圆的证明与计算 专 题

合集下载

2023年数学中考真题:圆的有关计算及证明精选(一)

2023年数学中考真题:圆的有关计算及证明精选(一)

圆的有关计算及证明2023年数学中考试题精选(一)1.(2023.营口23题)如图,在△ABC中,AB=BC,以BC为直径作圆O与AC将于点D,过点D作DE⊥AB,交CB延长线于点F,垂足为点E.(1)求证:DF为圆O的切线;,求BF的长。

(2)若BE=3,cosC=452.(2023.本溪铁岭辽阳24题)如图,AB是圆O的直径,点C,E在圆O上,∠CAB=2∠EAB,点F在线段AB的延长线上,且∠AFE=∠ABC.(1)求证:EF与圆O相切;,求BC的长。

(2)若BF=1,sin∠AFE=453.(2023.沈阳22题)如图,BE是圆O的直径,点A和点D是圆O上的两点,过点A作圆O的切线交BE延长线于点C.(1)若∠ADE=25°,求∠C的度数;(2)若AB=AC,CE=2,求圆O半径的长.4.(2023.大连市23题)如图1,在圆O中,AB为圆O的直径,点C为圆O上一点,AD为∠CAB的平分线交圆O于点D,连接OD交BC于点E.(1)求∠BED的度数;(2)如图2,过点A作圆O的切线BC延长线于点F,过点D作DG ∥AF交AB于点G.若AD=2√35,DE=4,求DG的长。

5.(2023.湖北省恩施州23题)如图,△ABC是等腰直角三角形,∠ACB=90°,点O为AB的中点,连接CO交圆O于点E,圆O与AC 相切于点D.(1)求证:BC是圆O的切线;(2)延长CO交圆O于点G,连接AC交圆O于点F,若AC=4√(2),求FG的长.6.(2023.贵州省23题)如图,已知圆O是等边三角形ABC的外接圆,连接CO并延长交AB于点D,交圆O于点E,连接EA,EB.(1)写出图中一个度数为30°的角;____,图中与△ACD全等的三角形是______;(2)求证:△AED∽△CEB;(3)连接OA,OB,判断四边形OAEB的形状,并说明理由。

7.(2023.江苏省24题)如图,在△ABC中,AB=AC,以AB为直径的圆O交边AC于点D,连接BD,过点C作CE∥AB.(1)请用无刻度的直尺和圆规作图:过点B作圆O的切线,交CE 于点F;(不写作法,保留作图痕迹,标明字母)(2)在(1)的条件下,求证:BD=BF.8.(2023.江西省20题)如图,在△ABC中,AB=4,∠C=64°,以AB为直径的圆O与AC相交于点D,E为优弧ABD上一点,且∠ADE=40°.(1)求BE的长;(2)若∠EAD=76°,求证:CB为圆O的切线.9.(2023.沈阳22题)如图,AB是圆O的直径,点C是圆O上的一点(点C不与点A,B重合),连接AC,BC,点D是AB上的一点,AC=AD,BE交CD的延长线于点E,且BE=BC.(1)求证:BE是圆O的切线;(2)若圆O的半径为5,tanE=1,则BE的长为_____.210.(2023.扬州市25题)如图,在△ABC中,∠ACB=90°,点D是AB∠A,点O在BC上,以点O为圆心的圆经过C、上一点,且∠BCD=12D两点.(1)试判断直线AB与圆O的位置关系,并说明理由;,圆O的半径为3,求AC的长.(2)若sinB=3511.(2023.广西壮族自治区23题)如图,PO平分∠APD,PA与圆O相切于点A,延长AO交PD于点C,过点O作OB⊥PD,垂足为B.(1)求证:PB是圆O的切线;(2)若圆O的半径为4,OC=5,求PA的长.12.(2023.广东省22题)如图1,在矩形ABCD中(AB>AD),对角线AC,BD相交于点O,点A关于BD的对称点为A`,连接AA`交BD于点E,连接CA`.(1)求证:AA`⊥CA`;(2)以点O为圆心,OE为半径作圆.①如图2,圆O与CD相切,求证:AA`=√3CA`;②如图3,圆O与CA`相切,AD=1,求圆O的面积.13.(2023.安徽省20题)已知四边形ABCD内接于圆O,对角线BD是圆O的直径.(1)如图1,连接OA,CA,若OA⊥BD,求证:CA平分⊥BCD; (2)如图2,E为圆O内一点,满足AE⊥BC,CE⊥AB,若BD=3√3,AE=3.求弦BC的长.14.(2023.湖北黄冈市20题)如图,⊥ABC 中,以AB 为直径的圆O 交BC 于点D ,DE 是圆O 的切线 ,且DE⊥AC ,垂足为E ,延长CA 交圆O 于点F.(1)求证:AB=AC ;(2)若AE=3,ED=6,求AF 的长。

专题2.10圆中的计算与证明的综合大题专项训练(50道)(举一反三)(苏科版)(原卷版)

专题2.10圆中的计算与证明的综合大题专项训练(50道)(举一反三)(苏科版)(原卷版)

专题2.10 圆中的计算与证明的综合大题专项训练(50道)【苏科版】考卷信息:本套训练卷共50题,题型针对性较高,覆盖面广,选题有深度,涵盖了圆中的计算与证明的综合问题的所有类型!一.解答题(共50小题)1.(2022秋•柯桥区月考)如图,D是⊙O弦BC的中点,A是⊙O上的一点,OA与BC交于点E,已知AO=8,BC=12.(1)求线段OD的长;(2)当EO=√2BE时,求DE的长.̂的中点,CE⊥AB于点E,BD交CE于点F.2.(2022•市中区校级一模)如图,AB是⊙O的直径,C是BD(1)求证:CF=BF;(2)若CD=6,AC=8,求⊙O的半径及CE的长.3.(2022秋•岱岳区期末)已知⊙O的直径为10,点A、点B、点C在⊙O上,∠CAB的平分线交⊙O于点D.(1)如图①,若BC为⊙O的直径,AB=6,求AC、BD、CD的长;(2)如图②,若∠CAB=60°,求BD的长.4.(2022•济宁)如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.(1)求证:BD=CD;(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.5.(2022秋•辛集市期末)如图1,在△ABC中,AB=AC,⊙O是△ABC的外接圆,过点C作CD∥AB交⊙O于点D,连接AD,延长CD至点F,使BF=BC.(1)求证:BF∥AD;(2)如图2,当CD为直径,半径为1时,求弧BD,线段BF,线段DF所围成图形的面积.6.(2022•凤翔县一模)如图,⊙O的直径为AB,点C在⊙O上,点D,E分别在AB,AC的延长线上,DE⊥AE,垂足为E,CD与⊙O相切于点C.(1)求证:∠A=∠CDE;(2)若AB=4,BD=3,求CD的长.7.(2022秋•湛江校级月考)已知P A、PB分别切⊙O于A、B,E为劣弧AB上一点,过E点的切线交P A 于C、交PB于D.(1)若P A=6,求△PCD的周长.(2)若∠P=50°求∠DOC.8.(2022秋•仪征市校级月考)如图,⊙O是正方形ABCD与正六边形AEFCGH的外接圆.(1)正方形ABCD与正六边形AEFCGH的边长之比为;(2)连接BE,BE是否为⊙O的内接正n边形的一边?如果是,求出n的值;如果不是,请说明理由.9.(2022•高唐县二模)如图,在菱形ABCD中,对角线AC,BD交于点O,∠BAO=30°,AC=8.过点O作OH⊥AB于点H,以点O为圆心,OH为半径的半圆交AC于点M.(1)求图中阴影部分的面积;(2)点P是BD上的一个动点(点P不与点B,D重合),当PH+PM的值最小时,求PD的长度.10.(2022•黔东南州模拟)如图,已知AB是⊙O的直径,点C、D在⊙O上,∠D=60°且AB=6,过O 点作OE⊥AC,垂足为E.(1)求OE的长;(2)若OE的延长线交⊙O于点F,求弦AF、AC和弧CF围成的图形(阴影部分)的面积S.11.(2022秋•如东县期末)如图,CD是⊙O的直径,弦AB⊥CD于点E,∠DAB=30°,AB=4√3.(1)求CD的长;(2)求阴影部分的面积.12.(2022秋•松滋市期末)如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连接EO、FO,若DE=4√3,∠DP A=45°(1)求⊙O的半径.(2)若图中扇形OEF围成一个圆锥侧面,试求这个圆锥的底面圆的半径.13.(2022•沈阳)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上一点,OD⊥AC,垂足为E,连接BD(1)求证:BD平分∠ABC;(2)当∠ODB=30°时,求证:BC=OD.14.(2022•本溪)如图,△ABC中,AB=AC,点E是线段BC延长线上一点,ED⊥AB,垂足为D,ED 交线段AC于点F,点O在线段EF上,⊙O经过C、E两点,交ED于点G.(1)求证:AC是⊙O的切线;(2)若∠E=30°,AD=1,BD=5,求⊙O的半径.15.(2022•崇左)如图,正方形ABCD的边长为1,其中弧DE、弧EF、弧FG的圆心依次为点A、B、C.(1)求点D沿三条弧运动到点G所经过的路线长;(2)判断直线GB与DF的位置关系,并说明理由.̂=CD̂,16.(2022•凉山州二模)如图,AB是半圆的直径,C、D是半圆上的两点,且∠BAC=20°,AD 求:∠BCD的度数.17.(2022•白云区一模)如图,⊙O的半径OA⊥OC,点D在AĈ上,且AD̂=2CD̂,OA=4.(1)∠COD=°;(2)求弦AD的长;(3)P是半径OC上一动点,连接AP、PD,请求出AP+PD的最小值,并说明理由.(解答上面各题时,请按题意,自行补足图形)̂的中点,CE⊥AB于E,BD交CE于F.18.(2022•西湖区校级一模)如图,AB是⊙O的直径,C是BD(1)求证:CF=BF;(2)若CD=6,AC=8,求BE、CF的长.19.(2022•武昌区校级自主招生)如图,已知⊙O的直径为10,点A、B、C在⊙O上,∠CAB的平分线交⊙O于点D.(1)图①,当BC为⊙O的直径时,求BD的长.(2)图②,当BD=5时,求∠CDB的度数.20.(2022•东莞市校级模拟)如图,⊙O的内接四边形ABCD两组对边的延长线分别交于点E、F.(1)当∠E=∠F时,则∠ADC=°;(2)当∠A=55°,∠E=30°时,求∠F的度数;(3)若∠E=α,∠F=β,且α≠β.请你用含有α、β的代数式表示∠A的大小.21.(2022•鹿城区校级模拟)如图,△ABC中,AB>AC,AE是其外接圆的切线,D为AB上的点,且AD =AC=AE.求证:直线DE过△ABC的内心.22.(2022•鼓楼区校级模拟)如图,图1、图2、图3、…、图n分别是⊙O的内接正三角形ABC,正四边形ABCD、正五边形ABCDE、…、正n边形ABCD…,点M、N分别从点B、C开始以相同的速度在⊙O 上逆时针运动.(1)求图1中∠APN的度数是;图2中,∠APN的度数是,图3中∠APN的度数是.(2)试探索∠APN的度数与正多边形边数n的关系(直接写答案).23.(2022•温州一模)如图,在⊙O上依次有A、B、C三点,BO的延长线交⊙O于E,AÊ=CÊ,过点C 作CD∥AB交BE的延长线于D,AD交⊙O于点F.(1)求证:四边形ABCD是菱形;̂的长.(2)连接OA、OF,若∠AOF=3∠FOE,且AF=3,求劣弧CF24.(2022•岳麓区校级一模)如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连AD.(1)求证:AD=AN;(2)若AB=4√2,ON=1,求⊙O的半径.25.(2022•普陀区模拟)如图,在⊙O中,AD、BC相交于点E,OE平分∠AEC.(1)求证:AB=CD;(2)如果⊙O的半径为5,AD⊥CB,DE=1,求AD的长.26.(2022•乌鲁木齐一模)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,点P在CA的延长线上,∠CAD=45°.(1)若AB=4,求弧CD的长;(2)若弧BC=弧AD,AD=AP,求证:PD是⊙O的切线.27.(2022•饶平县校级模拟)如图,⊙O中,弦CD与直径AB交于点H.(1)当∠B+∠D=90°时,求证:H是CD的中点;(2)若H为CD的中点,且CD=2√2,BD=√3,求AB的长.28.(2022•苏州模拟)如图,点A和动点P在直线l上,点P关于点A的对称点为Q,以AQ为边作Rt △ABQ,使∠BAQ=90°,AQ:AB=3:4,作△ABQ的外接圆O.点C在点P右侧,PC=4,过点CCD,作直线m⊥l,过点O作OD⊥m于点D,交AB右侧的圆弧于点E.在射线CD上取点F,使DF=32以DE,DF为邻边作矩形DEGF.设AQ=3x.(1)用关于x的代数式表示BQ=,DF=.(2)当点P在点A右侧时,若矩形DEGF的面积等于90,求AP的长.(3)当点P在点A右侧时,作直线BG交⊙O于点N,若BN的弦心距为1,求AP的长.29.(2022•福建模拟)如图1,△ABC中,AB=AC,⊙O是△ABC的外接圆,过点B作BE⊥AC,交⊙O 于点D,垂足为E,连接AD.(1)求证:∠BAC=2∠CAD;̂的中点,连接FG,若FG=2,CD (2)如图2,连接CD,点F在线段BD上,且DF=2DC,G是BC=2√2,求⊙O的半径.30.(2022•苏州模拟)如图,已知点D是△ABC外接圆⊙O上的一点,AC⊥BD于G,连接AD,过点B 作直线BF∥AD交AC于E,交⊙O于F,若点F是弧CD的中点,连接OG,OD,CD(1)求证:∠DBF=∠ACB;GE,试探究∠GOD与∠ADC之间的数量关系,并证明.(2)若AG=√62̂上一点,延长DA至点E,31.(2022•莱芜)如图,△ABC是⊙O的内接三角形,AC=BC,D为⊙O中AB使CE=CD.(1)求证:AE=BD;(2)若AC⊥BC,求证:AD+BD=√2CD.32.(2022•三明)如图①,②,在平面直角坐标系xOy中,点A的坐标为(4,0),以点A为圆心,4为半径的圆与x轴交于O,B两点,OC为弦,∠AOC=60°,P是x轴上的一动点,连接CP.(1)求∠OAC的度数;(2)如图①,当CP与⊙A相切时,求PO的长;(3)如图②,当点P在直径OB上时,CP的延长线与⊙A相交于点Q,问PO为何值时,△OCQ是等腰三角形?33.(2022•昆明)(1)如图(1),OA、OB是⊙O的两条半径,且OA⊥OB,点C是OB延长线上任意一点,过点C作CD切⊙O于点D,连接AD交OC于点E.求证:CD=CE;(2)若将图(2)中的半径OB所在直线向上平行移动交OA于F,交⊙O于B′,其他条件不变,那么上述结论CD=CE还成立吗?为什么?(3)若将图(3)中的半径OB所在直线向上平行移动到⊙O外的CF,点E是DA的延长线与CF的交点,其他条件不变,那么上述结论CD=CE还成立吗?为什么?34.(2022•襄城区模拟)如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连接AD.(1)求证:AD=AN;(2)若AB=8,ON=1,求⊙O的半径.35.(2022•台州校级模拟)某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面.(2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.(3)在(2)的条件下,小明把一只宽12cm的方形小木船放在修好后的圆柱形水管里,已知船高出水面13cm,问此小船能顺利通过这个管道吗?36.(2022•泰州模拟)如图,BC是⊙O的直径,弦AD⊥BC,垂足为H,已知AD=8,OH=3.(1)求⊙O的半径;(2)若E是弦AD上的一点,且∠EBA=∠EAB,求线段BE的长.37.(2022•河北)图1是某学校存放学生自行车的车棚的示意图(尺寸如图所示),车棚顶部是圆柱侧面̂所在圆的圆心为O.车棚顶部是用一种的一部分,其展开图是矩形.图2是车棚顶部截面的示意图,AB帆布覆盖的,求覆盖棚顶的帆布的面积.(不考虑接缝等因素,计算结果保留π)38.(2022•咸宁模拟)小明学习了垂径定理,做了下面的探究,请根据题目要求帮小明完成探究.(1)更换定理的题设和结论可以得到许多真命题.如图1,在⊙O中,C是劣弧AB的中点,直线CD⊥AB于点E,则AE=BE.请证明此结论;(2)从圆上任意一点出发的两条弦所组成的折线,成为该圆的一条折弦.如图2,P A,PB组成⊙O的一条折弦.C是劣弧AB的中点,直线CD⊥P A于点E,则AE=PE+PB.可以通过延长DB、AP相交于点F,再连接AD证明结论成立.请写出证明过程;(3)如图3,P A.PB组成⊙O的一条折弦,若C是优弧AB的中点,直线CD⊥P A于点E,则AE,PE与PB之间存在怎样的数量关系?写出结论,不必证明.39.(2022•南开区一模)已知:如图1,在⊙O中,直径AB=4,CD=2,直线AD,BC相交于点E.(1)∠E的度数为;(2)如图2,AB与CD交于点F,请补全图形并求∠E的度数;(3)如图3,弦AB与弦CD不相交,求∠AEC的度数.40.(2022•安徽一模)如图,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)判断△ABC的形状,并证明你的结论.(2)证明:P A+PB=PC.41.(2022•和平区一模)Rt△ABC中,∠ABC=90°,以AB为直径作⊙O交AC边于点D,E是边BC的中点,连接DE,OD.(Ⅰ)如图①,求∠ODE的大小;(Ⅱ)如图②,连接OC交DE于点F,若OF=CF,求∠A的大小.42.(2022•和平区二模)已知AB是⊙O的直径,AB=2,点C,点D在⊙O上,CD=1,直线AD,BC交于点E.(Ⅰ)如图1,若点E在⊙O外,求∠AEB的度数.(Ⅱ)如图2,若点E在⊙O内,求∠AEB的度数.43.(2022•南开区二模)如图,⊙O的直径AB的长为2,点C在圆周上,∠CAB=30°,点D是圆上一动点,DE∥AB交CA的延长线于点E,连接CD,交AB于点F.(Ⅰ)如图1,当∠ACD=45°时,请你判断DE与⊙O的位置关系并加以证明;(Ⅱ)如图2,当点F是CD的中点时,求△CDE的面积.44.(2022•红桥区二模)已知⊙O是△ABC的外接圆,过点A作⊙O的切线,与CO的延长线于点P,CP 与⊙O交于点D.(1)如图①,若AP=AC,求∠B的大小;(2)如图②,若AP∥BC,∠P=42°,求∠BAC的大小.45.(2022秋•镇海区期末)如图,在△ABC中,D在边AC上,圆O为锐角△BCD的外接圆,连结CO 并延长交AB于点E.(1)若∠DBC=α,请用含α的代数式表示∠DCE;(2)如图2,作BF⊥AC,垂足为F,BF与CE交于点G,已知∠ABD=∠CBF.①求证:EB=EG;②若CE=5,AC=8,求FG+FB的值.̂上任一点(点P与点A、B重合),46.(2022秋•虹口区校级期末)如图,等边△ABC内接于⊙O,P是AB连接AP、BP,过点C作CM∥BP交P A的延长线于点M.(1)求∠APC和∠BPC的度数;(2)求证:△ACM≌△BCP;(3)若P A=1,PB=2,求四边形PBCM的面积;̂的长度.(4)在(3)的条件下,求AB47.(2022秋•赣榆区期中)铁匠王老五要制作一个圆锥体模型,操作规则是:在一块边长为16cm的正方形纸片上剪出一个扇形和一个圆,使得扇形围成圆锥的侧面时,圆恰好是该圆锥的底面.他们首先设计了如图所示的方案一,发现这种方案不可行,于是他们调整了扇形和圆的半径,设计了如图所示的方案二.(两个方案的图中,圆与正方形相邻两边及扇形的弧均相切.方案一中扇形的弧与正方形的两边相切)请你帮助他算一算.(1)请说明方案一不可行的理由;(2)判断方案二是否可行?若可行,请确定圆锥的母线长l及其底面圆半径r;若不可行,请说明理由.48.(2022•浙江校级自主招生)如图,已知圆O的圆心为O,半径为3,点M为圆O内的一个定点,OM=√5,AB、CD是圆O的两条相互垂直的弦,垂足为M.(1)当AB=4时,求四边形ADBC的面积;(2)当AB变化时,求四边形ADBC的面积的最大值.49.(2022•浙江校级自主招生)如图,O为等边△ABC的外接圆,半径为2,点D在劣弧AB上运动(不与点A,B重合),连接DA,DB,DC.若点M,N分别在线段CA,CB上运动(不含端点),经过探究发现,点D运动到每一个确定的位置,△DMN的周长有最小值t,随着点D的运动,t的值会发生变化,求所有t值中的最大值.50.(2022•枣庄校级模拟)如图,在△ABC中,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且AC=CF,∠CBF=∠CFB.(1)求证:直线BF是⊙O的切线;(2)若点D,点E分别是弧AB的三等分点,当AD=5时,求BF的长和扇形DOE的面积;(3)填空:在(2)的条件下,如果以点C为圆心,r为半径的圆上总存在不同的两点到点O的距离为5,则r的取值范围为.。

圆的有关计算与证明问题(真题10道+模拟30道)中考数学重难题型押题培优导练案【解析版】

圆的有关计算与证明问题(真题10道+模拟30道)中考数学重难题型押题培优导练案【解析版】

专题15圆的有关计算与证明问题(北京真题10道+模拟30道)【方法归纳】题型概述,方法小结,有的放矢考点考查年份考查频率圆的有关计算与证明问题(大题) 2013.2014.2015.2016.2017十年10考2018.2019.2020.2021.2022圆的证明与计算是中考取的一类重要的问题,在北京市的2013-2022年10年中考中出现了10次,常见的圆的基础知识和解题技巧如下:1、圆中的重要定理:(1)圆的定义: 主要用来证明四点共圆和点到或直线圆的最值距离问题.(2)垂径定理: 主要用来证明——弧相等、线段相等、垂直关系等等.(3)三者之间的关系定理: 主要用来证明——弧相等、线段相等、圆心角相等.(4)圆周角性质定理及其推论 : 主要用来证明——直角、角相等、弧相等.(5)切线的性质定理: 主要用来证明垂直关系 .(6)切线的判断定理: 主要用来证明直线是圆的切线 .(7)切线长定理:线段相等、垂直关系、角相等 .2.圆中几个要点元素之间的相互转变 : 弧、弦、圆心角、圆周角等都能够经过相等来相互转变 . 这在圆中的证明和计算中常常用到 .3.判断切线的方法:( 1)若切点明确,则“连半径,证垂直”。

常有手法有:全等转变;平行转变;直径转变;中线转变等;有时可经过计算联合相像、勾股定理证垂直;( 2)若切点不明确,则“作垂直,证半径”。

常有手法:角均分线定理;等腰三角形三线合一,隐蔽角均分线;4、考题形式剖析:主要以解答题的形式出现, 第 1 问主要判断切线、证明角或线段相等;第2 问主要与圆有关的计算:①求线段长(或面积);②求线段比;③求角度的三角函数值(本质仍是求线段比)【典例剖析】典例精讲,方法提炼,精准提分【例1】(2021·北京·中考真题)如图,⊙O是△ABC的外接圆,AD是⊙O的直径,AD⊥BC于点E.(1)求证:∠BAD=∠CAD;(2)连接BO并延长,交AC于点F,交⊙O于点G,连接GC.若⊙O的半径为5,OE=3,求GC和OF的长.【答案】(1)见详解;(2)GC=6,OF=2511【解析】【分析】(1)由题意易得BD⌢=CD⌢,然后问题可求证;(2)由题意可先作图,由(1)可得点E为BC的中点,则有OE=12CG,OE//CG,进而可得△AOF∽△CGF,然后根据相似三角形的性质可进行求解.【详解】(1)证明:∵AD是⊙O的直径,AD⊥BC,∵BD⌢=CD⌢,∵∠BAD=∠CAD;(2)解:由题意可得如图所示:由(1)可得点E为BC的中点,∵点O是BG的中点,∵OE=12CG,OE//CG,∵△AOF∽△CGF,∵OA CG =OFGF,∵OE=3,∵CG=6,∵⊙O的半径为5,∵OA=OG=5,∵5 6=OFGF,∵OF=511OG=2511.【点睛】本题主要考查垂径定理、三角形中位线及相似三角形的性质与判定,熟练掌握垂径定理、三角形中位线及相似三角形的性质与判定是解题的关键.【例2】(2022·北京·中考真题)如图,AB是⊙O的直径,CD是⊙O的一条弦,AB⊥CD,连接AC,OD.(1)求证:∠BOD=2∠A;(2)连接DB,过点C作CE⊥DB,交DB的延长线于点E,延长DO,交AC于点F,若F为AC的中点,求证:直线CE为⊙O的切线.【答案】(1)答案见解析(2)答案见解析【解析】【分析】(1)设AB交CD于点H,连接OC,证明RtΔCOH≅RtΔDOH,故可得∠COH=∠DOH,于是BC⌢=BD⌢,即可得到∠BOD=2∠A;(2)连接,解出∠COB=60°,根据AB为直径得到∠ADB=90°,进而得到∠ABD=60°,即可证明OC//DB,故可证明直线CE为⊙O的切线.(1)证明:设AB交CD于点H,连接OC,由题可知,∴OC=OD,∠OHC=∠OHD=90°,∵OH=OH,∴RtΔCOH≅RtΔDOH(HL),∴∠COH=∠DOH,∴BC⌢=BD⌢,∴∠COB=∠BOD,∵∠COB=2∠A,∴∠BOD=2∠A;(2)证明:连接AD,∵OA=OD,∴∠OAD=∠ODA,同理可得:∠OAC=∠OCA,∠OCD=∠ODC,∵点H是CD的中点,点F是AC的中点,∴∠OAD=∠ODA=∠OAC=∠OCA=∠OCD=∠ODC,∵∠OAD+∠ODA+∠OAC+∠OCA+∠OCD+∠ODC=180°,∴∠OAD=∠ODA=∠OAC=∠OCA=∠OCD=∠ODC=30°,∴∠COB=2∠CAO=2×30°=60°,∵AB为⊙O的直径,∴∠ADB=90°,∴∠ABD=90−∠DAO=90°−30°=60°,∴∠ABD=∠COB=60°,∴OC//DE,∵CE⊥BE,∴CE⊥OC,∴直线CE为⊙O的切线.【点睛】本题主要考查三角形全等的判定与性质,同弧所对的圆周角相等,圆周角定理,直线平行的判定与性质,三角形的内角和公式,证明三角形全等以及证明平行线是解题的关键.【真题再现】必刷真题,关注素养,把握核心1.(2013·北京·中考真题)如图,AB是∵O的直径,PA,PC分别与∵O 相切于点A,C,PC交AB的延长线于点D,DE∵PO交PO的延长线于点E.(1)求证:∵EPD=∵EDO(2)若PC=6,tan∵PDA=,求OE的长.【答案】(1)见解析(2)√5【解析】【详解】试题分析:(1)根据切线长定理和切线的性质即可证明:∵EPD=∵EDO;(2)连接OC,利用tan∵PDA=34,可求出CD=4,再证明∵OED∵∵DEP,根据相似三角形的性质和勾股定理即可求出OE的长.试题解析:(1)证明:PA,PC与∵O分别相切于点A,C,∵∵APO=∵EPD且PA∵AO,∵∵PAO=90°,∵∵AOP=∵EOD,∵PAO=∵E=90°,∵∵APO=∵EDO,∵∵EPD=∵EDO;(2)解:连接OC,∵PA=PC=6,∵tan∵PDA=34,∵在Rt∵PAD中,AD=8,PD=10,∵CD=4,∵tan∵PDA=34,∵在Rt∵OCD中,OC=OA=3,OD=5,∵∵EPD=∵ODE,∵∵OED∵∵DEP,∵PD DO =PEDE=EDOE=2,∵DE=2OE在Rt∵OED中,OE2+DE2=OD2,即5OE2=52,∵OE=√5.考点:1.切线的性质;2.相似三角形的判定与性质.⌢的中点,⊙O的切线BD交AC的延长线于点D,E是2.(2014·北京·中考真题)如图,AB是⊙O的直径,C是ABOB的中点,CE的延长线交切线BD于点F,AF交⊙O于点H,连接BH.(1)求证:AC=CD;(2)若OB=2,求BH的长.【答案】(1)证明见解析(2)BH=4√55【解析】【分析】⌢的中点,可知OC∵AB,又BD是切(1)连接OC,若要证明C为AD的中点,只需证OC//BD,已知C是AB线,可知BD∵AB,问题得证(2)由(1)及E为OB中点可知∵COE∵∵FBE,从而可知BF=CO=BO=2,由勾股定理可得AF的长,由面积法即可求出BH的长【详解】(1)连接OC⌢的中点,AB是∵O的直径∵C是AB∵OC∵AB∵BD是∵O的切线∵BD∵AB∵OC//BD∵AO=BO∵AC=CD(2)∵E是OB的中点∵OE=BE在∵COE和∵FBE中{∠CEO=∠FEB OE=BE ∠COE=∠FBE∵∵COE∵∵FBE(ASA)∵BF=CO∵OB=2∵BF=2∵AF=√AB2+BF2=2√5∵AB是直径∵BH∵AFBH=AB⋅BFAF=2√5=4√55考点:1、平行线分线段成比例定理;2、切线的性质;3勾股定理;4、全等三角形3.(2015·北京·中考真题)如图,AB是∵O的直径,过点B作∵O的切线BM,弦CD//BM,交AB于点F,且DA⌢=DC⌢,连接AC,AD,延长AD交BM于点E.(l)求证:∵ACD是等边三角形;(2)连接OE,若DE=2,求OE的长.【答案】(1)见解析;(2)2√7【解析】【分析】(1)根据切线的定义可知AB∵BM,又∵BM//CD,∵AB∵CD,根据圆的对称性可得AD=AC,再根据等弧对等弦得DA=DC,即DA=DC=AC,所以可得∵ACD是等边三角形;(2)∵ACD为等边三角形,AB∵CD,由三线合一可得∵DAB=30°,连接BD,根据直径所对的角是直角和三角形的内角和可得∵∵EBD=∵DAB=30°,因为DE=2,求出BE=4,根据勾股定理得BD=2√3,直角三角形中30°角所对的直角边等于斜边的一半得,AB=4√3,OB=2√3,在Rt∵OBE中,根据勾股定理即可得出OE的长.【详解】解:(1)∵BM是∵O切线,AB为∵O直径,∵AB∵BM,∵BM//CD,∵AB∵CD,∵AD=AC,∵AD=AC,∵DA=DC,∵DC=AD,∵AD=CD=AC,∵∵ACD为等边三角形.(2)∵ACD为等边三角形,AB∵CD,∵∵DAB=30°,连结BD,∵BD∵AD.∵EBD=∵DAB=30°,∵DE=2,∵BE=4,BD=2√3,AB=4√3,OB=2√3,在Rt∵OBE中,OE=√OB2+BE2=√12+16=2√7.【点睛】本题考查圆的有关性质,直角三角形的性质;勾股定理.4.(2016·北京·中考真题)如图,AB为∵O的直径,F为弦AC的中点,连接OF并延长交AC⌢于点D,过点D作∵O的切线,交BA的延长线于点E.(1)求证:AC∵DE;(2)连接CD,若OA=AE=a,写出求四边形ACDE面积的思路.【答案】(1)证明见解析;(2)32a2.【解析】【详解】试题分析:(1)欲证明AC∵DE,只要证明AC∵OD,ED∵OD即可.(2)作DM∵OA于M,连接CD,CO,AD,首先证明四边形ACDE是平行四边形,根据S平行四边形ACDE=AE•DM,只要求出DM即可.试题解析:(1)∵ED与∵O相切于D,∵OD∵DE,∵F为弦AC中点,∵OD∵AC,∵AC∵DE.(2)作DM∵OA于M,连接CD,CO,AD.首先证明四边形ACDE是平行四边形,根据S平行四边形ACDE=AE•DM,只要求出DM即可.∵AC∵DE,AE=AO,∵OF=DF,∵AF∵DO,∵AD=AO,∵AD=AO=OD,∵∵ADO是等边三角形,同理∵CDO 也是等边三角形,∵∵CDO=∵DOA=60°,AE=CD=AD=AO=DD=a,∵AO∵CD,又AE=CD,∵四边形ACDE是平行四边形,易知DM=√32a,∵平行四边形ACDE面积=√32a2.考点:切线的性质.5.(2017·北京·中考真题)如图,AB是∵O的一条弦,E是AB的中点,过点E作EC∵OA于点C,过点B 作∵O的切线交CE的延长线于点D.(1)求证:DB=DE;(2)若AB=12,BD=5,求∵O的半径.【答案】(1)证明见解析;(2)152【解析】【详解】试题分析:(1)由切线性质及等量代换推出∵4=∵5,再利用等角对等边可得出结论;(2)由已知条件得出sin∵DEF和sin∵AOE的值,利用对应角的三角函数值相等推出结论.试题解析:(1)∵DC∵OA,∵∵1+∵3=90°,∵BD为切线,∵OB∵BD,∵∵2+∵5=90°,∵OA=OB,∵∵1=∵2,∵∵3=∵4,∵∵4=∵5,在∵DEB中,∵4=∵5,∵DE=DB.(2)作DF∵AB于F,连接OE,∵DB=DE,∵EF=12BE=3,在RT∵DEF中,EF=3,DE=BD=5,EF=3 ,∵DF=√52−32=4∵sin∵DEF=DFDE = 45,∵∵AOE=∵DEF,∵在RT∵AOE中,sin∵AOE=AEAO =45,∵AE=6,∵AO=152.【点睛】本题考查了圆的性质,切线定理,三角形相似,三角函数等知识,结合图形正确地选择相应的知识点与方法进行解题是关键.6.(2018·北京·中考真题)如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.【答案】(1)证明见解析;(2)4√33.【解析】【分析】(1)根据切线的性质定理得到PC=PD,OP平分∠CPD.根据等腰三角形的性质即可得到PQ⊥CD于Q,即OP⊥CD.(2)连接OC、OD.根据等腰三角形的性质和平角的性质得到∠COD=180°−∠AOD−∠BOC=60°.进而得到∠DOQ=12∠COD=30°.在Rt△ODP中,解直角三角形即可.【详解】(1)证明:∵PC、PD与⊙O相切于C、D.∵PC=PD,OP平分∠CPD.在等腰△PCD中,PC=PD,PQ平分∠CPD.∵PQ⊥CD于Q,即OP⊥CD.(2)解:连接OC、OD.∵OA=OD∵∠OAD=∠ODA=50°∵∠AOD=180°−∠OAD−∠ODA=80°同理:∠BOC=40°∵∠COD=180°−∠AOD−∠BOC=60°.在等腰△COD中,OC=OD.OQ⊥CD∵∠DOQ=12∠COD=30°.∵PD与⊙O相切于D.∵OD⊥DP.∵∠ODP=90°.在Rt△ODP中,∠ODP=90°,∠POD=30°∵OP=ODcos∠POD=OAcos30°=√32=43√3.【点睛】本题考查了切线的性质和判定,圆周角定理,解直角三角形等,题目比较典型,综合性比较强,难度适中.7.(2019·北京·中考真题)在平面内,给定不在同一直线上的点A,B,C,如图所示.点O到点A,B,C 的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,∠ABC的平分线交图形G于点D,连接AD,CD.(1)求证:AD=CD;(2)过点D作DE⊥BA,垂足为E,作DF⊥BC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,求直线DE与图形G的公共点个数.【答案】依题意画出图形G为∵O,如图所示,见解析;(1)证明见解析;(2)直线DE与图形G的公共点个数为1个.【解析】【分析】(1)根据线段垂直平分线的性质得出图形G为∵O,再根据在同圆或等圆中相等的圆周角所对的弧相等得⌢=CD⌢;从而得出弦相等即可.出AD(2)先根据HL得出△CDF∵∵CMF,得出DF=MF,从而得出BC为弦DM的垂直平分线,根据圆心角和圆周角之间的关系定理得出∵ABC=∵COD,再证得DE为∵O的切线即可【详解】如图所示,依题意画出图形G为∵O,如图所示(1)证明:∵BD平分∵ABC,∵∵ABD=∵CBD,⌢=CD⌢,∵AD=CD∵AD(2)解:∵AD=CD,AD=CM,∵CD=CM.∵DF∵BC,∵∵DFC=∵CFM=90°在Rt△CDF和Rt△CMF中{CD=CMCF=CF,∵Rt△CDF∵Rt△CMF(HL),∵DF=MF,∵BC为弦DM的垂直平分线∵BC为∵O的直径,连接OD∵∵COD=2∵CBD,∵ABC=2∵CBD,∵∵ABC=∵COD,∵OD∵BE.又∵DE∵BA,∵∵DEB=90°,∵∵ODE=90°,即OD∵DE,∵DE为∵O的切线.∵直线DE与图形G的公共点个数为1个.【点睛】本题考查了垂直平分线的性质,圆心角和圆周角之间的关系定理,切线的判定,熟练掌握相关的知识是解题的关键.8.(2020·北京·中考真题)如图,AB为∵O的直径,C为BA延长线上一点,CD是∵O的切线,D为切点,OF∵AD于点E,交CD于点F.(1)求证:∵ADC=∵AOF;(2)若sinC=13,BD=8,求EF的长.【答案】(1)见解析;(2)2.【解析】【分析】(1)连接OD,根据CD是∵O的切线,可推出∵ADC+∵ODA=90°,根据OF∵AD,∵AOF+∵DAO=90°,根据OD=OA,可得∵ODA=∵DAO,即可证明;(2)设半径为r,根据在Rt∵OCD中,sinC=13,可得OD=r,OC=3r,AC=2r,由AB为∵O的直径,得出∵ADB=90°,再根据推出OF∵AD,OF∵BD,然后由平行线分线段成比例定理可得OEBD =OAAB=12,求出OE,OFBD =OCBC=34,求出OF,即可求出EF.【详解】(1)证明:连接OD,∵CD是∵O的切线,∵OD∵CD,∵∵ADC+∵ODA=90°,∵OF∵AD,∵∵AOF+∵DAO=90°,∵OD=OA,∵∵ODA=∵DAO,∵∵ADC=∵AOF;(2)设半径为r,在Rt∵OCD中,sinC=13,∵OD OC =13,∵OD=r,OC=3r,∵OA=r,∵AC=OC-OA=2r,∵AB为∵O的直径,∵∵ADB=90°,又∵OF∵AD,∵OF∵BD,∵OE BD =OAAB=12,∵OE=4,∵OF BD =OCBC=34,∵OF=6,∵EF=OF−OE=2.【点睛】本题考查了平行线分线段成比例定理,锐角三角函数,切线的性质,直径所对的圆周角是90°,灵活运用知识点是解题关键.【模拟精练】押题必刷,巅峰冲刺,提分培优一、解答题1.(2022·北京市广渠门中学模拟预测)如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,E为BC⌢上一点,过点E作⊙O的切线,分别交DC,AB的延长线于点F,G连接AE,交CD于点P.(1)求证:EF=FP;(2)连接AD,若AD∥FG,CD=8,cosF=45,求⊙O半径.【答案】(1)见解析(2)256【解析】【分析】(1)连接OE,要使EF=FP,需要∵FEP=∵FPE,通过切线和垂直的已知条件,利用等角的余角相等可得∵FEP=∵FPE,结论可得.(2)设圆的半径为r,在Rt∵ODH中,利用勾股定理可以求得半径r.(1)证明:连接OE,∵EF是圆的切线,∵OE∵EF.∵∵OEF=90°.∵∵OEA+∵AEF=90°.∵CD∵AB,∵∵AHC=90°.∵∵OAE+∵APH=90°.∵OA=OE,∵∵OAE=∵OEA.∵∵AEF=∵APH.∵∵APH=∵EPF,∵∵EPF=∵AEF.∵EF=PF.(2)连接OD,设圆的半径为r,∵直径AB∵CD于H,CD=8,∵CH=DH=4.∵AD∵FG,∵∵ADH=∵F.∵cos∵ADH=cos F=45∴AD=CHcos∠ADH=5∴AH=√AD2−DH2=3∵OH=OA-AH=r-3.在Rt∵ODH中,∵OH2+DH2=OD2,∵(r-3)2+42=r2.∴OE=r=25 6【点睛】本题主要考查了圆的切线的性质,勾股定理,垂径定理,圆周角定理和解直角三角形的知识.使用添加圆中常添加的辅助线是解题的关键.2.(2022·北京房山·二模)如图,已知AB是半⊙O的直径,点H在⊙O上,E是HB⌢的中点,连接AE,过点E作EC⊥AH交AH的延长线于点C.过点E作EF⊥AB于点F.(1)求证:CE是⊙O的切线;(2)若FB=2,EFAF =√22,求OF的长.【答案】(1)见解析(2)OF=1【解析】【分析】(1)连接OE,由于E为HB⌢的中点,根据圆周角定理可知∵1=∵2,而AO=EO,则∵3=∵2,于是∵1=∵3,根据平行线的判定知OE∥AC,而AC∵CE,根据平行线的性质知∵OEC=90°,即OE∵CE,根据切线的判定可知CE是∵O的切线;(2)由于AB是直径,故∵AED=90°,而EF∵AB,易知∵2=∵4=∵1,那么tan∵1=tan∵2=tan∵4=EFAF =√22,在Rt∵EFB中,利用正切可求出EF,同理在Rt∵AEF中,可求出AF,得半径OB=3,进而可求出OF.(1)证明:连结OE,∵点E为HB⌢的中点,∵ ∵1=∵2,∵OE=OA,∵∵3=∵2,∵∵3=∵1,∵OE∵AC,∵AC∵CE,∵OE∵CE,∵点E在∵O上,∵CE是∵O的切线.(2)连结EB,∵AB是∵O的直径,∵∵AEB=90°,∵EF∵AB于点F,∵∵AFE=∵EFB=90°,∵∵2+∵AEF=∵4+∵AEF=90°,∵∵2=∵4=∵1,∵EF AF =√22,∵tan∠1=√22,∵tan∵4 =√22,在Rt∵EFB中,∵EFB=90°,FB=2,tan∵4 =√22,∵EF=2√2,设OE=x,则OB= x.∵FB=2,∵OF=x-2,∵在Rt∵OEF中,∵EFO=90°,∵x2=(x-2)2+(2√2)2,∵x=3,∵OF=1.【点睛】本题主要考查了切线的判定,圆周角定理,平行线的性质,等腰三角形的性质,勾股定理,三角函数的定义,作出辅助线,熟练掌握圆的切线判定方法,是解题的关键.3.(2022·北京朝阳·二模)如图,AB为∵O的直径,C为∵O上的一点,OD⊥AB交AC于点E,DE=DC.(1)求证:DC是∵O的切线;(2)若OA=4,OE=2,求cos D.【答案】(1)见解析(2)35【解析】【分析】(1)连接OC.证∵OCD=90°,即可得出结论;(2)先求出OC=4.再同由勾股定理求出DC=3,OD=5,最后由余弦定义cosD=DC求解.OD(1)证明:如图,连接OC.∵OD⊥AB交AC于点E,∵∠AOD=90∘,∵∠A+∠AEO=90∘.∵∠AEO=∠DEC,∵∠A+∠DEC=90∘.∵DE=DC,∵∠DEC=∠DCE,∵OA=OC,∵∠A=∠ACO,∵∵OCD=∠ACO+∠DCE=90∘,∵DC⊥OC,∵DC是∵O的切线,(2)解:∵∠OCD=90∘,∵DC2+OC2=OD2,∵OA=4,∵OC=4.设DC=x,∵OE=2,∵x2+42=(x+2)2.解得x=3,∵DC=3,OD=5.∵在Rt∵OCD中,cosD=DCOD =35.【点睛】本师考查切线的判定,解直角三角形,掌握切线的判定定理是解题的关键.4.(2022·北京东城·二模)如图,在△ABC中,AB>AC,∠BAC=90°,在CB上截取CD=CA,过点D作DE⊥AB 于点E,连接AD,以点A为圆心、AE的长为半径作⊙A.(1)求证:BC是∵A的切线;(2)若AC=5,BD=3,求DE的长.【答案】(1)见解析(2)158【解析】【分析】(1)过点A作AF⊥BC于F,根据同旁内角互补证得DE//AC,可证得∠DAC=∠ADE,利用AAS可证得△ADE≅△ADF,则可证得AF=AE,根据切线的判定即可求证结论.(2)根据角相等即可得△BDE∼△BCA,利用相似三角形的性质即可求解.(1)过点A作AF⊥BC于F,如图所示,∵DE⊥AB,∴∠AED=90°,∵∠BAC=90°,∴∠AED+∠BAC=180°,∴DE//AC,∴∠DAC=∠ADE,∵CD=AC,∴∠DAC=∠ADC,∴∠ADE=∠ADC,在△ADE和△ADF中,{∠AED=∠AFD ∠ADE=∠ADFAD=AD,∴△ADE≅△ADF(AAS),∴AF=AE,且AE为⊙A的半径,∴AF是⊙A的半径,∴BC是⊙A的切线.(2)∵AC=5,∴CD=AC=5,∴BC=BD+CD=3+5=8,∵∠DEB=∠BAC=90°,∠B=∠B,∴△BDE∼△BCA,∴DEAC =BDBC,∴DE5=38,解得DE=158,∴DE的长为158.【点睛】本题考查了切线判定、三角形全等的判定及性质、相似三角形的判定及性质,熟练掌握全等三角形的判定及性质,切线的判定及相似三角形判定及性质是解题的关键.5.(2022·北京平谷·二模)如图,AB是∵O的直径,过B作∵O的切线,与弦AD的延长线交于点C,AD=DC,E是直径AB上一点,连接DE并延长与直线BC交于点F,连接AF.(1)求证:AD⌢=BD⌢;(2)若tan∠BAF=14,∵O的半径长为6,求EF的长.【答案】(1)证明见解析(2)√13【解析】【分析】(1)连接BD,根据圆周角定理、切线性质以及题中AD=DC可得∠BAD=∠ABD=∠CBD=∠C=45°,从而得出结论;(2)连接OD,由(1)知DO⊥AB,得出ΔDOE∼ΔFBE,得出DOBF =OEBE,在RtΔABF中,tan∠BAF=14,∵O的半径长为6,解得BF=3,从而63=OEBE,设BE=x,OE=2x,则BE+OE=OB=6,解得x=2,即BE=2,在RtΔEBF中,利用勾股定理得结论.(1)证明:连接BD,如图所示:∵AB是∵O的直径,∴∠ABD=90°,即BD⊥AC,∵过B作∵O的切线,∴AB⊥BC,∵AD=DC,∴∠BAD=∠ABD=∠CBD=∠C=45°,∴BD=AD,∴AD⌢=BD⌢;(2)解:连接OD,如图所示:在等腰RtΔABD中,∠ADB=90°,∴DO⊥AB,∵∠DEO=∠BEF,∠DOE=∠FBE=90°,∴ΔDOE∼ΔFBE,∴DOBF =OEBE,在RtΔABF中,tan∠BAF=14,∵O的半径长为6,则tan∠BAF=14=BFAB=BF12,解得BF=3,∴63=OEBE,设BE=x,OE=2x,则BE+OE=x+2x=OB=6,解得x=2,在RtΔEBF中,∠EBF=90°,BE=2,BF=3,则利用勾股定理得EF=√BE2+BF2=√22+32=√13.【点睛】本题考查圆综合,涉及到圆周角定理、直角三角形的性质、切线的性质、相似三角形的判定与性质、正切函数求线段长、勾股定理等知识点,根据题意准确作出辅助线是解决问题的关键.6.(2022·北京北京·二模)如图,AB为⊙O的直径,BD⌢=CD⌢,过点A作⊙O的切线,交DO的延长线于点E.(1)求证:AC∥DE;(2)若AC=2,t an E=1,求OE的长.2【答案】(1)见解析(2)5【解析】【分析】(1)根据同圆中,等弧相等性质可得∠BAD=∠CAD,再利用等边对等角及等量代换即可证得∠CAD=∠D从而证得结论.(2)连接BC,利用直径所对的圆周角是直角结合(1)中平行线的性质可求得∠B=∠E,从而得到tanB=tanE,根据直角三角形的锐角三角函数的值结合勾股定理即可求得答案.(1)⌢=CD⌢,证明:∵BD∵∠BAD=∠CAD,∵OA=OD,∵∠D=∠BAD,∵∠CAD=∠D,∵AC∥DE.(2)如图,连接BC,∵AB为⊙O的直径,∵∠C=90°,∵AC∥DE,∵∠BAC=∠AOE,∵AE是⊙O的切线,∵OA⊥AE,∵∠C=∠OAE=90°,∵∠B=∠E,∵tanB=tanE=12,在Rt△OAE中,tanB=12,AC=2,∵tanB=ACBC =2BC=12,解得BC=4,∴AB=√AC2+BC2=√22+C2=2√5,∵OA=√5,∵在Rt△OAE中,tanE=12,∵tanE=AOAE =√5AE=12,解得AE=2√5,∵OE=√OA2+AE2=√(√5)2+(2√5)2=5.【点睛】本题考查了平行线的判定及性质、切线的性质、圆周角定理、锐角三角函数值及勾股定理解直角三角形的应用,熟练掌握圆周角定理及平行线的判定及锐角三角函数值及勾股定理解直角三角形的应用是解题的关键.7.(2022·北京丰台·二模)如图,AB是∵O的直径,C为BA延长线上一点,过点C作∵O的切线,切点为D,过点B作BE∵CD于点E,连接AD,BD.(1)求证:∠ABD=∠DBE;(2)如果CA=AB,BD=4,求BE的长.【答案】(1)证明见解析;(2)43√6.【解析】【分析】(1)如图1,连接OD,由CD切∵O于点A得OD⊥CD,从而得OD∥BE,进而得∠ODB=∠DBE,另外由∠ODB=∠ABD即可得出结论;(2)解:设OA=x,则CA=AB=2x,CO=CA+OA=3x,先证明△COD∽△CBE,得ODBE =COCB=3x4x从而有x=34BE,另外由△ABD∽△DBE得ABBD =DBBE,即可求得BE=43√6.(1)证明:如图,连接OD,∵CD切∵O于点A,∴OD⊥CD,∵BE∵CD,∴OD∥BE,∴∠ODB=∠DBE,∵OD=OB,∴∠ODB=∠ABD,∴∠ABD=∠DBE;(2)解:如图,设OA=x,则CA=AB=2x,CO=CA+OA=3x,∵OD∥BE,∴∠CDO=∠E,∠COD=∠CBE,∴△COD∽△CBE,∴ODBE =COCB=3x4x即xBE=34,∴x=34BE,∵AB是∵O的直径,∴∠ADB=90°,∵BE∵CD,∴∠E=∠ADB=90°,∵∠ABD=∠DBE,∴△ABD∽△DBE,∴ABBD =DBBE,∵BD=4,∴2×34BE4=4BE,解得BE=43√6.【点睛】本题主要考查了圆的切线、勾股定理、相似三角形的判定及性质以及平行线的判定及性质,熟练掌握相似三角形的判定及性质是解题的关键.8.(2022·北京密云·二模)如图,在△ABC中,AB=BC,以BC为直径的∵O与AC交于点D,DE是∵O的切线.(1)计算∠AED的度数;(2)若tanA=12,BC=2√5,求线段DE的长.【答案】(1)90°(2)4√55【解析】【分析】(1)连接OD,BD,由直径所对圆周角等于90度得∵BDO+∵ODC=∵BDC=90°,再由切线的性质得∵BDE+∵BDO=∵ODE=90°,所以∵BDE=∵ODC,∵ADE=∵BDO,然后由OB-OC,则∵C=∵ODC,BA=BC,则∵C=∵A,所以∵A+∵ADE=90°,最后由三角形内角和定理即可求解;(2)由(1)知:∵AED=∵ADB=90°,则tan∵A=DEAE =BDAD=12,所以AD=2BD,AE=2DE,又因为AB=BC=2√5,在Rt△ADB中,由勾股定理,可求出BD=2,AD=4,再在Rt△ADE中,由勾股定理可求出DE长.(1)解:如图,连接OD,BD,∵BC是∵O的直径,∵∵BDO+∵ODC=∵BDC=90°,∵∵BDE+∵ADE=∵BDA=90°,∵DE是∵O的切线,∵∵BDE+∵BDO=∵ODE=90°,∵∵BDE=∵ODC,∵ADE=∵BDO,∵OD=OC,∵∵C=∵ODC,∵∵C+∵ADE=∵C+∵BDO=90°,∵BA=BC,∵∵C=∵A,∵∵A+∵ADE=90°,∵∵AED=180°-(∵A+∵ADE)=90°;(2)解:由(1)知:∵AED=∵ADB=90°,∵tan∵A=DEAE =BDAD=12,∵AD=2BD,AE=2DE,∵AB=BC=2√5,∵在Rt△ADB中,由勾股定理,得AD2+BD2=AB2,∵(2BD)2+BD2=(2√5)2,∵BD=2,∵AD=4,在Rt△ADE中,由勾股定理,得AE2+DE2=AD2,(2DE)2+DE2=42,∵DE=4√5.5【点睛】本题考查切线的性质,圆周角定理的推论,勾股定理,正切的定义,熟练掌握切线的性质、圆周角定理的推论、正切的定义是解题的关键.9.(2022·北京大兴·二模)如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,O是AB上一点,以OA 为半径的⊙O经过点D.(1)求证:BC是⊙O切线;(2)若BD=5,DC=3,求AC的长.【答案】(1)见解析(2)6【解析】【分析】(1)要证BC是∵O的切线,只要连接OD,再证OD∵BC即可.(2)过点D作DE∵AB,根据角平分线的性质可知CD=DE=3,由勾股定理得到BE的长,再通过证明△BDE∵∵BAC,根据相似三角形的性质得出AC的长.(1)连接OD;∵AD是∵BAC的平分线,∵∵1=∵3.∵OA=OD,∵∵1=∵2.∵∵2=∵3.∵OD∵AC.∵∵ODB=∵ACB=90°.∵OD∵BC.∵OD是∵O的半径,∵BC是∵O切线.(2)过点D作DE∵AB,∵AD是∵BAC的平分线,∵CD=DE=3.在Rt△BDE中,∵BED=90°,由勾股定理得:BE=√BD2−DE2=√52−32=4,∵∵BED=∵ACB=90°,∵B=∵B,∵∵BDE∵∵BAC.∵BE BC =DEAC.∵4 8=3AC.∵AC=6.【点睛】^$本题综合性较强,既考查了切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了角平分线的性质,勾股定理得到BE的长,及相似三角形的性质.10.(2022·北京西城·二模)如图,AB是⊙O的直径,CB,CD分别与⊙O相切于点B,D,连接OC,点E 在AB的延长线上,延长AD,EC交于点F.(1)求证:FA∥CO;(2)若FA=FE,CD=4,BE=2,求F A的长.【答案】(1)见解析(2)3√5【解析】【分析】(1)连接OD,证明△CDO∵△CBO(SSS),得∵COD=∵COB,即∵BOD=2∵COB,又因为OD=OA,得∵OAD=∵ODA,所以∵BOD=∵OAD+∵ODA=2∵OAD,即可证得∵COB=∵OAD,即可由平行线的判定定理,得出结论;(2)由F A=FE,得∵F AE=∵FEA,又由(1)知:∵COB=∵OAD,所以∵COE=∵CEO,则CO=CE,又由切线的性质得OB∵CB,根据等腰三角形“三线合一”性质得OB=BE=2,从而求出AE=6,OE=4,再由切线性质得CB=CD=4,然后在Rt△CBE中,由勾股定理,得CF=√CB2+BE2=√42+22=2√5,最后证△EOC∵△EAF,得OEAE =CEFE,即46=2√5FE,可求得FE=3√5,即可由F A=FE得出答案.(1)证明:如图,连接OD,∵CB,CD分别与⊙O相切于点B,D,∵CD=CB,∵OD=OB,OC=OC,∵∵CDO∵△CBO(SSS),∵∵COD=∵COB,即∵BOD=2∵COB,∵OD=OA,∵∵OAD=∵ODA,∵∵BOD=∵OAD+∵ODA=2∵OAD,∵2∵COB=2∵OAD,即∵COB=∵OAD,∵F A∥OC;(2)解:∵F A=FE,∵∵F AE=∵FEA,由(1)知:∵COB=∵OAD,∵∵COE=∵CEO,∵CO=CE,∵CB是∵O的切线,∵OB∵CB,∵OB=BE=2,∵OA=OB=2,∵AE=6,OE=4,∵CB、CD是∵O的切线,∵CB=CD=4,在Rt△CBE中,由勾股定理,得CE=√CB2+BE2=√42+22=2√5,∵F A∥OC,∵∵EOC∵∵EAF,∵OE AE =CEFE,即46=2√5FE,∵FE=3√5,∵F A=FE=3√5.【点睛】本题考查切线的性质,全等三角形的判定与性质,相似三角形的判定与性质,等腰三角形的判定与性质,熟练掌握相关性质与判定是解题的关键.11.(2022·北京顺义·二模)如图,△ABC内接于⊙O,AB是⊙O的直径,点D在AB的延长线上,且∠BCD=∠A,点E为AC的中点,连接OE并延长与DC的延长线交于点F.(1)求证:CD是⊙O的切线;(2)若CD=4,tanA=12,求CF的长.【答案】(1)见解析(2)6【解析】【分析】(1)根据AB是⊙O的直径,可得∠ACB=90°,由OA=OC得∠A=∠ACO,结合已知条件,根据可得∠BCD+∠OCB=90°,即可得证;(2)证明△DCB∽△DAC,得出CDAD =DBDC=CBAC,根据tanA=12,可得CBAC=12,从而求得DB的长,进而求得OD的长,由点E为AC的中点,根据垂径定理以及∠ACB=90°,证明OF∥BC,根据平行线分线段成比例即可求解.(1)证明:如图,连接OC,∵OA=OC,∴∠A=∠ACO,∵∠BCD=∠A,∴∠BCD=∠ACO∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACO+∠OCB=90°,∴∠BCD+∠OCB=90°,即∠OCD=90°,∵OC是半径,∴CD是⊙O的切线;(2)∵∠BCD=∠A,∠D=∠D,∴△DCB∽△DAC,∴CDAD =DBDC=CBAC,∵tanA=12,可得CBAC=12,∴4AD =DB4=12,∴AD=8,DB=2,∴OB=12AB=12(AD−BD)=3,∵点E为AC的中点,∴OF⊥AC,又∵∠ACB=90°,∴OF∥BC,∴DCCF =BDOB,即4CF=23,∴CF=6.【点睛】本题考查了切线的判定,直径所对的圆周角是直角,垂径定理的推论,相似三角形的性质与判定,正切,平行线分线段成比例,掌握以上知识是解题的关键.12.(2022·北京房山·二模)如图,在△ABC中,∠C=90°,∠ABC的平分线BE交AC于点E,过点E作直线BE 的垂线于交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线;(2)过点E作EH⊥AB于点H,若CD=2,求HF的长度.【答案】(1)见详解(2)2【解析】【分析】(1)连接OE,先证明BF是圆的直径,OE是圆的半径,再证明OE∥BC在,则有∵OEA=∵C=90°,结论得证;(2)连接ED,根据角平分线的性质证明EH=EC,再证∵EHF∵∵ECD,则HF可求.(1)连接OE,如图,∵EF∵BE,∵∵BEF=90°,∵∵O是∵BEF的外接圆,∵BF是∵O的直径,OE是∵O的半径,∵∵OEB=∵OBE,∵BE是∵ABC的角平分线,∵∵OBE=∵CBE,∵∵OEB=∵CBE,∵OE∥BC,∵∵OEA=∵C=90°,即OE∵AC,∵OE是半径,∵AC是∵O的切线;(2)连接ED,如图,∵BE平分∵ABC,且EH∵BA,EC∵BC,∵EH=EC,∵四边形BDEF是∵O的内接四边形,∵∵EFH=∵EDC,∵∵EHF=∵C=90°,∵∵EHF∵∵ECD,∵HF=CD=2,即HF的值为2.【点睛】此题考查了圆的切线的判定、圆周角定理、平行线的判定与性质、全等三角形的判定与性质等知识,解题的关键是正确的作出所需辅助线.13.(2022·北京昌平·二模)如图,在△ABC中,∠C=90°,BC,AC与⊙O交于点F,D,BE为⊙O直径,点E在AB上,连接BD,DE,∠ADE=∠DBE.(1)求证:AC是⊙O的切线;(2)若sinA=35,⊙O的半径为3,求BC的长.【答案】(1)过程见详解(2)245【解析】【分析】(1)连接OD,OD=OB=OE,即有∵OBD=∵ODB,∵ODE=∵OED,再根据BE是直径,得到∵BDE=90°=∵DBE+∵DEB=∵ODB+∵ODE,即有∵DBE+∵ODE=90°,再根据∵ADE=∵DBE,有∵ADE+∵ODE=90°,即有OD∵AC,则结论得证;(2)先证OD∥BC,则有BCOD =ABOA,利用sinA=ODOA=35可求出OA,即可求出BC的值.(1)连接OD,如图,∵OD=OB=OE,∵∵OBD=∵ODB,∵ODE=∵OED,∵BE是直径,∵∵BDE=90°=∵DBE+∵DEB=∵ODB+∵ODE,∵∵DBE+∵ODE=90°,∵∵ADE=∵DBE,∵∵ADE+∵ODE=90°,∵OD∵AC,∵OD为半径,∵AC是∵O的切线;(2)根据(1)的结论,有OD∵AC,∵∵C=90°,∵BC∵AC,∵OD∥BC,∵BC OD =ABOA,∵在Rt△ADO中,sinA=ODOA =35,又∵OD=OB=3,∵OA=5,∵AB=OA+OB=8,∵BC OD =ABOA,∵BC=ABOA ×OD=85×3=245.即BC为245.【点睛】本题考查了切线的判定与性质、直径作对圆周角为90°、平行的性质、勾股定理、三角函数等知识,证明切线是解答本题的关键.14.(2022·北京海淀·二模)如图,AB为∵O的直径,CD为弦,CD∵AB于点E,连接DO并延长交∵O于点F,连接AF交CD于点G,CG =AG,连接AC.(1)求证:AC∵DF;(2)若AB = 12,求AC和GD的长.【答案】(1)见解析(2)AC =6,DG=4√3【解析】【分析】(1)根据圆周角定理得到∵C=∵F,由GA=GC推出∵CAF=∵C,得到∵CAF=∵F,即可得到结论AC∵DF.∠2,进而证得△AOD是等边三角形,(2)连接AD,利用AC∵DF推出∵C=∵1,根据圆周角定理得到∠C=12AB=6.利用垂径定理求出AC=AD=6,利用三角函数求出AG.得到AD=AO=12(1)证明:∵ C,F都在∵O上,∵ ∵C=∵F.∵ GA=GC,∵ ∵CAF=∵C.∵ ∵CAF=∵F.∵ AC∵DF.(2)解:连接AD.∵ AC∵DF,∵ ∵C=∵1,⌢=AD⌢,∵AD∠2.∵∠C=12∠2.∵∵∠1=12∵ AB∵CD于E,∵ ∵BED=90°.∵∠1+∠2=90°.∵∵由∵,∵得∵1=30°,∵2=60°.∵ OA=OD,∵ ∵AOD是等边三角形.AB=6.∵AD=AO=12∵直径AB∵CD于E,∵AC⌢=AD⌢.∵ AC=AD=6.∵ ∵AOD是等边三角形,∵ ∵ADO=60°,∵1=30°.∵ ∵3=∵AOD-∵1=30°∵ DF是∵O的直径,∵ ∵F AD=90°.=4√3.∵ 在Rt∵GAD中,DG=ADcos∠3【点睛】此题考查了圆周角定理,垂径定理,等边三角形的判定及性质,锐角三角函数,平行线的判定定理,熟记圆周角定理及垂径定理是解题的关键.15.(2022·北京市十一学校模拟预测)如图,AB 是⊙O 的弦,C 为⊙O 上一点,过点C 作AB 的垂线与AB 的延长线交于点D ,连接BO 并延长,与⊙O 交于点E ,连接EC ,CD 是⊙O 的切线.(1)求证:∠ABE =2∠E ;(2)若tanE =13,AB =8,求BD 的长.【答案】(1)证明见解析(2)1【解析】【分析】(1)连接OC ,根据切线的性质易得AD ∥CO ,由平行线的性质得到∠ABE =∠BOC ,再结合等腰三角形的性质得到∠OCE =∠OEC ,由三角形外角性质易得∠BOC =∠OCE +∠OEC =2∠BCE 即可求解;(2)连接BC 和AC ,CO ,根据BE 是⊙O 的直径和切线的性质易得∠BCD =∠E ,由圆周角定理得到∠A =∠E ,结合tanE =13得到BD CD =DC AD =13,进而可得CD =3BD ,将AB =8,AD =AB +BD =8+BD 代入即可求解.(1)证明:连接OC ,如下图.∵CD 是⊙O 的切线,过点C 作AB 的垂线与AB 的延长线交于点D ,∵∠CDA =∠DCO =90°,∵AD ∥CO ,∵∠ABE =∠BOC .∵OC =OE ,∵∠OCE =∠OEC ,∵∠BOC =∠OCE +∠OEC =2∠BCE,∵∠ABE=2∠E;(2)解:连接BC和AC,CO,如下图.∵BE是⊙O的直径,∵∠BCE=90°,∵∠OCE+∠OCB=90°.∵CD是⊙O的切线,∵∠OCB+∠BCD=90°,∵∠BCD=∠OCE,∵∠BCD=∠E,∵∠A=∠E,tanE=13,∵BDCD=DC AD =13,∵CD=3BD.∵AB=8,AD=AB+BD=8+BD,∵3BD8+BD=13,∵BD=1.【点睛】本题主要考查了圆周角定理、切线的性质,平行线的性质,等腰三角形的性质,三角形外角性质,锐角三角函数值的求法,作出辅助线是解答关键.16.(2022·北京东城·一模)如图,在△ABC中,AB=AC,以AB为直径作⊙O,交BC于点D,交AC于点E,过点B作⊙O的切线交OD的延长线于点F.(1)求证:∠A=∠BOF;(2)若AB=4,DF=1,求AE的长.【答案】(1)见解析(2)AE=83【解析】【分析】(1)首先根据等边对等角可证得∠C=∠ODB,再根据平行线的判定与性质,即可证得结论;(2)首先根据圆周角定理及切线的性质,可证得∠AEB=∠OBF,即可证得△ABE∽△OFB,再根据相似三角形的性质即可求得.(1)证明:∵AB=AC∴∠C=∠ABC∵OB=OD∴∠ODB=∠OBD∴∠C=∠ODB∴AC∥OD∴∠A=∠BOF(2)解:如图:连接BE∵AB是⊙O的直径,AB=4AB=2∴∠AEB=90°,OB=OD=12∵BF是⊙O的切线∴∠OBF=90°。

与圆的基本性质有关的计算与证明 专题练习题

与圆的基本性质有关的计算与证明  专题练习题

与圆的基本性质有关的计算与证明 专题练习题1.如图,BD 是⊙O 的直径,点A ,C 在⊙O 上,AB ︵=BC ︵,∠AOB =60°,则∠BDC 的度数是( )A .60°B .45°C .35°D .30°2.如图,已知AC 是⊙O 的直径,点B 在圆周上(不与A ,C 重合),点D 在AC 的延长线上,连接BD 交⊙O 于点E ,若∠AOB=3∠ADB ,则( )A .DE =EB B.2DE =EB C.3DE =DO D .DE =OB3.如图,线段AB 是⊙O 的直径,弦CD ⊥AB ,∠CAB =40°,则∠ABD 与∠AOD 分别等于( )A .40°,80°B .50°,100°C .50°,80°D .40°,100°4.如图,C ,D 是以线段AB 为直径的⊙O 上两点,若CA =CD ,且∠ACD =40°,则∠CAB =( )A .10°B .20°C .30°D .40°5.如图,四边形ABCD 内接于⊙O ,若四边形ABCO 是平行四边形,则∠ADC 的大小为( )A .45°B .50°C .60°D .75°6.如图,四边形ABCD 内接于⊙O ,F 是CD ︵上一点,且DF ︵=BC ︵,连接CF 并延长交AD 的延长线于点E ,连接AC.若∠ABC=105°,∠BAC =25°,则∠E 的度数为( )A.45° B.50° C.55° D.60°7.把一张圆形纸片按如图所示方式折叠两次后展开,图中的虚线表示折痕,则∠BOC的度数是( )A.120°B.135°C.150°D.165°8.如图,在△ABC中,已知∠ACB=130°,∠BAC=20°,BC=2,以点C为圆心,CB为半径的圆交AB于点D,则BD的长为________.9.如图,在⊙O中,A,B是圆上的两点,已知∠AOB=40°,直径CD∥AB,连接AC,则∠BAC=_______度.10.如图,在△ABC中,AB=AC=10,以AB为直径的⊙O与BC交于点D,与AC交于点E,连接OD交BE于点M,且MD=2,则BE长为_______.11.如图,四边形ABCD为⊙O的内接四边形,已知∠C=∠D,则AB与CD的位置关系是_________.12.如图是一个半圆形桥洞截面示意图,圆心为O,直径AB是河底线,弦CD是水位线,CD∥AB,且AB=26 m,OE⊥CD于点E.水位正常时测得OE∶CD=5∶24.(1)求CD的长;(2)现汛期来临,水面要以每小时4 m的速度上升,则经过多长时间桥洞会刚刚被灌满?13.如图,在△ABC中,∠ACB=90°,D是AB的中点,以DC为直径的⊙O交△ABC三边于点G,E,F.(1)求证:F是BC的中点;(2)判定∠A与∠GEF的大小关系,并说明理由.14.(1)如图①,已知△ABC是等边三角形,以BC为直径的⊙O交AB,AC于D,E,求证:△ODE是等边三角形;(2)如图②,若∠A=60°,AB≠AC,则(1)中的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.15.如图,AB为⊙O的直径,CD为弦,且CD⊥AB,垂足为H.(1)若∠BAC=30°,求证:CD 平分OB ;(2)若点E 为ADB ︵的中点,连接OE ,CE ,求证:CE 平分∠OCD;(3)若⊙O 的半径为4,∠BAC =30°,则圆周上到直线AC 距离为3的点有多少个?请说明理由.答案:1---7 DDBBC BC8. 239. 3510. 811. AB ∥CD12. 解:(1)∵直径AB =26(m ),∴OD =12AB =12×26=13(m ),∵OE ⊥CD ,∴DE =12CD ,∵OE ∶CD =5∶24,∴OE ∶ED =5∶12,∴设OE =5x ,ED =12x ,∴在Rt △ODE 中,(5x)2+(12x)2=132,解得x=1,∴CD =2DE =2×12×1=24(m )(2)由(1)得OE =1×5=5(m ),延长OE 交圆O 于点F ,∴EF =OF -OE =13-5=8(m ),∴84=2(小时),即经过2小时桥洞会刚刚被灌满13. 解:(1)连接DF ,∵∠ACB =90°,∴△ACB 是直角三角形,又∵D 是AB 的中点,∴BD =CD =AD ,又∵CD 是⊙O 的直径,∴DF ⊥BC ,∴BF =CF ,即F 是BC 的中点(2)∠A =∠GEF.理由:∵D ,F 是AB ,BC 的中点,∴DF ∥AC ,∴∠A =∠BDF ,又∵∠BDF =∠GEF ,∴∠A =∠GEF14. (1) 解:∵△BAC 是等边三角形,∴∠B =∠C =60°.∵OD =OB =OE =OC ,∴△OBD 和△OEC 都是等边三角形,∴∠BOD =∠COE =60°,∴∠DOE =60°,∴△ODE 是等边三角形(2) 解:结论(1)仍成立.证明:连接CD ,∵BC 是直径,∴∠BDC =90°.∴∠ADC =90°,∵∠A =60°,∴∠ACD =30°,∴∠DOE =2∠ACD =60°.∵OD =OE ,∴△ODE 是等边三角形15. 解:(1)∵AB 为⊙O 的直径,∴∠ACB =90°,∵∠BAC =30°,∴∠B =60°,而OC =OB ,∴△OBC 为等边三角形,∵CD⊥OB ,∴CD 平分OB(2)∵点E 为ADB ︵的中点,∴OE ⊥AB ,而CD⊥AB ,∴OE ∥CD ,∴∠OEC =∠ECD ,∵OC =OE ,∴∠OEC =∠OCE ,∴∠OCE =∠ECD ,即CE 平分∠OCD(3)圆周上到直线AC 距离为3的点有2个.理由如下:作OF⊥AC 于点F ,交⊙O 于点G ,∵OA=4,∠BAC =30°,∴OF =12OA =2,∴GF =OG -OF =2,即在弧AC 上到AC 的最大距离为2,∴在弧AC 上没有一个点到AC 的距离为3,而在弧AEC 上到AC 的最大距离为6,∴在弧AEC 上有2个点到AC的距离为3。

中考数学专题复习《圆的证明与计算》检测题(含答案)

中考数学专题复习《圆的证明与计算》检测题(含答案)

专题二 圆的证明与计算类型一 圆基本性质的证明与计算1.如图,⊙O 的半径为5,点P 在⊙O 外,PB 交⊙O 于A 、B 两点,PC 交⊙O 于D 、C 两点. (1)求证:P A ·PB =PD ·PC ;(2)若P A =454,AB =194,PD =DC +2,求点O 到PC 的距离.第1题图2. 如图,△ABC 是⊙O 的内接三角形,AB =AC ,点P 是AB ︵的中点,连接P A ,PB ,PC .(1)如图①,若∠BPC =60°,求证:AC =3AP ; (2)如图②,若sin ∠BPC =2425,求tan ∠P AB 的值.第2题图3. 已知⊙O 中弦AB ⊥弦CD 于E ,tan ∠ACD =32. (1)如图①,若AB 为⊙O 的直径,BE =8,求AC 的长;(2)如图②,若AB 不为⊙O 的直径,BE =4,F 为BC ︵上一点,BF ︵=BD ︵,且CF =7,求AC 的长.第3题图4.如图,△ABC 中,AB =AC ,以AB 为直径作⊙O ,交BC 于点D ,交CA 的延长线于点E ,连接AD 、DE .(1)求证:D 是BC 的中点;(2)若 DE =3,BD -AD =2,求⊙O 的半径; (3)在(2)的条件下,求弦AE 的长.第4题图5.如图,⊙O 的半径为1,A ,P ,B ,C 是⊙O 上的四个点, ∠APC =∠CPB =60°.(1)判断△ABC 的形状:________;(2)试探究线段P A ,PB ,PC 之间的数量关系,并证明你的结论; (3)当点P 位于AB ︵的什么位置时,四边形APBC 的面积最大?求出最大面积.第5题图 备用图类型二与切线有关的证明与计算(一、与三角函数结合1.已知:如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD 交AC于点E,点O是AB上一点,⊙O过B、E两点,交BD于点G,交AB于点F.(1)求证:AC与⊙O相切;(2)当BD=6,sin C=35时,求⊙O的半径.第1题图2.如图,AB为⊙O的直径,P是BA延长线上一点,PC切⊙O于点C,CG是⊙O的弦,CG⊥AB,垂足为D.(1)求证:∠PCA=∠ABC;(2)过点A作AE∥PC,交⊙O于点E,交CD于点F,连接BE.若sin ∠P =35,CF =5,求BE 的长.第2题图3. 如图①,在⊙O 中,直径AB ⊥CD 于点E ,点P 在BA 的延长线上,且满足∠PDA =∠ADC .(1)判断直线PD 与⊙O 的位置关系,并说明理由;(2)延长DO 交⊙O 于M (如图②),当M 恰为BC ︵的中点时,试求DE BE 的值;(3)若P A =2,tan ∠PDA =12,求⊙O 的半径.第3题图二、与相似三角形结合1.如图,在Rt △ABC 中,∠ACB =90°,E 是BC 的中点,以AC 为直径的⊙O 与AB 边交于点D ,连接DE . (1)求证:△ABC ∽△CBD ; (2)求证:直线DE 是⊙O 的切线.第1题图2. 如图,⊙O 的圆心在Rt △ABC 的直角边AC 上,⊙O 经过C 、D 两点,与斜边AB 交于点E ,连接BO 、ED ,有BO ∥ED ,作弦EF ⊥AC 于G ,连接DF .(1)求证:CO ·CD =DE ·BO ;(2)若⊙O 的半径为5,sin ∠DFE =35,求EF 的长.第2题图3. 如图,在△ABC 中,AB =AC ,以AB 为直径作半圆⊙O ,交BC 于点D ,连接AD ,过点D 作DE ⊥AC ,垂足为点E ,交AB 的延长线于点F .(1)求证:EF 是⊙O 的切线;(2)若⊙O 的半径为5,sin ∠ADE =45,求BF 的长.第3题图4.如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC相切于点D,分别交AC、AB于点E、F.(1)若∠B=30°,求证:以A、O、D、E为顶点的四边形是菱形;(2)若AC=6,AB=10,连接AD,求⊙O的半径和AD的长.第4题图5.已知Rt△ABC中,AB是⊙O的弦,斜边AC交⊙O于点D,且AD =DC,延长CB交⊙O于点E.(1)图①的A、B、C、D、E五个点中,是否存在某两点间的距离等于线段CE的长?请说明理由;(2)如图②,过点E作⊙O的切线,交AC的延长线于点F.①若CF=CD时,求sin∠CAB的值;②若CF=aCD(a>0)时,试猜想sin∠CAB的值.(用含a的代数式表示,直接写出结果)第5题图6.已知:如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,OF延长线交⊙O于点E,AE与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.(1)求证:BD是⊙O的切线;(2)求证:CE2=EH·EA;(3)若⊙O 的半径为5,sin A =35,求BH 的长.第6题图7.如图①,△ABC 内接于⊙O ,∠BAC 的平分线交⊙O 于点D ,交BC 于点E (BE >EC ),且BD =2 3.过点D 作DF ∥BC ,交AB 的延长线于点F .(1)求证:DF 为⊙O 的切线;(2)若∠BAC =60°,DE =7,求图中阴影部分的面积;(3)若AB AC =43,DF +BF =8,如图②,求BF 的长.第7题图三、与全等三角形结合1.如图,已知PC 平分∠MPN ,点O 是PC 上任意一点,PM 与⊙O 相切于点E ,交PC 于A 、B 两点. (1)求证:PN 与⊙O 相切;(2)如果∠MPC =30°,PE =23,求劣弧BE ︵的长.第1题图2.如图,已知BC是⊙O的弦,A是⊙O外一点,△ABC为正三角形,D为BC的中点,M是⊙O上一点,并且∠BMC =60°.(1)求证:AB是⊙O的切线;(2)若E、F分别是边AB、AC上的两个动点,且∠EDF=120°,⊙O 的半径为2.试问BE+CF的值是否为定值,若是,求出这个定值;若不是,请说明理由.第2题图3. 已知:如图,AB是⊙O的直径,C是⊙O上一点,OD⊥AC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接AE.(1)求证:AE与⊙O相切;(2)连接BD,若ED∶DO=3∶1,OA=9,求AE的长和tan B的值.第3题图4. 如图,PB为⊙O的切线,B为切点,直线PO交⊙O于点E、F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O 交于点C,连接BC,AF.(1)求证:直线P A为⊙O的切线;(2)试探究线段EF、OD、OP之间的等量关系,并加以证明;(3)若BC=6,tan∠F=12,求cos∠ACB的值和线段PE的长.第4题图5. 如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,∠ACB 的平分线CD 交⊙O 于点D ,过点D 作⊙O 的切线PD ,交CA 的延长线于点P ,过点A 作AE ⊥CD 于点E ,过点B 作BF ⊥CD 于点F . (1)求证:PD ∥AB ; (2)求证:DE =BF ;(3)若AC =6,tan ∠CAB =43,求线段PC 的长.第5题图6.如图,点P 是⊙O 外一点,P A 切⊙O 于点A ,AB 是⊙O 的直径,连接OP ,过点B 作BC ∥OP 交⊙O 于点C ,连接AC 交OP 于点D . (1)求证:PC 是⊙O 的切线;(2)若PD =163,AC =8,求图中阴影部分的面积;(3)在(2)的条件下,若点E 是AB ︵的中点,连接CE ,求CE 的长.第6题图7. 如图①,AB是⊙O的直径,OC⊥AB,弦CD与半径OB相交于点F,连接BD,过圆心O作OG∥BD,过点A作⊙O的切线,与OG 相交于点G,连接GD,并延长与AB的延长线交于点E.(1)求证:GD=GA;(2)求证:△DEF是等腰三角形;(3)如图②,连接BC,过点B作BH⊥GE,垂足为点H,若BH=9,⊙O的直径是25,求△CBF的周长.第7题图专题二圆的证明与计算类型一圆基本性质的证明与计算1. (1)证明:如解图,连接AD,BC,∵四边形ABCD内接于⊙O,∴∠P AD=∠PCB,∠PDA=∠PBC,∴△P AD ∽△PCB , ∴P A PD =PC PB , ∴P A ·PB =PD ·PC ;(2)解:如解图,连接OD ,过O 点作OE ⊥DC 于点E , ∵P A =454,AB =194,PD =DC +2,∴PB =P A +AB =16,PC =PD +DC =2DC +2, ∵P A ·PB =PD ·PC ,∴454×16=(DC +2)(2DC +2), 解得DC =8或DC =-11(舍去), ∴DE =12DC =4, ∵OD =5,∴在Rt △ODE 中,OE =OD 2-DE 2=3, 即点O 到PC 的距离为3.2. (1)证明:∵∠BAC 与∠BPC 是同弧所对的圆周角, ∴∠BAC =∠BPC =60°, 又∵AB =AC ,∴△ABC 为等边三角形, ∴∠ACB =60°, ∵点P 是AB ︵的中点, ∴P A ︵=PB ︵,∴∠ACP =∠BCP =12∠ACB =30°,而∠APC =∠ABC =60°, ∴△APC 为直角三角形, ∴tan ∠APC =AC AP , ∴AC =AP tan60°=3AP ;(2)解:连接AO 并延长交PC 于点E ,交BC 于点F ,过点E 作EG ⊥AC 于点G ,连接OC ,BO ,如解图,∵AB =AC , ∴AF ⊥BC , ∴BF =CF , ∵点P 是AB ︵中点, ∴∠ACP =∠PCB , ∴EG =EF .∵∠BPC =∠BAC =12∠BOC =∠FOC , ∴sin ∠FOC =sin ∠BPC =2425, 设FC =24a ,则OC =OA =25a ,∴OF =OC 2-FC 2=7a ,AF =25a +7a =32a , 在Rt △AFC 中,∵AC 2=AF 2+FC 2, ∴AC =(32a )2+(24a )2=40a , ∵∠EAG =∠CAF , ∴△AEG ∽△ACF , ∴EG CF =AE AC ,又∵EG =EF ,AE =AF -EF ,第2题解图∴EG 24a =32a -EG 40a , 解得EG =12a ,在Rt △CEF 中,tan ∠ECF =EF FC =12a 24a =12, ∵∠P AB =∠PCB ,∴tan ∠P AB =tan ∠PCB =tan ∠ECF =12. 3. 解:(1)如解图①,连接BD , ∵直径AB ⊥弦CD 于点E , ∴CE =DE ,∵∠ACD 与∠ABD 是同弧所对的圆周角, ∴∠ACD =∠ABD , ∴tan ∠ABD =tan ∠ACD =32, ∴ED EB =AE CE =32,即ED 8=32, ∴ED =12, ∴CE =ED =12, 又∵AE =32CE =18, ∴AC =AE 2+CE 2=613;(2)连接CB ,过B 作BG ⊥CF 于G ,如解图②, ∵BF ︵=BD ︵, ∴∠BCE =∠BCG , 在△CEB 和△CGB 中第3题解图①⎩⎪⎨⎪⎧∠BCE =∠BCG ∠BEC =∠BGC BC =BC, ∴△CEB ≌△CGB (AAS), ∴BE =BG =4,∵四边形ACFB 内接于⊙O , ∴∠A +∠CFB =180°, 又∵∠CFB +∠BFG =180°, ∴∠BFG =∠A , ∵∠FGB =∠AEC =90°, ∴△BFG ∽△CAE , ∴FG BG =AE CE =32, ∴FG =32BG =6, ∴CE =CG =13, ∴AE =32CE =392,∴AC =AE 2+CE 2=13213. 4. (1)证明:∵AB 是⊙O 的直径, ∴∠ADB =90°, 即AD ⊥BC , ∵AB =AC ,∴等腰△ABC ,AD 为BC 边上的垂线, ∴BD =DC , ∴D 是BC 的中点; (2)解:∵AB =AC ,∴∠ABC =∠C ,∵∠ABC 和∠AED 是同弧所对的圆周角, ∴∠ABC =∠AED , ∴∠AED =∠C , ∴CD =DE =3, ∴BD =CD =3, ∵BD -AD =2, ∴AD =1,在Rt △ABD 中,由勾股定理得AB 2=BD 2+AD 2=32+12=10, ∴AB =10,∴⊙O 的半径=12AB =102; (3)解:如解图,连接BE , ∵AB =10, ∴AC =10,∵∠ADC =∠BEA =90°,∠C =∠C , ∴△CDA ∽△CEB , ∴AC BC =CD CE ,由(2)知BC =2BD =6,CD =3, ∴106=3CE , ∴CE =9510,∴AE =CE -AC =9510-10=4510. 5. 解:(1)等边三角形.第4题解图【解法提示】∵∠APC =∠CPB =60°,又∵∠BAC 和∠CPB 是同弧所对的圆周角,∠ABC 和∠APC 是同弧所对的圆周角,∴∠BAC =∠CPB =60°,∠ABC =∠APC =60°, ∴∠BAC =∠ABC =60°, ∴AC =BC ,又∵有一个角是60°的等腰三角形是等边三角形, ∴△ABC 是等边三角形. (2)P A +PB =PC .证明如下:如解图①,在PC 上截取PD =P A ,连接AD , ∵∠APC =60°, ∴△P AD 是等边三角形, ∴P A =AD =PD ,∠P AD =60°, 又∵∠BAC =60°, ∴∠P AB =∠DAC , 在△P AB 和△DAC 中, ∵⎩⎪⎨⎪⎧AP =AD ∠P AB =∠DAC ,AB =AC ∴△P AB ≌△DAC (SAS), ∴PB =DC , ∵PD +DC =PC , ∴P A +PB =PC ,(3)当点P 为AB ︵的中点时,四边形APBC 的面积最大. 理由如下:如解图②,过点P 作PE ⊥AB ,垂足为E ,第5题解图①第5题解图②过点C 作CF ⊥AB ,垂足为F , ∵S △P AB =12AB ·PE ,S △ABC =12AB ·CF , ∴S 四边形APBC =12AB ·(PE +CF ).当点P 为AB ︵的中点时,PE +CF =PC ,PC 为⊙O 的直径, 此时四边形APBC 的面积最大, 又∵⊙O 的半径为1,∴其内接正三角形的边长AB = 3 , ∴四边形APBC 的最大面积为12×2×3= 3 . 类型二 与切线有关的证明与计算 一、与三角函数结合 针对演练1. (1)证明:连接OE ,如解图, ∵AB =BC 且D 是AC 中点, ∴BD ⊥AC , ∵BE 平分∠ABD , ∴∠ABE =∠DBE , ∵OB =OE , ∴∠OBE =∠OEB , ∴∠OEB =∠DBE , ∴OE ∥BD ,第1题解图∵BD ⊥AC , ∴OE ⊥AC , ∵OE 为⊙O 半径, ∴AC 与⊙O 相切;(2)解:∵BD =6,sin C =35,BD ⊥AC , ∴BC =BDsin C =10, ∴AB =BC =10.设⊙O 的半径为r ,则AO =10-r , ∵AB =BC , ∴∠C =∠A , ∴sin A =sin C =35, ∵AC 与⊙O 相切于点E , ∴OE ⊥AC ,∴sin A =OE OA =r 10-r =35,∴r =154, 即⊙O 的半径是154.2. (1)证明:连接OC ,如解图, ∵PC 切⊙O 于点C , ∴OC ⊥PC , ∴∠PCO =90°, ∴∠PCA +∠OCA =90°, ∵AB 为⊙O 的直径,第2题解图∴∠ACB =90°, ∴∠ABC +∠OAC =90°, ∵OC =OA , ∴∠OCA =∠OAC , ∴∠PCA =∠ABC ; (2)解:∵AE ∥PC , ∴∠PCA =∠CAF , ∵AB ⊥CG , ∴AC ︵=AG ︵, ∴∠ACF =∠ABC , ∵∠PCA =∠ABC , ∴∠ACF =∠CAF , ∴CF =AF , ∵CF =5, ∴AF =5, ∵AE ∥PC , ∴∠F AD =∠P , ∵sin ∠P =35, ∴sin ∠F AD =35,在Rt △AFD 中,AF =5,sin ∠F AD =35, ∴FD =3,AD =4, ∴CD =CF +FD =8, 在Rt △OCD 中,设OC =r , ∴r 2=(r -4)2+82,∴r =10, ∴AB =2r =20, ∵AB 为⊙O 的直径, ∴∠AEB =90°,在Rt △ABE 中,sin ∠EAD =35, ∴BE AB =35, ∵AB =20, ∴BE =12.3. 解:(1)直线PD 与⊙O 相切, 理由如下:如解图①,连接DO ,CO , ∵∠PDA =∠ADC , ∴∠PDC =2∠ADC , ∵∠AOC =2∠ADC , ∴∠PDC =∠AOC , ∵直径AB ⊥CD 于点E , ∴∠AOD =∠AOC , ∴∠PDC =∠AOD , ∵∠AOD +∠ODE =90°, ∴∠PDC +∠ODE =90°, ∴OD ⊥PD , ∵OD 是⊙O 的半径, ∴直线PD 与⊙O 相切; (2)如解图②,连接BD , ∵M 恰为BC ︵的中点,第3题解图①∴∠CDM =∠BDM , ∵OD =OB , ∴∠BDM =∠DBA , ∴∠CDM =∠DBA , ∵直线PD 与⊙O 相切, ∴∠PDA +∠ADO =90°, 又∵AB 是⊙O 的直径,∴∠ADB =90°,即∠ADO +∠BDM =90°, ∴∠PDA =∠BDM , ∴∠PDA =∠DBA =∠CDM , 又∵∠PDA =∠ADC , ∴∠PDM =3∠CDM =90°, ∴∠CDM =30°, ∴∠DBA =30°, ∴DE BE =tan30°=33; (3)如解图③,∵tan ∠PDA =12,∠PDA =∠ADC , ∴AE DE =12,即DE =2AE ,在Rt △DEO 中,设⊙O 的半径为r , DE 2+EO 2=DO 2, ∴(2AE )2+(r -AE )2=r 2, 解得r =52AE ,在Rt △PDE 中,DE 2+PE 2=PD 2,第3题解图②第3题解图③∴(2AE )2+(2+AE )2=PD 2, ∵直线PD 与⊙O 相切,连接BD , 由(2)知∠PDA =∠DBA ,∠P =∠P , ∴△P AD ∽△PDB , ∴PD PB =P A PD ,∴PD 2=P A ·PB ,即PD 2=2×(2+2r ), ∴(2AE )2+(2+AE )2=2×(2+2r ), 化简得5AE 2+4AE =4r , ∵r =52AE , 解得r =3. 即⊙O 的半径为3. 二、与相似三角形结合 针对演练1. 证明:(1)∵AC 为⊙O 的直径, ∴∠ADC =90°, ∴∠CDB =90°, 又∵∠ACB =90°, ∴∠ACB =∠CDB , 又∵∠B =∠B , ∴△ABC ∽△CBD ; (2)连接DO ,如解图,∵∠BDC =90°,E 为BC 的中点, ∴DE =CE =BE , ∴∠EDC =∠ECD ,第1题解图又∵OD =OC , ∴∠ODC =∠OCD ,而∠OCD +∠DCE =∠ACB =90°, ∴∠EDC +∠ODC =90°,即∠EDO =90°, ∴DE ⊥OD , ∵OD 为⊙O 的半径, ∴DE 与⊙O 相切.2. (1)证明:连接CE ,如解图, ∵CD 为⊙O 的直径, ∴∠CED =90°, ∵∠BCA =90°, ∴∠CED =∠BCO , ∵BO ∥DE , ∴∠BOC =∠CDE , ∴△CBO ∽△ECD , ∴CO DE =BO CD , ∴CO ·CD =DE ·BO ;(2)解:∵∠DFE =∠ECO ,CD =2·OC =10,∴在Rt △CDE 中,ED =CD ·sin ∠ECO =CD ·sin ∠DFE = 10×35=6,∴CE =CD 2-ED 2=102-62=8, 在Rt △CEG 中,EG CE =sin ∠ECG =35, ∴EG =35×8=245,第2题解图根据垂径定理得:EF =2EG =485. 3. (1)证明:如解图,连接OD , ∵AB 是⊙O 的直径, ∴∠ADB =90°, ∵AB =AC ,∴AD 垂直平分BC ,即DC =DB , ∴OD 为△BAC 的中位线, ∴OD ∥AC . 而DE ⊥AC , ∴OD ⊥DE , ∵OD 是⊙O 的半径, ∴EF 是⊙O 的切线;(2)解:∵∠DAC =∠DAB ,且∠AED =∠ADB =90°, ∴∠ADE =∠ABD ,在Rt △ADB 中,sin ∠ADE =sin ∠ABD =AD AB =45,而AB =10, ∴AD =8,在Rt △ADE 中,sin ∠ADE =AE AD =45, ∴AE =325, ∵OD ∥AE , ∴△FDO ∽△FEA ,∴OD AE =FO F A ,即5325=BF +5BF +10,第3题解图∴BF =907.4. (1)证明:如解图①,连接OD 、OE 、ED . ∵BC 与⊙O 相切于点D , ∴OD ⊥BC ,∴∠ODB =90°=∠C , ∴OD ∥AC , ∵∠B =30°, ∴∠A =60°, ∵OA =OE ,∴△AOE 是等边三角形, ∴AE =AO =OD ,∴四边形AODE 是平行四边行, ∵OA =OD ,∴平行四边形AODE 是菱形; (2)解:设⊙O 的半径为r . ∵OD ∥AC , ∴△OBD ∽△ABC ,∴OD AC =OBAB ,即10r =6(10-r ). 解得r =154, ∴⊙O 的半径为154.如解图②,连接OD 、DF 、AD . ∵OD ∥AC , ∴∠DAC =∠ADO ,第4题解图①∵OA =OD , ∴∠ADO =∠DAO , ∴∠DAC =∠DAO , ∵AF 是⊙O 的直径, ∴∠ADF =90°=∠C , ∴△ADC ∽△AFD , ∴AD AC =AF AD , ∴AD 2=AC ·AF ,∵AC =6,AF =154×2=152, ∴AD 2=152×6=45,∴AD =45=3 5.(9分) 5. 解:(1)存在,AE =CE . 理由如下:如解图①,连接AE ,ED , ∵AC 是△ABC 的斜边, ∴∠ABC =90°, ∴AE 为⊙O 的直径, ∴∠ADE =90°, 又∵D 是AC 的中点, ∴ED 为AC 的中垂线, ∴AE =CE ;(2)①如解图②,∵EF 是⊙O 的切线, ∴∠AEF =90°.第5题解图①由(1)可知∠ADE=90°,∴∠AED+∠EAD=90°,∵∠AED+∠DEF=90°,∴∠EAD=∠DEF.又∵∠ADE=∠EDF=90°∴△AED∽△EFD,∴ADED=EDFD,∴ED2=AD·FD.又∵AD=DC=CF,∴ED2=2AD·AD=2AD2,在Rt△AED中,∵AE2=AD2+ED2=3AD2,由(1)知∠AED=∠CED,又∵∠CED=∠CAB,∴∠AED=∠CAB,∴sin∠CAB=sin∠AED=ADAE=13=33.②sin∠CAB=a+2 a+2.【解法提示】由(2)中的①知ED2=AD·FD,∵CF=aCD(a>0),∴CF=aCD=aAD,∴ED2=AD·DF=AD(CD+CF)=AD(AD+aAD)=(a+1)AD2,在Rt△AED中,AE2=AD2+ED2=(a+2)AD2,∴sin ∠CAB =sin ∠AED =ADAE =1a +2=a +2a +2. 6. (1)证明:∵∠ODB =∠AEC ,∠AEC =∠ABC , ∴∠ODB =∠ABC , ∵OF ⊥BC , ∴∠BFD =90°,∴∠ODB +∠DBF =90°, ∴∠ABC +∠DBF =90°, 即∠OBD =90°, ∴BD ⊥OB , ∵OB 为⊙O 的半径, ∴BD 是⊙O 的切线;(2)证明:连接AC ,如解图①所示: ∵OF ⊥BC , ∴BE ︵=CE ︵, ∴∠ECH =∠CAE , ∵∠HEC =∠CEA , ∴△CEH ∽△AEC , ∴CE EH =EA CE , ∴CE 2=EH ·EA ;(3)解:连接BE ,如解图②所示: ∵AB 是⊙O 的直径, ∴∠AEB =90°,∵⊙O 的半径为5,sin ∠BAE =35,第6题解图①第6题解图②∴AB =10,BE =AB ·sin ∠BAE =10×35=6, 在Rt △AEB 中,EA =AB 2-BE 2=102-62=8, ∵BE ︵=CE ︵, ∴BE =CE =6, ∵CE 2=EH ·EA , ∴EH =CE 2EA =628=92,在Rt △BEH 中,BH =BE 2+EH 2=62+(92)2=152.7. (1)证明:连接OD ,如解图①, ∵AD 平分∠BAC 交⊙O 于D , ∴∠BAD =∠CAD , ∴BD ︵=CD ︵, ∴OD ⊥BC , ∵BC ∥DF , ∴OD ⊥DF , ∴DF 为⊙O 的切线;(2)解:连接OB ,连接OD 交BC 于P ,作BH ⊥DF 于H ,如解图①,∵∠BAC =60°,AD 平分∠BAC , ∴∠BAD =30°,∴∠BOD =2∠BAD =60°, 又∵OB =OD ,∴△OBD 为等边三角形, ∴∠ODB =60°,OB =BD =23,第7题解图①∴∠BDF =30°, ∵BC ∥DF , ∴∠DBP =30°,在Rt △DBP 中,PD =12BD =3,PB =3PD =3, 在Rt △DEP 中, ∵PD =3,DE =7,∴PE =(7)2-(3)2=2, ∵OP ⊥BC , ∴BP =CP =3,∴CE =CP -PE =3-2=1, 易证得△BDE ∽△ACE , ∴BE AE =DE CE ,即5AE =71, ∴AE =577. ∵BE ∥DF , ∴△ABE ∽△AFD ,∴BE DF =AE AD ,即5DF =5771277,解得DF =12,在Rt △BDH 中,BH =12BD =3, ∴S 阴影=S △BDF -S 弓形BD =S △BDF -(S 扇形BOD -S △BOD )=12·12·3-60·π·(23)2360+34·(23)2=93-2π;(7分)(3)解:连接CD ,如解图②,由AB AC =43可设AB =4x ,AC =3x ,BF =y , ∵BD ︵=CD ︵, ∴CD =BD =23, ∵DF ∥BC ,∴∠F =∠ABC =∠ADC , ∴∠FDB =∠DBC =∠DAC , ∴△BFD ∽△CDA , ∴BD AC =BF CD ,即233x =y 23,∴xy =4,∵∠FDB =∠DBC =∠DAC =∠F AD , 而∠DFB =∠AFD , ∴△FDB ∽△F AD , ∴DF AF =BF DF , ∵DF +BF =8, ∴DF =8-BF =8-y , ∴8-y y +4x =y 8-y , 整理得:16-4y =xy , ∴16-4y =4,解得y =3, 即BF 的长为3.(10分) 三、与全等三角形结合第7题解图②针对演练1. (1)证明:连接OE ,过点O 作OF ⊥PN ,如解图所示, ∵PM 与⊙O 相切, ∴OE ⊥PM ,∴∠OEP =∠OFP =90°, ∵PC 平分∠MPN , ∴∠EPO =∠FPO , 在△PEO 和△PFO 中, ⎩⎪⎨⎪⎧∠EPO =∠FPO ∠OEP =∠OFP OP =OP, ∴△PEO ≌△PFO (AAS), ∴OF =OE ,∴OF 为圆O 的半径且OF ⊥PN, 则PN 与⊙O 相切;(2)解:在Rt △EPO 中,∠MPC =30°,PE =23, ∴∠EOP =60°,OE =PE ·tan30°=2, ∴∠EOB =120°,则劣弧BE ︵的长为120π×2180=4π3.2. (1)证明:如解图①,连接BO 并延长交⊙O 于点N ,连接CN , ∵∠BMC =60°, ∴∠BNC =60°, ∵∠BNC +∠NBC =90°, ∴∠NBC =30°,又∵△ABC 为等边三角形,第1题解图∴∠BAC =∠ABC =∠ACB =60°, ∴∠ABN =30°+60°=90°, ∴AB ⊥BO ,即AB 为⊙O 的切线.(2)解:BE +CF =3,是定值. 理由如下:如解图②,连接D 与AC 的中点P , ∵D 为BC 中点, ∴AD ⊥BC , ∴PD =PC =12AC , 又∵∠ACB =60°,∴PD =PC =CD =BD =12AC , ∴∠DPF =∠PDC =60°, ∴∠PDF +∠FDC =60°, 又∵∠EDF =120°, ∴∠BDE +∠FDC =60°, ∴∠PDF =∠BDE , 在△BDE 和△PDF 中, ⎩⎪⎨⎪⎧∠EBD =∠DPF BD =PD∠BDE =∠PDF, ∴△BDE ≌△PDF (ASA), ∴BE =PF ,∴BE +CF =PF +CF =CP =BD , ∵OB ⊥AB ,∠ABC =60°,第2题解图②∴∠OBC =30°, 又∵OB =2,∴BD =OB ·cos30°=2×32=3, 即BE +CF = 3.3. (1)证明:连接OC ,如解图①, ∵OD ⊥AC ,OC =OA , ∴∠AOD =∠COD . 在△AOE 和△COE 中, ⎩⎪⎨⎪⎧OA =OC ∠AOE =∠COE OE =OE, ∴△AOE ≌△COE (SAS), ∴∠EAO =∠ECO . 又∵EC 是⊙O 的切线, ∴∠ECO =90°, ∴∠EAO =90°. ∴AE 与⊙O 相切;(2)解:设DO =t ,则DE =3t ,EO =4t , 在△EAO 和△ADO 中,⎩⎪⎨⎪⎧∠EOA =∠AOD ∠EAO =∠ADO, ∴△EAO ∽△ADO , ∴AO DO =EO AO ,即9t =4t 9, ∴t =92,即EO =18.第3题解图①∴AE =EO 2-AO 2=182-92=93;延长BD 交AE 于点F ,过O 作OG ∥AE 交BD 于点G , 如解图②, ∵OG ∥AE , ∴∠FED =∠GOD 又∵∠EDF =∠ODG , ∴△EFD ∽△OGD , ∴EF OG =ED OD =31,即EF =3GO . 又∵O 是AB 的中点, ∴AF =2GO ,∴AE =AF +FE =5GO , ∴5GO =93, ∴GO =935, ∴AF =1835, ∴tan B =AF AB =35.4. (1)证明:如解图,连接OB , ∵PB 是⊙O 的切线, ∴∠PBO =90°,∵OA =OB ,BA ⊥PO 于点D , ∴AD =BD ,∠POA =∠POB , 又∵PO =PO ,∴△P AO ≌△PBO (SAS), ∴∠P AO =∠PBO =90°,第3题解图②第4题解图∴OA ⊥P A ,∴直线P A 为⊙O 的切线;(2)解:线段EF 、OD 、OP 之间的等量关系为EF 2=4OD ·OP . 证明:∵∠P AO =∠PDA =90°,∴∠OAD +∠AOD =90°,∠OP A +∠AOP =90°,∴∠OAD =∠OP A ,∴△OAD ∽△OP A ,∴ OD OA =OA OP ,即OA 2=OD ·OP ,又∵EF =2OA ,∴EF 2=4OD ·OP ;(3)解:∵OA =OC ,AD =BD ,BC =6,∴OD =12BC =3,设AD =x ,∵tan ∠F =12,∴FD =2x ,OA =OF =FD -OD =2x -3,在Rt △AOD 中,由勾股定理,得(2x -3)2=x 2+32,解之得,x 1=4,x 2=0(不合题意,舍去),∴AD =4,OA =2x -3=5,∵AC 是⊙O 直径,∴∠ABC =90°,又∵AC =2OA =10,BC =6,∴ cos ∠ACB =610=35.∵OA 2=OD ·OP ,∴3(PE +5)=25,∴PE =103.5. (1)证明:连接OD ,如解图,∵AB 为⊙O 的直径,∴∠ACB =90°,∵∠ACB 的平分线交⊙O 于点D ,∴∠ACD =∠BCD =45°,∴∠DAB =∠ABD =45°,∴△DAB 为等腰直角三角形,∴DO ⊥AB ,∵PD 为⊙O 的切线,∴OD ⊥PD ,∴PD ∥AB ;(2)证明:∵AE ⊥CD 于点E ,BF ⊥CD 于点F ,∴AE ∥BF ,∴∠FBO =∠EAO ,∵△DAB 为等腰直角三角形,∴∠EDA +∠FDB =90°,∵∠FBD +∠FDB =90°,∴∠FBD =∠EDA ,在△FBD 和△EDA 中,⎩⎪⎨⎪⎧∠BFD =∠DEA ∠FBD =∠EDA BD =DA, ∴△FBD ≌△EDA (AAS),∴DE =BF ;第5题解图(3)解:在Rt △ACB 中,∵AC =6,tan ∠CAB =43,∴BC =6×43=8,∴AB =AC 2+BC 2=62+82=10,∵△DAB 为等腰直角三角形,∴AD =AB 2=52, ∵AE ⊥CD ,∴△ACE 为等腰直角三角形,∴AE =CE =AC 2=62=32, 在Rt △AED 中,DE =AD 2-AE 2=(52)2-(32)2=42,∴CD =CE +DE =32+42=72,∵AB ∥PD ,∴∠PDA =∠DAB =45°,∴∠PDA =∠PCD ,又∵∠DP A =∠CPD ,∴△PDA ∽△PCD ,∴PD PC =P A PD =AD DC =5272=57, ∴P A =57PD ,PC =75PD ,又∵PC =P A +AC ,∴57PD +6=75PD ,解得PD =354,∴PC =57PD +6=57×354+6=254+6=494.6. (1)证明:如解图①,连接OC ,∵P A 切⊙O 于点A ,∴∠P AO =90°,∵BC ∥OP ,∴∠AOP =∠OBC ,∠COP =∠OCB ,∵OC =OB ,∴∠OBC =∠OCB ,∴∠AOP =∠COP ,在△P AO 和△PCO 中,⎩⎪⎨⎪⎧OA =OC ∠AOP =∠COP OP =OP, ∴△P AO ≌△PCO (SAS),∴∠PCO =∠P AO =90°,∴OC ⊥PC ,∵OC 为⊙O 的半径,∴PC 是⊙O 的切线;(2)解:由(1)得P A ,PC 都为圆的切线,∴P A =PC ,OP 平分∠APC ,∠ADO =∠P AO =90°, ∴∠P AD +∠DAO =∠DAO +∠AOD ,又∵∠ADP =∠ADO ,∴∠P AD =∠AOD ,∴△ADP ∽△ODA ,∴AD PD =DO AD ,第6题解图①∴AD 2=PD ·DO ,∵AC =8,PD =163, ∴AD =12AC =4,OD =3,在Rt △ADO 中,AO =AD 2+OD 2=5,由题意知OD 为△ABC 的中位线,∴BC =6,AB =BC 2+AC 2=10.∴S 阴影=12S ⊙O -S △ABC =12·π·52-12×6×8=25π2-24;(3)解:如解图②,连接AE 、BE ,作BM ⊥CE 于点M , ∴∠CMB =∠EMB =∠AEB =90°,∵点E 是AB ︵的中点,∴AE =BE ,∠EAB =∠EBA =45°,∴∠ECB =∠CBM =∠ABE =45°,CM =MB =BC ·sin45°=32,BE =AB ·cos45°=52,∴EM =BE 2-BM 2=42,则CE =CM +EM =7 2.7. (1)证明:连接OD ,如解图①所示,∵OB =OD ,∴∠ODB =∠OBD .∵OG ∥BD ,∴∠AOG =∠OBD ,∠GOD =∠ODB ,∴∠DOG =∠AOG ,在△DOG 和△AOG 中,第6题解图②第7题解图①⎩⎪⎨⎪⎧OD =OA ∠DOG =∠AOG OG =OG, ∴△DOG ≌△AOG (SAS),∴GD =GA ;(2)证明:∵AG 切⊙O 于点A ,∴AG ⊥OA ,∴∠OAG =90°,∵△DOG ≌△AOG ,∴∠OAG =∠ODG =90°,∴∠ODE =180°-∠ODG =90°,∴∠ODC +∠FDE =90°,∵OC ⊥AB ,∴∠COB =90°,∴∠OCD +∠OFC =90°,∵OC =OD ,∴∠ODC =∠OCD ,∴∠FDE =∠OFC ,∵∠OFC =∠EFD ,∴∠EFD =∠EDF ,∴EF =ED ,∴△DEF 是等腰三角形;(3)解:过点B 作BK ⊥OD 于点K ,如解图②所示: 则∠OKB =∠BKD =∠ODE =90°,∴BK ∥DE ,∴∠OBK =∠E ,∵BH ⊥GE ,∴∠BHD =∠BHE =90°, ∴四边形KDHB 为矩形, ∴KD =BH =9,∴OK =OD -KD =72,在Rt △OKB 中,∵OK 2+KB 2=OB 2,OB =252, ∴KB =12,∴tan ∠E =tan ∠OBK =OK KB =724,sin ∠E =sin ∠OBK =OK OB =725,∵tan ∠E =OD DE =724,∴DE =3007,∴EF =3007,∵sin ∠E =BH BE =725,∴BE =2257,∴BF =EF -BE =757,∴OF =OB -BF =2514,在Rt △COF 中,∠COB =90°, ∴OC 2+OF 2=FC 2,∴FC =125214,在Rt △COB 中,∵OC 2+OB 2=BC 2,OC =OB =252, ∴BC =2522,∴BC +CF +BF =1502+757, ∴△CBF 的周长=1502+757.。

初三圆的计算与证明练习题

初三圆的计算与证明练习题

初三圆的计算与证明练习题圆是几何学中的一个重要概念,初三学生需要掌握如何计算圆的各种属性,并能够运用所学知识进行相关证明。

本篇文章将为你提供一系列初三阶段的圆的计算与证明练习题,帮助你巩固知识并提升解题能力。

题目一:圆的周长计算已知一个圆的半径 r = 5 cm,请计算其周长。

解析:圆的周长(C)可以通过公式C = 2πr 计算,其中π 是一个常数,近似取 3.14。

将给定的半径代入公式,可得 C = 2 × 3.14 × 5 = 31.4 cm。

题目二:圆的面积计算已知一个圆的直径 d = 8 cm,请计算其面积。

解析:圆的面积(A)可以通过公式A = πr² 计算,其中 r 为半径,可通过直径除以 2 得到。

将给定的直径代入公式,可得 r = 8 ÷ 2 = 4 cm。

将半径代入公式,可得 A = 3.14 × (4)² = 50.24 cm²。

题目三:证明圆的直径是其任意两点间的最短距离已知在坐标平面上,有圆心为 O 的圆,以 A、B 两点分别作为圆上的两个点,请证明直径 AB 是线段 AB 上所有线段中最短的。

解析:证明思路:设直径 AB 的中点为 M,连接 OA、OB,利用三角形距离的性质进行证明。

证明过程:1. 因为 AM = MB,所以△OAM 和△OBM 是等腰三角形。

2. 根据等腰三角形的定理,OA = OM,OB = OM。

3. 由于 OA = OB,根据等量代换的原理,可以得出△OAM ≌△OBM。

4. 根据三角形全等的定义,可以得出∠OAM = ∠OBM。

5. 因为直线 AB 是线段 AB 上所有线段中长度最长的,所以自然比△OAM 和△OBM 的底边长。

6. 根据同弧所对的圆周角相等的性质,可以得出∠OAM 和∠OBM 所对的弧的圆心角相等。

7. 综上所述,自然有∠OAM 的圆心角和∠OBM 的圆心角相等,即直径 AB 上的圆心角相等。

突破中考之圆(解答题)专题训练

突破中考之圆(解答题)专题训练

与圆有关的计算与证明经典题分类汇编【考点1】与圆性质有关的计算与证明1.如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,AO=1.(1)求∠C的大小;(2)求阴影部分的面积.2.如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.3.如图,AB是⊙O的直径,弦CD⊥AB与点E,点P在⊙O上,∠1=∠C.(1)求证:CB∥PD;(2)若BC=3,sin∠P=0.6,求⊙O的直径.4.如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°.(1)求∠EBC的度数;(2)求证:BD=CD.AOECDB【考点2】与切线性质有关的证明与计算1.如图,PA、PB、EF分别与⊙O相切于点A、B、C,若△PEF的周长为18cm,且∠APB=60°,求⊙O的半径.2.如图,△ABC的内切圆⊙O与BC,CA,AB分别相切于点D,E,F,且AB=18cm,BC=28cm,CA=26cm,求AF,BD,CE的长.3.如图,BE是O的直径,点A和点D是⊙O上的两点,过点A作⊙O的切线交BE延长线于点.(1)若∠ADE=25°,求∠C的度数;(2)若AB=AC,CE=2,求⊙O半径的长.4.如图,AB是⊙O的切线,B为切点,圆心在AC上,∠A=30°,D为弧BC的中点.(1)求证:AB=BC;(2)求证:四边形BOCD是菱形.5.如图,△ABC内接于⊙O,弦AD⊥AB交BC于点E,过点B作⊙O的切线交DA的延长线于点F,且∠ABF=∠ABC.(1)求证:AB=AC;(2)若AD=4,cos∠ABF=45,求DE的长.6.直线PD垂直平分⊙O的半径OA,交⊙O于点C、D,PE是⊙O的切线,E为切点,连结AE,交CD于点F.(1)若⊙O的半径为8,求CD的长;(2)证明:PE=PF;(3)若PF=13,sin A=513,求EF的长.【考点3】与切线的判定有关的证明与计算1.如图,已知⊙O的半径为1,DE是⊙O的直径,过点D作⊙O的切线AD,C是AD的中点,AE交⊙O于B点,四边形BCOE是平行四边形.(1)求AD的长;(2)证明BC是⊙O的切线.2.如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,若AC=FC.(1)求证:AC是⊙O的切线;(2)若BF=8,DF=40,求⊙O的半径r.3.如图,AB是⊙O的直径,点C在⊙O上,若∠BAC=∠CAM,过点C作直线L垂直于射线AM,垂足为点D.(1)试判断CD与⊙O的位置关系,并说明理由;(2)若直线L与AB的延长线相交于点E,⊙O的半径为3,并且∠CAB=30°,求CE的长.4.如图,△ABC是等边三角形,AO⊥BC,垂足为点O,⊙O与AC相切于点D,BE⊥AB交AC 的延长线于点E,与⊙O相交于G、F两点.(1)求证:AB与⊙O相切;(2)若等边三角形ABC的边长是4,求线段BF的长.【考点4】与阴影面积有关的计算与证明1.如图,AB是⊙O的直径,AC是弦,直线EF经过点C,AD⊥EF于点D,∠DAC=∠BAC.(1)求证:EF是⊙O的切线;(2)求证:AC2=AD•AB;(3)若⊙O的半径为2,∠ACD=30°,求图中阴影部分的面积.2.如图,在△ABC中,BE是它的角平分线,∠C=90°,D在AB边上,以DB为直径的半圆O 经过点E,交BC于点F.(1)求证:AC是⊙O的切线;(2)已知cos A=32,⊙O的半径为3,求图中阴影部分的面积.3.如图,在△ABC中,∠ACB=90°,E为BC上一点,以CE为直径作⊙O,AB与⊙O相切于点D,连接CD,若BE=OE=2.(1)求证:∠A=2∠DCB;(2)求图中阴影部分的面积.4.如图,BE是⊙O的直径,点A和点D是⊙O上的两点,连接AE,AD,DE,过点A作射线交BE的延长线于点C,使∠EAC=∠EDA.(1)求证:AC是⊙O的切线;(2)若CE=AE=23,求阴影部分的面积.5.如图,在△BCE中,点A是边BE上一点,以AB为直径的⊙O与CE相切于点D,AD∥OC,点F为OC与⊙O的交点,连接AF.(1)求证:CB是⊙O的切线;(2)若∠ECB=60°,AB=6,求图中阴影部分的面积.6.如图,AB 是⊙O 的直径,∠BAC=90°,四边形EBOC 是平行四边形,EB 交⊙O 于点D ,连接CD 并延长交AB 的延长线于点F . (1)求证:CF 是⊙O 的切线;(2)若∠F=30°,EB=4,求图中阴影部分的面积.【考点5】与圆有关的计算与证明综合1.如图,AE 为⊙O 的直径,D 是弧BC 的中点BC 与AD ,OD 分别交于点E ,F. (1)求证:OD ∥AC ;(2)求证:DE.DA=DC 2;(3)若tan ∠CAD=21,求tan ∠CDA 的值.2.如图,⊙O 与直线MN 相切于点A ,点B 是⊙O 上异于点A 的一点,∠BAN 的平分线与⊙O 交于点C .(1)求证:△ABC 是等腰三角形;(2)①若∠CAN =15°,⊙O 的半径为23,则AB = ;②当∠CAN = 时,四边形OACB 为菱形.FEDOAC3.如图,PA为⊙O的切线,A为切点,直线PO交⊙O与点E,F过点A作PO的垂线AB垂足为D,交⊙O与点B,延长BO与⊙O交与点C,连接AC,BF.(1)求证:PB与⊙O相切;(2)试探究线段EF,OD,OP之间的数量关系,并加以证明;(3)若AC=12,tan∠F=12,求cos∠ACB的值.4.如图,△ABC 内接于⊙O ,AB 为直径,∠CBA 的平分线交AC 于点F ,交⊙O 于点D, DE ⊥AB 于点E ,且交AC 于点P ,连接AD.(1)求证:∠DAC =∠DBA ;(2)求证:P 是线段AF 的中点; (3)若⊙O 的半径为5, AD =6,求ADDB的值.5.如图1,⊙O 是△ABC 的外接圆,AB =AC ,BC =2,cos ∠ABC =1010.点D 为AC ︵上的动点,连接AD 并延长,交BC 的延长线于点E. (1)试求AB 的长;(2)试判断AD ·AE 的值是否为定值?若为定值;请求出这个定值;若不为定值,请说明理由; (3)如图2,连接BD ,过点A 作AH ⊥BD 于点H ,连接CD ,求证:BH =CD +DH.图1图2。

专题25 圆的有关计算与证明(共20道)(解析版)-2023年中考数学真题分项汇编(全国通用)

专题25 圆的有关计算与证明(共20道)(解析版)-2023年中考数学真题分项汇编(全国通用)

专题25圆的有关计算与证明(20道)一、填空题1.(2023·江苏徐州·统考中考真题)如图,在O 中,直径AB 与弦CD 交于点 ,2E AC BD=.连接AD ,过点B 的切线与AD 的延长线交于点F .若68AFB ∠=︒,则DEB ∠=°.【答案】66【分析】连接BD ,则有90ADB ∠=︒,然后可得22,68A ABD ∠=︒∠=︒,则44ADE =︒∠,进而问题可求解.【详解】解:连接BD ,如图所示:∵AB 是O 的直径,且BF 是O 的切线,∴90ADB ABF ∠=∠=︒,∵68AFB ∠=︒,∴22A ∠=︒,∴68ABD ∠=︒,∵ 2AC BD=,∴244ADC A ∠=∠=︒,【答案】0.1【分析】由已知求得AB 与而即可得解.【详解】∵2OA OB AOB ==∠,∴22AB =,∵C 是弦AB 的中点,D 在∴延长DC 可得O 在DC 上,∴22CD OD OC =-=-,∴()22222322CD s AB OA-=+=+=,9022360l ππ⨯⨯==,∴30.1l s π-=-≈.故答案为:0.1.【点睛】本题考查扇形的弧长,掌握垂径定理。

弧长公式是关键.二、解答题3.(2023·辽宁盘锦·统考中考真题)如图,ABC 内接于O ,AB 为O 的直径,延长AC 到点G ,使得CG CB =,连接GB ,过点C 作CD GB ∥,交AB 于点F ,交点O 于点D ,过点D 作DE AB ∥.交GB 的延长线于点E .(1)求证:DE 与O 相切.(2)若4AC =,2BC =,求BE 的长.【答案】(1)见详解(2)523【分析】(1)连接OD ,结合圆周角定理,根据CG CB =,可得45CGB CBG ∠=∠=︒,再根据平行的性质45ACD CGB ∠=∠=︒,即有290AOD ACD ∠=∠=︒,进而可得90ODE AOD ∠=∠=︒,问题随之得证;(2)过C 点作CK AB ⊥于点K ,先证明四边形BEDF 是平行四边形,即有BE DF =,求出2225AB AC BC =+=,即有152OD AO OB AB ====,利用三角形函数有2sin 5AC ABC AB ∠==,同理1cos 5ABC ∠=,即可得4sin 5KC BC ABC =⨯∠=,2cos 5KB BC ABC =⨯∠=,进而有35OK OB KB =-=,再证明CKF DOF ∽,可得55445OF OD FK CK ===,即可得55359935OF OK ==⨯=,在Rt ODF △中,有∵AB 为O 的直径,∴90ACB ∠=︒,∴90GCB ∠=︒,∵CG CB =,∴45CGB CBG ∠=∠=︒,∵CD GB ∥,∴45ACD CGB ∠=∠=︒,∴290AOD ACD ∠=∠=︒,即∵DE AB ∥,∴90ODE AOD ∠=∠=︒,∴半径OD DE ⊥,∴DE 与O 相切;(2)过C 点作CK AB ⊥∵CD GB ∥,DE AB ∥,∴四边形BEDF 是平行四边形,∴BE DF =,∵4AC =,2BC =,∴222AB AC BC =+=∴152OD AO OB AB ====,∵CK AB ⊥,∴90CKB ACB ∠=︒=∠,∴在Rt ACB △,2sin 5AC ABC AB ∠==,同理1cos 5ABC ∠=,∵在Rt KCB 中,2CB =,∴4sin 5KC BC ABC =⨯∠=,2cos 5KB BC ABC =⨯∠=,∴35OK OB KB =-=,∵CK AB ⊥,OD AB ⊥,∴OD CK ∥,∴CKF DOF ∽,∴55445OF OD FK CK ===,∴59OF OF FK OF OK ==+,∴55359935OF OK ==⨯=,∴在Rt ODF △中,22523DF OD OF =+=,∴523BE DF ==.【点睛】本题是一道综合题,主要考查了圆周角定理,切线的判定,相似三角形的判定与性质,平行四边形的判定与性质,三角函数以及勾股定理等知识,掌握切线的判定以及相似三角形的判定与性质,是解答本题的关键.4.(2023·江苏南通·统考中考真题)如图,等腰三角形OAB 的顶角120AOB ∠=︒,O 和底边AB 相切于点C ,并与两腰OA ,OB 分别相交于D ,E 两点,连接CD ,CE .(1)求证:四边形ODCE 是菱形;(2)若O 的半径为2,求图中阴影部分的面积.【答案】(1)见解析(2)4233S π=-阴影【分析】(1)连接OC ,根据切线的性质可得60AOC BOC ∠=∠=︒,从而可得ODC 和△OD CD CE OE ===,即可解答;(2)连接DE 交OC 于点F ,利用菱形的性质可得利用勾股定理求出DF 的长,从而求出DE ODCE 的面积,进行计算即可解答.【详解】(1)证明:连接OC ,O 和底边AB 相切于点C ,OC AB ∴⊥,OA OB = ,120AOB ∠=︒,1602AOC BOC AOB ∴∠=∠=∠=︒,OD OC = ,OC OE =,ODC ∴ 和OCE △都是等边三角形,OD OC DC \==,OC OE CE ==,OD CD CE OE ∴===,∴四边形ODCE 是菱形;(2)解:连接DE 交OC 于点F ,四边形ODCE 是菱形,112OF OC ∴==,2DE DF =,90OFD ∠=︒,在Rt ODF 中,2OD =,2222213DF OD OF ∴=-=-=,223DE DF ∴==,∴图中阴影部分的面积=扇形ODE 的面积-菱形ODCE 的面积2120213602OC DE π⨯=-⋅4122332π=-⨯⨯4233π=-,∴图中阴影部分的面积为4233π-.【点睛】本题考查了切线的性质,扇形面积的计算,等腰三角形的性质,菱形的判定与性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.5.(2023·辽宁鞍山·统考中考真题)如图,四边形ABCD 内接于O ,AB 为O 的直径,过点D 作DF BC ⊥,交BC 的延长线于点F ,交BA 的延长线于点E ,连接BD .若180EAD BDF ∠+∠=︒.(1)求证:EF 为O 的切线.∵EAD BDF ∠+∠=∴BDF BAD ∠=∠,∵AB 为O 的直径,∴90ADB ∠=︒,BFD ∠∴BDF DBF ∠+∠=∴DBF ABD ∠=∠,∵OB OD =,∴DBF ABD ∠=∠=∴OD BF ∥,∴90ODE F ∠=∠=又OD 为O 的半径,∴EF 为O 的切线;(2)连接AC ,则:∵AB 为O 的直径,∴90ACB F ∠=︒=∠,∴AC EF ,∴E BAC BDC ∠=∠=∠,在Rt BFE △中,10BE =,2sin sin 3E BDC =∠=,∴220sin 1033BF BE E =⋅=⨯=,设O 的半径为r ,则:,10OD OB r OE BE OB r ===-=-,∵OD BF ∥,∴ODE BFE ∽,∴OD OE BF BE =,即:1020103r r -=,∴4r =;∴O 的半径为4.【点睛】本题考查圆与三角形的综合应用,重点考查了切线的判定,解直角三角形,相似三角形的判定和性质.题目的综合性较强,熟练掌握相关知识点,并灵活运用,是解题的关键.6.(2023·辽宁阜新·统考中考真题)如图,AB 是O 的直径,点C ,D 是O 上AB 异侧的两点,DE CB ⊥,交CB 的延长线于点E ,且BD 平分ABE ∠.(1)求证:DE 是O 的切线.(2)若60ABC ∠=︒,4AB =,求图中阴影部分的面积.【答案】(1)见解析(2)233π-【分析】(1)连接OD ,根据OB OD =,得出OBD ODB ∠=∠.根据BD 平分ABE ∠,得出OBD EBD ∠=∠,则EBD ODB ∠=∠.根据DE CB ⊥得出90EBD EDB ∠+∠=︒,进而得出90ODB EDB ∠+∠=︒,即可求证;(3)连接OC ,过点O 作OF BC ⊥于点F ,通过证明OBC △为等边三角形,得出60BOC ∠=︒,【点睛】本题主要考查了切线的判定,等边三角形的判定和性质,解直角三角形,求扇形面积,解题的关键是掌握经过半径外端切垂直于半径的直线是圆的切线;扇形面积公式7.(2023·黑龙江哈尔滨·统考中考真题)已知ABC 内接于O ,AB 为O 的直径,N 为 AC 的中点,连接ON 交AC 于点H .(1)如图①,求证2BC OH =;(2)如图②,点D 在O 上,连接DB ,DO ,DC ,DC 交OH 于点E ,若DB DC =,求证OD AC ∥;(3)如图③,在(2)的条件下,点F 在BD 上,过点F 作FG DO ⊥,交DO 于点G .DG CH =,过点F 作FR DE ⊥,垂足为R ,连接EF ,EA ,32EF DF =::,点T 在BC 的延长线上,连接AT ,过点T 作TM DC ⊥,交DC 的延长线于点M ,若42FR CM AT ==,,求AB 的长.【答案】(1)见解析(2)见解析(3)213【分析】(1)连接OC ,根据N 为 AC 的中点,易证AH HC =,再根据中位线定理得出结论;(2)连接OC ,先证DOB DOC ≌V V 得BDO CDO ∠=∠,再根据OB OD =得DBO BDO ∠=∠,根据ACD ABD ∠=∠即可得出结论;(3)连接AD ,先证DOB DOC ≌V V ,再证四边形ADFE 是矩形,过A 作AS DE ⊥垂足为S ,先证出FR AS =,再能够证出CAS TCM ≌V V 从而CT AC =,得到等腰直角ACT ,利用三角函数求出AC ,再根据EDF BAC ∠=∠求出BC ,最后用勾股定理求出答案即可.【详解】(1)证明:如图,连接OC ,设2BDC α∠=,BD DC = ,DO DO =DOB DOC \≌V V ,12BDO CDO \Ð=Ð=OB OD = ,DBO \ÐACD ABD a Ð=Ð=Q DO AC \∥;(3)解:连接AD ,FG OD ^Q ,90DGF ∴∠=︒,90CHE ∠=︒ ,DGF CHE \Ð=Ð,FDG ECH Ð=ÐQ ,DG CH =,DGF CHE \≌V V ,DF CE ∴=,AH CH = ,OH AC \^,CE AE DF \==,EAC ECA a Ð=Ð=Q ,2AED EAC ECA a Ð=Ð+Ð=,BDC AED ∴∠=∠,DF AE ∴∥,∴四边形ADFE 是平行四边形,AB 是O 的直径,90ADB ∴∠=︒,∴四边形ADFE 是矩形,90EFD ∴∠=︒,3tan 2EF EDF FD \Ð==,过点A 作AS DE ⊥垂足为S ,sin AS AES AE\Ð=,FR DC ^Q ,sin FR FDR FD\Ð=,FD AE ∥ ,FDR AES \Ð=Ð,sin sin FDR AES \Ð=Ð,FR AS \=,AB 是O 的直径,(1)若图1中两个大圆的直径相等,则璧与环的“肉”的面积之比为;(2)利用圆规与无刻度的直尺,解决下列问题(保留作图痕迹,不写作法).①图2为徐州狮子山楚王墓出土的“雷纹玉环”及其主视图,试判断该件玉器的比例关系是否符合“肉好若一”?②图3表示一件圆形玉坯,若将其加工成玉璧,且比例关系符合“肉倍好”,请画出内孔.【答案】(1)32:27(2)①符合,图见详解;②图见详解【分析】(1)根据圆环面积可进行求解;(2)①先确定该圆环的圆心,然后利用圆规确定其比例关系即可;②先确定好圆的圆心,然后根据平行线所截线段成比例可进行作图.【详解】(1)解:由图1可知:璧的“肉”的面积为()22318ππ⨯-=;环的“肉”的面积为()223 1.5 6.75ππ⨯-=,∴它们的面积之比为8:6.7532:27ππ=;故答案为32:27;(2)解:①在该圆环任意画两条相交的线,且交点在外圆的圆上,且与外圆的交点分别为A 、B 、C ,则分别以A 、B 为圆心,大于12AB 长为半径画弧,交于两点,连接这两点,同理可画出线段AC 的垂直平分线,线段,AB AC 的垂直平分线的交点即为圆心O ,过圆心O 画一条直径,以O 为圆心,内圆半径为半径画弧,看是否满足“肉好若一”的比例关系即可由作图可知满足比例关系为1:2:1的关系;②按照①中作出圆的圆心O ,过圆心画一条直径AB ,过点A 作一条射线,然后以A 为圆心,适当长为半径画弧,把射线三等分,交点分别为C 、D 、E ,连接BE ,然后分别过点C 、D 作BE 的平行线,交AB 于点F 、【点睛】本题主要考查圆的基本性质及平行线所截线段成比例,熟练掌握圆的基本性质及平行线所截线段成比例是解题的关键.9.(2023·辽宁·统考中考真题)的延长线上,且AFE ABC ∠=∠(1)求证:EF 与O (2)若1sin BF AFE =∠,【答案】(1)见解析(2)245BC =∵ =BEBE ,∴EOB ∠∵2CAB EAB ∠=∠,∴CAB EOB ∠=∠,∵AB 是O 的直径,∴90C ∠=︒,∵AFE ABC ∠=∠,∴OFE ABC ∽△△,∴90OEF C ∠=∠=︒,∵OE 为O 半径,∴EF 与O 相切;(2)解:设O 半径为x ,则1=+OF x ,∵AFE ABC ∠=∠,4sin 5AFE ∠=,∴4sin 5ABC ∠=,在Rt OEF △中,90OEF ∠=︒,4sin 5AFE ∠=,∴45OE OF =,即415x x =+,解得4x =,经检验,4x =是所列方程的解,∴O 半径为4,则8AB =,在Rt ABC △中,90C ∠=︒,4sin 5ABC ∠=,8AB =,∴32sin 5A AB C AB C ∠==⋅,∴22245BC AB AC =-=.【点睛】本题考查了圆的切线的判定、圆周角定理、解直角三角形以及相似三角形的判定和性质等知识,熟练掌握圆的相关知识和相似三角形的判定和性质是解题的关键.10.(2023·贵州·统考中考真题)如图,已知O 是等边三角形ABC 的外接圆,连接CO 并延长交AB 于点D ,交O 于点E ,连接EA ,EB .(1)写出图中一个度数为30︒的角:_______,图中与ACD 全等的三角形是_______;(2)求证:AED CEB ∽△△;(3)连接OA ,OB ,判断四边形OAEB 的形状,并说明理由.【答案】(1)1∠、2∠、3∠、4∠;BCD△(2)证明见详解(3)四边形OAEB 是菱形【分析】(1)根据外接圆得到CO 是ACB ∠的角平分线,即可得到30︒的角,根据垂径定理得到90ADC BDC ∠=∠=︒,即可得到答案;(2)根据(1)得到3=2∠∠,根据垂径定理得到5660∠=∠=︒,即可得到证明;(3)连接OA ,OB ,结合5660∠=∠=︒得到OAE △,OBE △是等边三角形,从而得到OA OB AE EB r ====,即可得到证明;【详解】(1)解:∵O 是等边三角形ABC 的外接圆,∴CO 是ACB ∠的角平分线,60ACB ABC CAB ∠=∠=∠=︒,∴1230∠=∠=︒,∵CE 是O 的直径,∴90CAE CBE ∠=∠=︒,∴3430∠=∠=︒,∴30︒的角有:1∠、2∠、3∠、4∠,∵CO 是ACB ∠的角平分线,∴90ADC BDC ∠=∠=︒,56903060∠=∠=︒-︒=︒,在ACD 与BCD △中,∵1290CD CD ADC BDC ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴ACD BCD ≌,故答案为:1∠、2∠、3∠、4∠,BCD △;(2)证明:∵56∠=∠,3=230∠∠=︒,∴AED CEB ∽△△;(3)解:连接OA ,OB ,∵OA OE OB r ===,5660∠=∠=︒,∴OAE △,OBE △是等边三角形,∴OA OB AE EB r ====,∴四边形OAEB 是菱形.【点睛】本题考查垂径定理,菱形判定,等边三角形的判定和性质,相似三角形的判定等知识,解题的关键是熟练掌握垂径定理,从而得到相应角的等量关系.11.(2023·湖北鄂州·统考中考真题)如图,AB 为O 的直径,E 为O 上一点,点C 为»EB 的中点,过点C 作CD AE ⊥,交AE 的延长线于点D ,延长DC 交AB 的延长线于点F .(1)求证:CD 是O 的切线;(2)若1DE =,2DC =,求O 的半径长.【答案】(1)证明见解析(2)52【分析】(1)连接OC ,根据弦、弧、圆周角的关系可证DAC CAF ∠=∠,根据圆的性质得OAC OCA ∠=∠,∵点C 为»EB的中点,∴ ECCB =,∴DAC CAF ∠=∠,∵OA OC =,∴OAC OCA∠=∠∵CD AD ⊥,∴90D Ð=°,∵1DE =,2DC =,∴2222215CE CD DE =+=+=,∵D 是 BC的中点,∴ ECCB =,∴EC CB ==5,∵AB 为O 的直径,∴90ACB ∠=︒,∵180DEC AEC ∠+∠=︒,180ABC AEC ∠+∠=︒,∴DEC ABC ∠=∠,∴DEC CBA ∽ ,∴DE CE BC AB=,∴155AB =,∴5AB =,1522AO AB ==∴O 的半径长为52.【点睛】本题考查了切线的判定和性质,勾股定理,相似三角形的判定和性质,正确地作出辅助线是解题的关键.12.(2023·吉林长春·统考中考真题)【感知】如图①,点A 、B 、P 均在O 上,90AOB ∠=︒,则锐角APB ∠的大小为__________度.【探究】小明遇到这样一个问题:如图②,O 是等边三角形ABC 的外接圆,点P 在 AC 上(点P 不与点A 、C 重合),连结PA 、PB 、PC .求证:PB PA PC =+.小明发现,延长PA 至点E ,使AE PC =,连结BE ,通过证明PBC EBA ≌△△,可推得PBE 是等边三角形,进而得证.BA BC ∴=,(SAS)PBC EBA ∴ ≌,∴PB EB =,PBC EBA ∠=∠,60EBA ABP PBC ABP ABC ∴∠+∠=∠+∠=∠=︒,PBE ∴ 是等边三角形,PB PE ∴=,PB PE PA AE PA PC ∴==+=+,即PB PA PC =+;应用:延长PA 至点E ,使AE PC =,连结BE ,四边形ABCP 是O 的内接四边形,180BAP BCP ∴∠+∠=︒.180BAP BAE ∠+∠=︒ ,BCP BAE ∴∠=∠.AB CB = ,(SAS)PBC EBA ∴ ≌,∴PB EB =,PBC EBA ∠=∠,90EBA ABP PBC ABP ABC ∴∠+∠=∠+∠=∠=︒,PBE ∴ 是等腰直角三角形,222PB BE PE ∴+=,222PB PE ∴=,即2PE PB =,PE PA AE PA PC =+=+ ,2PA PC PB ∴+=,22PB PA = ,2224PA PC PA PA ∴+=⨯=,3PC PA ∴=,222233PB PA PC PA ∴==,故答案为:223.【点睛】本题考查了圆周角定理,圆内接四边形对角互补,邻补角,全等三角形的判定和性质,等边三角形、等腰直角三角形的判定和性质,勾股定理解直角三角形;解题的关键是做辅助线构造PBC EBA ≌,进行转换求解.13.(2023·甘肃兰州·统考中考真题)如图,ABC 内接于O ,AB 是O 的直径, BCBD =,DE AC ⊥于点E ,DE 交BF 于点F ,交AB 于点G ,2BOD F ∠=∠,连接BD .(1)求证:BF 是O 的切线;(2)判断DGB 的形状,并说明理由;(3)当2BD =时,求FG 的长.【答案】(1)见解析(2)DGB 是等腰三角形,理由见解析(3)4FG =【分析】(1)连接CO ,根据圆周角定理得出2BOD BOC BAC ∠=∠=∠,根据已知得出F BAC ∠=∠,根据DE AC ⊥得出90AEG ∠=︒,进而根据对等角相等,以及三角形内角和定理可得90FBG AEG ∠=∠=︒,即可得证;(2)根据题意得出 AD AC=,则ABD ABC ∠=∠,证明EF BC ∥,得出AGE ABC ∠=∠,等量代换得出FGB ABD ∠=∠,即可得出结论;(3)根据FGB ABD ∠=∠,AB BF ⊥,设FGB ABD α∠=∠=,则90DBF F α∠=∠=︒-,等边对等角得出DB DF =,则224FG DG DB ===.【详解】(1)证明:如图所示,连接CO ,∵ BCBD =,∴2BOD BOC BAC ∠=∠=∠,∵2BOD F ∠=∠,∴F BAC ∠=∠,∵DE AC ⊥,∴90AEG ∠=︒,∵AGE FGB∠=∠∴90FBG AEG ∠=∠=︒,即AB BF ⊥,又AB 是O 的直径,∴BF 是O 的切线;(2)∵ BCBD =,AB 是O 的直径,∴ AD AC =,BC AC ⊥,∴ABD ABC ∠=∠,∵DE AC ⊥,BC AC ⊥,∵EF BC ∥,∴AGE ABC ∠=∠,又AGE FGB ∠=∠,∴FGB ABD ∠=∠,∴DGB 是等腰三角形,(3)∵FGB ABD ∠=∠,AB BF ⊥,设FGB ABD α∠=∠=,则90DBF F α∠=∠=︒-,(1)求证:DE 是O 的切线;(2)若30C ∠=︒,23CD =,求 BD的长.【答案】(1)见解析(2)43π∵OB OD =,∴B ODB ∠=∠,∵AB AC =,∴B C ∠=∠,∴OD AC ∥,∴ODE DEC ∠=∠。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012中考数学复习《圆的证明与计算》专题圆的证明与计算是中考中的一类重要的问题,此题完成情况的好坏对解决后面问题的发挥有重要的影响,所以解决好此题比较关键。

一、考点分析:1.圆中的重要定理:(1)圆的定义:主要是用来证明四点共圆.(2)垂径定理:主要是用来证明——弧相等、线段相等、垂直关系等等.(3)三者之间的关系定理: 主要是用来证明——弧相等、线段相等、圆心角相等.(4)圆周角性质定理及其推轮: 主要是用来证明——直角、角相等、弧相等.(5)切线的性质定理:主要是用来证明——垂直关系.(6)切线的判定定理: 主要是用来证明直线是圆的切线.(7)切线长定理: 线段相等、垂直关系、角相等.2.圆中几个关键元素之间的相互转化:弧、弦、圆心角、圆周角等都可以通过相等来互相转化.这在圆中的证明和计算中经常用到.二、考题形式分析:主要以解答题的形式出现,圆与相似圆与面积圆与切线动态圆三、解题秘笈:1、判定切线的方法:(1)若切点明确,则“连半径,证垂直”。

常见手法有:全等转化;平行转化;直径转化;中线转化等;有时可通过计算结合相似、勾股定理证垂直;(2)若切点不明确,则“作垂直,证半径”。

常见手法:角平分线定理;等腰三角形三线合一,隐藏角平分线;总而言之,要完成两个层次的证明:①直线所垂直的是圆的半径(过圆上一点);②直线与半径的关系是互相垂直。

在证明中的关键是要处理好弧、弦、角之间的相互转化,要善于进行由此及彼的联想、要总结常添加的辅助线.2、与圆有关的计算:计算圆中的线段长或线段比,通常与勾股定理、垂径定理与三角形的全等、相似等知识的结合,形式复杂,无规律性。

分析时要重点注意观察已知线段间的关系,选择定理进行线段或者角度的转化。

特别是要借助圆的相关定理进行弧、弦、角之间的相互转化,找出所求线段与已知线段的关系,从而化未知为已知,解决问题。

其中重要而常见的数学思想方法有:(1)构造思想:如:①构建矩形转化线段;②构建“射影定理”基本图研究线段(已知任意两条线段可求其它所有线段长);③构造垂径定理模型:弦长一半、弦心距、半径;④构造勾股定理模型;⑤构造三角函数.(2)方程思想:设出未知数表示关键线段,通过线段之间的关系,特别是发现其中的相等关系建立方程,解决问题。

(3)建模思想:借助基本图形的结论发现问题中的线段关系,把问题分解为若干基本图形的问题,通过基本图形的解题模型快速发现图形中的基本结论,进而找出隐藏的线段之间的数量关系。

四、范例讲解:(一)圆与相似1.(本小题满分8分)(2011山东滨州,22,8分)如图,直线PM 切⊙O 于点M,直线PO 交⊙O 于A 、B 两点,弦AC ∥PM, 连接OM 、BC .求证:(1)△ABC ∽△POM;(2)22OA OP BC g .2、(2011山东日照).(本题满分9分)如图,AB 是⊙O 的直径,AC 是弦,CD 是⊙O 的切线,C 为切点,AD ⊥CD 于点D .求证:(1)∠AOC =2∠ACD ;(2)AC 2=AB ·AD .3、(2011山东烟台,25,12分)已知:AB 是⊙O 的直径,弦CD ⊥AB 于点G ,E 是直线AB 上一动点(不与点A 、B 、G 重合),直线DE 交⊙O 于点F ,直线CF 交直线AB 于点P .设⊙O 的半径为r .(1)如图1,当点E 在直径AB 上时,试证明:OE ·OP =r 2(2)当点E 在AB (或BA )的延长线上时,以如图2点E 的位置为例,请你画出符合题意的图形,标注上字母,(1)中的结论是否成立?请说明理由.A B C D E FP .O G (图1) .A B C D E .OG (图2)(二)圆与面积4、(2011•东营)如图,已知点A 、B 、C 、D 均在已知圆上,AD ∥BC ,BD 平分∠ABC ,∠BAD=120°,四边形ABCD 的周长为15. (1)求此圆的半径;(2)求图中阴影部分的面积.5.(2011山东莱芜)(10分)如图,AB 是⊙O 的直径,弦DE 垂直平分半径OA ,C 为垂足,DE =3,连接BD ,过点E 作EM ∥BD ,交BA 的延长线于点M .(1)求⊙O 的半径;(2)求证:EM 是⊙O 的切线;(3)若弦DF 与直径AB 相交于点P ,当∠APD =45º时,求图中阴影部分的面积.6、(2011•临沂)如图.以O 为圆心的圆与△AOB 的边AB 相切于点C .与OB 相交于点D ,且OD=BD ,己知sinA=,AC=.(1)求⊙O 的半径:(2)求图中阴影部分的面枳.7、(2011山东枣庄).(本题满分8分)如图,点D 在O ⊙的直径AB 的延长线上,点C 在O ⊙上,且AC =CD ,∠ACD =120°.(1)求证:CD 是O ⊙的切线; (2)若O ⊙的半径为2,求图中阴影部分的面积.AMDEC O P BFA P C OB ED(三)圆与切线 8.(2011山东菏泽)(本题10分)如图,BD 为⊙O 的直径,AB =AC ,AD 交B C 于点E ,AE =2,ED =4,(1)求证:△ABE ∽△ADB ; (2)求AB 的长;(3)延长DB 到F ,使得BF =BO ,连接F A ,试判断直线F A 与⊙O 的位置关系,并说明理由.9.(2011山东聊城)(8分)如图,AB 是半圆的直径,点O 是圆心,点C 是OA 的中点,CD⊥OA 交半圆于点D ,点E 是BD ⌒的中点,连接AE 、OD ,过点D 作DP ∥AE 交BA 的延长线于点P . (1)求∠AOD 的度数;(2)求证:PD 是半圆O 的切线.10.(2011山东淄博)(9分)已知:△ABC 是边长为4的等边三角形,点O 在边AB 上, ⊙O 过点B 且分别与边AB ,BC 相交于点D ,E ,EF ⊥AC ,垂足为F.(1)求证:直线EF 是⊙O 的切线;(2)当直线DF 与⊙O 相切时,求⊙O 的半径.(四)圆与新题型11. (2011山东德州)(本题满分10分) ●观察计算当5a =,3b =时,2a b+与ab 的大小关系是__________. (第18题图)DO CEB当4a =,4b =时, 2a b+__________. ●探究证明如图所示,ABC ∆为圆O 的内接三角形,AB 为直径,过C 作CD AB ⊥于D ,设AD a =,BD =b .(1)分别用,a b 表示线段OC ,CD ;(2)探求OC 与CD 表达式之间存在的关系(用含a ,b 的式子表示). ●归纳结论根据上面的观察计算、探究证明,你能得出2a b+____________. ●实践应用要制作面积为1平方米的长方形镜框,直接利用探究得出的结论,求出镜框周长的最小值.(五)圆与动点 12.(2011山东济宁)(10分)如图,在平面直角坐标系中,顶点为(4,1-)的抛物线交y 轴于A 点,交x 轴于B ,C 两点(点B 在点C 的左侧). 已知A 点坐标为(0,3).(1)求此抛物线的解析式;(2)过点B 作线段AB 的垂线交抛物线于点D , 如果以点C 为圆心的圆与直线BD 相切,请判断抛物线的对称轴l 与⊙C 有怎样的位置关系,并给出证明;(3)已知点P 是抛物线上的一个动点,且位于A ,C 两点之间,问:当点P 运动到什么位置时,PAC ∆的面积最大?并求出此时P 点的坐标和PAC ∆的最大面积.x(第23题)A B13.(2011山东德州) (本题满分12分) 在直角坐标系xoy 中,已知点P 是反比例函数)>0(32x xy =图象上一个动点,以P 为圆心的圆始终与y 轴相切,设切点为A . (1)如图1,⊙P 运动到与x 轴相切,设切点为K ,试判断四边形OKP A 的形状,并说明理由.(2)如图2,⊙P 运动到与x 轴相交,设交点为B ,C .当四边形ABCP 是菱形时: ①求出点A ,B ,C 的坐标.②在过A ,B ,C 三点的抛物线上是否存在点M ,使△MBP 的面积是菱形ABCP 面积的21.若存在,试求出所有满足条件的M 点的坐标,若不存在,试说明理由.1、【答案】证明:(1)∵直线PM 切⊙O 于点M ,∴∠PMO=90°………………1分 ∵弦AB 是直径,∴∠ACB=90°………………2分 ∴∠ACB=∠PMO ………………3分∵AC ∥PM, ∴∠CAB=∠P ………………4分 ∴△ABC ∽△POM ………………5分(2) ∵ △ABC ∽△POM, ∴AB BCPO OM =………………6分 又AB=2OA,OA=OM, ∴2OA BCPO OA=………………7分 ∴22OA OP BC =g ………………8分2、答案.(本题满分9分) 证明:(1)∵CD 是⊙O 的切线,∴∠OCD =90°,即∠ACD +∠ACO =90°.…① …………………………………………2分AP23y x=xyK O图1∵OC=OA ,∴∠ACO =∠CAO , ∴∠AOC =180°-2∠ACO ,即21∠AOC +∠ACO =90°. …②……………4分 由①,②,得:∠ACD -21∠AOC =0,即∠AOC =2∠ACD ;………………5分 (2)如图,连接BC .∵AB 是直径,∴∠ACB =90°.……………6分 在Rt △ACD 与△Rt ACD 中,∵∠AOC =2∠B ,∴∠B =∠ACD ,∴△ACD ∽△ABC ,………………………8分 ∴ACADAB AC =,即AC 2=AB ·AD . ………9分 3、【解】(1)证明:连接FO 并延长交⊙O 于Q ,连接DQ . ∵FQ 是⊙O 直径,∴∠FDQ =90°. ∴∠QFD +∠Q =90°. ∵CD ⊥AB ,∴∠P +∠C =90°. ∵∠Q =∠C ,∴∠QFD =∠P .∵∠FOE =∠POF ,∴△FOE ∽△POF . ∴OE OF OF OP =.∴OE ·OP =OF 2=r 2. (2)解:(1)中的结论成立.理由:如图2,依题意画出图形,连接FO 并延长交⊙O 于M ,连接CM . ∵FM 是⊙O 直径,∴∠FCM =90°,∴∠M +∠CFM =90°. ∵CD ⊥AB ,∴∠E +∠D =90°. ∵∠M =∠D ,∴∠CFM =∠E.∵∠POF =∠FOE ,∴△POF ∽△FOE . ∴OP OF OF OE=,∴OE ·OP =OF 2=r 2. 4、解答:解:(1)∵AD ∥BC ,∠BAD=120°.∴∠ABC=60°. 又∵BD 平分∠ABC ,∴∠ABD=∠DBC=∠ADB=30° ∴==,∠BCD=60° ∴AB=AD=DC ,∠DBC=90°又在直角△BDC 中,BC 是圆的直径,BC=2DC .∴BC+BC=15 ∴BC=6∴此圆的半径为3.(2)设BC 的中点为O ,由(1)可知O 即为圆心. 连接OA ,OD ,过O 作OE ⊥AD 于E . 在直角△AOE∴OE=OA•cos30°=S△AOD =×3×=.∴S阴影=S扇形AOD﹣S△AOD=﹣=﹣=.5、答案:解:连结OE,∵DE垂直平分半径OA∴OC=1122OA OE=,1322CE DE==∴∠OEC=30°∴323 cos3032ECOE===︒(2)由(1)知:∠AOE=60°,»»AE AD=,∴1302B AOE∠=∠=︒∴∠BDE=60°∵BD∥ME,∴∠MED=∠BDE=60°∴∠MEO=90°∴EM是⊙O的切线。

相关文档
最新文档