1)解:f′(x)=-ax2+2eax-1x+2,f′(0)=2. 因此曲线 y=f(x)在(0,-1)处的切线方程是 2x-y-1=0. (2)证明:当 a≥1 时,f(x)+e≥(x2+x-1+ex+1)e-x. 令 g(x)=x2+x-1+ex+1,则 g′(x)=2x+1+ex+1. 当 x<-1 时,g′(x)<0,g(x)单调递减; 当 x>-1 时,g′(x)>0,g(x)单调递增. 所以 g(x)≥g(-1)=0.因此 f(x)+e≥0.
4.函数 f(x)=sin x+cos x 在 x∈[-2π,π2]上的最大值为___2___,最小值为 ___-__1__.
[解析] f′(x)=cos x-sin x, 令 f′(x)=0,即 cos x=sin x, ∵x∈[-π2,2π],∴x=4π. f(4π)= 2,f(-2π)=-1,f(2π)=1, ∴f(x)在区间[-2π,π2]上的最大值为 2,最小值为-1.
[思路分析] 本题主要考查导数的几何意义,极值的逆用和不等式的恒成立问题,求解第(2)小题的关 键是求出函数f(x)在[-1,2]上的最大值.
[解析] (1)f′(x)=3x2-x+b, f(x)的图象上有与 x 轴平行的切线,则 f′(x)= 0 有实数解,
即方程 3x2-x+b=0 有实数解, ∴Δ=1-12b≥0,解得 b≤112. 故 b 的取值范围为(-∞,112].
导数与函数的极值、最值课件-2025届高三数学一轮复习

1.设f(x)为R 上的奇函数,当x≥0时,f′(x)-cos x<0,则不等式f(x)<sin x的解集为 ________. 解析:令φ(x)=f(x)-sin x,当x≥0时,φ′(x)=f′(x)-cos x<0,∴φ(x)在 [0,+∞)上单调递减,又f(x)为R上的奇函数,∴φ(x)为R上的奇函数,∴φ(x)在 (-∞,0]上单调递减,故φ(x)在R 上单调递减且φ(0)=0,不等式f(x)<sin x可化为 f(x)-sin x<0,即φ(x)<0,即φ(x)<φ(0),故x>0,∴原不等式的解集为(0,+∞). 答案:(0,+∞)
分别是________,g(x)在(1,2)上的最小值和最大值________.
[记结论] 1.对于可导函数f(x),f′(x0)=0是函数f(x)在x=x0处有极值的必要不充分 条件.
2.若函数f(x)的图象连续不断,则f(x)在[a,b]上一定有最值. 3.若函数f(x)在[a,b]上是单调函数,则f(x)一定在区间端点处取得最值. 4.若函数f(x)在区间(a,b)内只有一个极值点,则相应的极值点一定是函数 的最值点.
4 27
.若f(x)在(a-1,a+3)上存在极大值,则a
的取值范围是________.
1.已知函数极值,确定函数解析式中的参数时,要注意根据极值点的导数 为0和极值这两个条件列方程组,利用待定系数法求解.
2.导数值为0不是此点为极值点的充要条件,所以用待定系数法求解后必 须检验.
2.设 f(x)=2x3+ax2+bx+1 的导数为 f′(x),若函数 y=f′(x)的图象关于直
考向1 根据函数图象判断函数极值
(2022·郑州模拟)设函数f(x)在R 上可导,其导函数为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最小值为 5 2 7
小结
求f(x)在闭区间[a,b]上的最值的步骤
(1) 求f(x)在区间(a,b)内极值(极大值或极小值) (2) 将y=f(x)的各极值与f(a)、f(b)(端点处)
比较,其中最大的一个为最大值,最小的
一个最小值.
练习
1、已知函数 f ( x) x3 3 x a, x [2,3] (1)求 f ( x ) 的极值 (2)当 a 在什么范围内取值时,曲线 y f ( x ) 与 x 轴总有交点
2 解:(1) f ( x) 3 x 6 x 9 令f ( x ) 0 即 3 x 2 6 x 9 0
解得:x 1或x 3 (3, ) 所以函数的单调减区间为 (, 1),
(2) f ( x) 3 x 2 6 x 9
令 f ( x ) 0 解得 x 1或x 3 (舍去)
当 x 变化时,y, y 的变化情况如下表:
x 2 (2, 1) f ( x ) -f ( x) 2 a
↘
1
0 极小值 5 a
( 1, 2)
2
↗ 22 a
5 a 所以函数的最大值为 f (2) 22 a ,最小值为
22 a 20
即a 2
y
y
x0 o x 左正右负极大
o x x0 左负右正极小
x0 o x 左右同号无极值
复习
用导数法求解函数极值的步骤:
(1) 求导函数fˊ(x); (2) 求解方程fˊ(x)=0; (3) 检查fˊ(x)在方程fˊ(x)=0的根的左右
的符号,并根据符号确定极大值与极小值
.
口诀:左负右正为极小,左正右负为极大.
2 a 0 18 a 0 即 2 a 18
练习
2、求函数f (x)=3x-x3 在区间 [-3,3] 内的最大值和最小值.
注: 求函数最值的一般方法
一.是利用函数性质
二.是利用不等式 三.是利用导数课后Βιβλιοθήκη 业课本32页第6 题
(1)(2)(3)
总结:一般地,如果在区间[a,b]上函数f(x)的图像 是一条连续不断的曲线,那么它必有最大值和最小值。如 何求最值? 只要把连续函数的所有极值与端点的函数值进行比较,就 可求最大值、最小值
应用
1 3 例1、求函数 y x 4 x 4 在区间 [0, 3] 上的最大 3 值与最小值。 解: y x 2 4 令 y 0,解得 x 2或x 2 (舍去) 当x 变化时, y, y 的变化情况如下表: x 0 (0, 2) (2, 3) 3 2 f ( x ) - + 0 4 f ( x) 4 ↘ 1 极小值 ↗ 3
新课
求函数最值
1)在某些问题中,往往关心的是函数在整个 定义域区间上,哪个值最大或最小的问题这就 是我们通常所说的最值问题. 2)在闭区间[a,b]上的函数y=f(x)的图象是 一条连续不断的曲线,则它必有最大值和最小 f(x3) y 值. f( x ) f(b)
1
a x1
g
f(a)
x2
0
g
x4 x3 b x
所以函数的极大值为 2 a,极小值为 2 a
(2) 由(1)可知,函数在区间 [2, 3] 上的极大值 为 2 a ,极小值为 2 a ,又因 f ( 2) 2 a , f (3) 18 a
所以函数的最大值为 2 a ,最小值为 18 a 曲线 y f ( x ) 与 x 轴总有交点
又由于
f (0) 4 , f (3) 1
4 函数在区间 [0, 3] 上最大值为 4 ,最小值为 3
应用 3 2 f ( x ) x 3 x 9 x a, 例2:已知函数
(1)求f ( x ) 的单调减区间 (2)若f ( x ) 在区间[2, 2] 上的最大值为 20 , 求该区间上的最小值
2 (1) f ( x ) 3 x 3 令 f ( x ) 0 解得 x 1或x 1 解: 当 x变化时,f ( x ), f ( x ) 的变化情况如下表:
x (2, 1) 1 ( 1,1) 1 (1, 3) f ( x ) 0 + -0 -极大值 极小值 f ( x ) ↘ 2 a ↗ 2 a ↘
f(x2)
y y=f(x) o y y=f(x)
y
y=f(x)
a
b x
o a
y y=f(x)
b
x
o
a
b x
o a
b x
归纳结论:
(1)函数f(x)的图像若在开区间(a,b)上是连续不 断的曲线,则函数f(x)在(a,b)上不一定有最大值或 最小值;函数在半开半闭区间上的最值亦是如此
(2)函数f(x)若在闭区间[a,b]上有定义,但有 间断点,则函数f(x)也不一定有最大值或最小值
函数的最值与导数
复习
1、导数与单调性的关系
(1) f ( x ) 0 f ( x )为单调递增函数 (2) f ( x ) 0 f ( x )为单调递减函数
(3) x0为极值点 f ( x0 ) 0
2.极值的判定
(1) (2) (3)
y
f ( x ) 由正变负,那么 x0是极大值点; f ( x ) 由负变正,那么 x0是极小值点; f ( x ) 不变号,那么 x0 不是极值点。