第2章 多因素方差分析

合集下载

多因素方差分析

多因素方差分析

多因素方差分析1. 基本思想:用来研究两个及两个以上控制变量是否对观测变量产生显著影响。

可以分析多个控制变量单独作用对观测变量的影响(这叫做主效应),也可以分析多个控制因素的交互作用对观测变量的影响(也称交互效应),还可以考虑其他随机变量是否对结果产生影响,进而最终找到利于观测变量的最优组合。

根据观测变量(即因变量)的数目,可以把多因素方差分析分为:单变量多因素方差分析(也叫一元多因素方差分析)与多变量多因素方差分析(即多元多因素方差分析)。

一元多因素方差分析:只有一个因变量,考察多个自变量对该因变量的影响。

例如,分析不同品种、不同施肥量对农作物产量的影响时,可将农作物产量作为观测变量,品种和施肥量作为控制变量。

利用多因素方差分析方法,研究不同品种、不同施肥量是如何影响农作物产量的,并进一步研究哪种品种与哪种水平的施肥量是提高农作物产量的最优组合。

多元多因素方差分析:是对一元多因素方差分析的扩展,不仅需要检验自变量的不同水平上,因变量的均值是否存在差异,而且要检验各因变量之间的均值是否存在差异。

例如,用四个班级学生分别对两种教材、两种教学方法进行试验,除了要考虑着两种教材、两种教学方法的四种搭配以外,还要考虑四个班级学生的学习能力这些因素。

2. 原理:通过计算F统计量,进行F检验。

F统计量是平均组间平方和与平均组内平方和的比。

尸$控制您童H卜尸6小=的机竇量这里,把总的影响平方和记为SST它分为两个部分,一部分是由控制变量引起的离差,记为SSA组间离差平方和),另一部分是由随机变量引起的SS(组内离差平方和)。

即SST=SSA+SS组间离差平方和SSA是各水平均值和总体均值离差的平方和,反映了控制变量的影响。

组内离差平方和是每个数据与本水平组平均值离差的平方和,反映了数据抽样误差的大小程度。

通过F值看出,如果控制变量的不同水平对观测变量有显著影响,那观测变量的组间离差平方和就大,F值也大;相反,如果控制变量的不同水平没有对观测变量造成显著影响,那组内离差平方和就比较大,F值就比较小。

SPSS-多因素方差分析

SPSS-多因素方差分析
③在Profile Plots对话框中,把Factors栏中的变量“保存时间”放入 Horizontal Axis栏,变量“保存温度”放入Separate Lines栏,再 单击Add按钮,会使变量“a*b”自动进入Plots栏,单击Continue 按钮返回。
④在Univariate对话框中,单击Options…按钮。在Options对话框中, 把Factor(s) and Factor Interations栏中的变量“保存时间”、 “保存温度”、 和“保存时间*保存温度”放入Display Means for栏;并在Display多选项中,选择Descriptive statistics, Estimates of effect size,Homogeneity tests。单击Model…,选择 默认项,即Full factorial项(全析因模型),单击Continue按钮返 回。
⑤在Univariate对话框,单击OK按钮得到Univariate过程的运行结果。
7
结果
8
均数分布图
9
例2, 用5×2×2析因设计研究5种 类型的军装在两种环境、两种活动状 态下的散热效果,将100名受试者随 机等分20组,观察指标是受试者的主 观热感觉(从“冷”到“热”按等级评 分),结果见下表。试进行方差分析。
多因素方差分析
1
一、析因设计资料的方差分析 两因素两水平 三因素多水平
2
析因设计的特点
必须是: 两个以上(处理)因素(factor)(分 类变量)。 两个以上水平(level)。 两个以上重复(repeat)。 每次试验涉及全部因素,即因素同时 施加观察指标(观测值)为计量资料 (独立、正态、等方差)。
24
25

双因素试验的方差分析

双因素试验的方差分析
2
2
j 1

误差平方和: S
E


i 1
( x ijk X
ij
)
j 1 k 1
③计算自由度

SA的自由度:r-1 SB的自由度:s-1 SA×B的自由度: (r-1)(s-1) Se的自由度:rs(t -1)

ST的自由度:rst-1
(4) F检验
FA
S A /( r 1) S E /( rs ( t 1))
r
j 1 k 1

因素A的效应平方和: 因素B的效应平方和: A,B交互效应平方和:
S A B t
i 1 r
S A st ( X
S B rt ( X
j 1
i
X)
2
i 1 s
j
X )
2

r
s
(X
s
ij
X
t
i
X j X )
X 2 1 1 , X 2 1 2 , ..., X 2 1 t
A2 … Ar
x 221 , x 222 , ..., x 22 t
… … …



X rs 1 , X rs 2 , ..., X rst
X r 11 , X r 12 , ..., X r 1 t X r 2 1 , X r 2 2 , ..., X r 2 t
总和
ST
rs-1
(3)双因素无重复试验方差分析表 双因素无重复试验方差分析表 方差 来源 因素A
平方 和
SA
自由度
r- 1
均方
SA SA r 1

心理学考研-心理统计资料-方差分析

心理学考研-心理统计资料-方差分析

2017考研已经拉开序幕,很多考生不知道如何选择适合自己的考研复习资料。

中公考研辅导老师为考生准备了【心理学考研知识点讲解和习题】,希望可以助考生一臂之力。

同时中公考研特为广大学子推出考研集训营、专业课辅导、精品网课、vip1对1等课程,针对每一个科目要点进行深入的指导分析,欢迎各位考生了解咨询。

第十章方差分析【本章综述】两个平均数之间的差异检验用Z/t检验,那么两个以上的平均数之间差异检验该用何种检验?方差分析主要处理两个两个或以上的平均数之间的差异检验问题。

本章主要介绍方差分析的基本原理,以及完全随机设计和随机区组设计这两种最基本的实验设计数据的方差分析以及事后检验。

【考点分布】方差分析【本章框架】【复习建议】方差分析这一章处处是重点,而且有一定的难度。

同学们在复习时旨在把握方差分析的原理以及在不同的实验设计中的变异来源,抓住这一精髓灵活地应对不同类型的题。

第一节 方差分析的原理与基本过程(一)方差分析的基本原理1. 方差分析依据的基本原理就是方差的可加性或者说可分解性原则,具体说就是将实验中的总变异分解为几个不同来源的变异。

一般来说,总变异包括组间变异(组间平方和)和组内变异(组内平方和)两部(平方和指观测数据与平均数离差的平方总和)。

2. 其公式如下: ① SS T = SS B + SS W ;∑∑===k j n1i )X (X SS 2ijT 1-t ;∑=∙=kj )X X (n SS 2jB 1-t ;∑∑===k j n1i )X (X SS 2ijW 1-j ;这些公式中,X 的下标j 表示第几组,i 表示某一组中第几个被试,求和符号的起止标记意思与这个相同。

k 表示实验处理数;n 表示每种实验处理下的被试数。

SS T 表示总平方和,所有观测值与总平均数的离差的平方总和,也即实验中产生的总变异;SS B 为组间平方和,几个组的平均数与总平均数的离差的平方总和,表示由于接受不同的实验处理而造成的各组之间的差异以及无法控制的随机实验误差(通常忽略不计);SS W 为组内平方和,各被试的数值与组平均数之间的离差的平方总和,表示由实验误差(个体差异)造成的变异。

第二节 双因素方差分析 PPT课件

第二节 双因素方差分析 PPT课件

分析步骤
(构造检验的统计量)
计算均方(MS)
行因素的均方,记为MSR,计算公式为
MSR SSR k 1
列因素的均方,记为MSC ,计算公式为
MSC SSC r 1
误差项的均方,记为MSE ,计算公式为
MSE SSE (k 1)(r 1)
分析步骤
(构造检验的统计量)
replication )
双因素方差分析的基本假定
1. 每个总体都服从正态分布 对于因素的每一个水平,其观察值是来自正态分布
总体的简单随机样本
2. 各个总体的方差必须相同 对于各组观察数据,是从具有相同方差的总体中抽
取的
3. 观察值是独立的
无交互作用的双因素方差分析 (无重复双因0
343
340
品牌2
345
368
363
330
品牌3
358
323
353
343
品牌4
288
280
298
260
地区5 323 333 308 298
数据结构
分析步骤
(提出假设)
• 提出假设
– 对行因素提出的假设为
• H0:m1 = m2 = … = mi = …= mk (mi为第i个水平的
平方和 自由度 误差来源
均方
(SS) (df) (MS)
F值
P值
F 临界值
行因素 SSR
MSR k-1 MSR
MSE
列因素 SSC
MSC r-1 MSC
MSE
误差
SSE (k-1)(r-1) MSE
总和 SST kr-1
双因素方差分析
(例题分析)

多因素方差分析公式了解多因素方差分析的计算公式

多因素方差分析公式了解多因素方差分析的计算公式

多因素方差分析公式了解多因素方差分析的计算公式多因素方差分析公式——了解多因素方差分析的计算公式多因素方差分析是一种统计方法,用于分析多个因素对观察结果的影响。

它通过比较不同因素水平下的观察值差异来判断这些因素对实验结果的影响程度。

在多因素方差分析中,我们需要了解与计算一些重要的公式。

1. 多因素方差分析的总平方和(SS_total)公式:SS_total = SS_between + SS_within其中,SS_total是总平方和,表示所有观测值与总均值之间的偏离程度;SS_between是组间平方和,表示不同因素水平下的观测值与总均值之间的偏离程度;SS_within是组内平方和,表示同一因素水平下的观测值与该水平下的均值之间的偏离程度。

2. 多因素方差分析的组间平方和(SS_between)公式:SS_between = ∑(ni * (μi - μ)²)其中,ni是第i组的观测值个数,μi是第i组观测值的均值,μ为所有观测值的总均值。

3. 多因素方差分析的组内平方和(SS_within)公式:SS_within = ∑∑((Xij - μi)²)其中,Xij表示第i组的第j个观测值,μi为第i组观测值的均值。

4. 多因素方差分析的组间平均平方(MS_between)公式:MS_between = SS_between / (k - 1)其中,k为不同因素水平的个数。

5. 多因素方差分析的组内平均平方(MS_within)公式:MS_within = SS_within / (N - k)其中,N为总观测值的个数。

6. 多因素方差分析的F统计量公式:F = MS_between / MS_withinF统计量用于判断不同因素水平的均值之间的差异是否显著。

若F 值大于某个临界值,则认为不同因素水平的均值存在显著差异。

通过以上公式,我们可以计算出组间平方和、组内平方和、组间平均平方、组内平均平方和F统计量,从而进行多因素方差分析。

多因素方差分析SPSS的具体操作步骤

多因素方差分析SPSS的具体操作步骤

多因素方差分析SPSS的具体操作步骤步骤1:导入数据首先,打开SPSS软件,并导入包含需要进行方差分析的数据集。

可以通过"File"菜单中的"Open"选项或者使用快捷键"Ctrl+O"来打开数据文件。

步骤2:选择菜单接下来,选择"Analyze"菜单,然后选择"General Linear Model"子菜单中的"Univariate"选项。

这将打开"Univariate"对话框。

步骤3:设置变量在"Univariate"对话框中,将需要分析的因变量(Dependent Variable)拖放到"Dependent Variable"框中。

然后,将需要分析的自变量(Independent Variables)拖放到"Fixed Factors"框中。

步骤4:设置因素在"Univariate"对话框的"Options"选项卡中,单击"Model"按钮,打开"Model"对话框。

在该对话框中,将自变量按照其因素分类拖放到"Between-Subjects Factors"框中。

步骤5:进行分析在"Univariate"对话框的"Options"选项卡中,可以对方差分析的多个选项进行设置。

比如,可以选择是否计算非标准化残差(Univariate Tests of Between-Subject Effects)、是否计算偏差(Tests of Within-Subject Effects)、是否计算构造对比(Contrasts)等。

设置完相关选项后,单击"OK"按钮进行方差分析。

多因素方差分析结果解读

多因素方差分析结果解读

多因素方差分析结果解读多因素方差分析是一种统计学方法,用于衡量研究变量之间的统计关系,以了解不同变量之间的交互作用。

多因素方差分析(ANOVA)可以使科学家、工程师和其他研究者探索并发现不同因素(变量)之间的关系,以便对有效的解释和可视化的信息进行解读。

本文将讨论多因素方差分析结果解读的基本概念,以及基于多因素方差分析数据分析结果正确解读的重要性。

首先,需要了解多因素方差分析的基本知识和步骤。

“多因素方差分析”是一种在统计学中用来确定多个变量之间关系的统计方法。

它可以在每个变量之间检测不同水平的均方差,以了解变量之间的交互作用。

这种分析通过定义变量并应用严格的统计标准来识别和分析变量之间的关系。

多因素方差分析的结果解释是有价值的,因为它们可以帮助研究者了解不同变量之间的关系,从而推断其中的交互作用。

多因素方差分析结果的正确解读可以帮助科学家和其他研究者更好地了解和探究变量之间的关系,以便建立准确有效的模型。

进行多因素方差分析时,最重要的是执行正确的统计分析,以便对数据进行准确描述。

多因素方差分析结果解释也是一种重要的工具,可以帮助研究者确定变量之间的关系,从而建立有效的模型。

正确的解释需要考虑变量之间的相关性,以及它如何影响整个分析的结果。

多因素方差分析的结果可以很好地说明变量之间的关系。

研究者可以根据结果检查各个变量之间的相关性,以及每个变量如何影响研究结果。

多因素方差分析结果解释可以帮助研究者更好地识别和分析变量之间的关系,从而建立有效的模型。

多因素方差分析结果解释的重要性在于它可以帮助研究者更加准确地了解研究问题,并对不同变量之间的相互作用做出准确的推断。

多因素方差分析的结果可以帮助研究者了解具体的研究内容,从而更好地回答研究问题。

总之,多因素方差分析结果解释在研究变量之间关系的统计学中十分重要,可以帮助研究者更加准确地了解研究变量之间的关系,并对不同变量之间的相互作用做出准确的推断。

正确理解和使用多因素方差分析结果解释,可以帮助研究者更好地利用和分析其研究结果,从而产生更有效的解决方案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

15
A因子 因子
不用 不用 不用 不用 用 用 用 用
B因子 因子
生理盐水 生理盐水 戊巴比妥 戊巴比妥 生理盐水 生理盐水 戊巴比妥 戊巴比妥
C因子 因子
雌 雄 雌 雄 雌 雄 雌 雄
肝重与体重之比
5.26 5.68 5.83 5.00 5.52 5.38 5.87 5.50 6.20 6.13 6.46 5.21 5.42 5.60 5.70 6.30 7.02 5.90 4.64 4.60 5.44 6.02 5.70 5.48
总体均数
µ111 µ112 µ121 µ122 µ211 µ212 µ221 µ222
16
17
Tests of Between-Subjects Effects Dependent Variable: Y Type III Sum Source of Squares df Mean Square a Corrected Model 4.218 7 .603 Intercept 769.081 1 769.081 A 2.017E-03 1 2.017E-03 B 7.707E-02 1 7.707E-02 C .799 1 .799 A * B 1.904 1 1.904 B * C 5.227E-02 1 5.227E-02 A * C 1.335 1 1.335 A * B * C 4.860E-02 1 4.860E-02 Error 2.685 16 .168 Total 775.984 24 Corrected Total 6.903 23 a. R Squared = .611 (Adjusted R Squared = .441)
24
用随机效应模型作为方差分析时, 离均差平方和与自由度的计算与固定效 应相同,但无效假设与F统计量的计算 有所不同。
25
26
Tests of Between-Subjects Effects Dependent Variable: Y Type III Sum df Mean Square F Sig. of Squares Hypothesis 145548.375 1 . . . a Error . . . A Hypothesis 12.250 2 6.125 .055 .947 b Error 666.750 6 111.125 B Hypothesis 100.125 3 33.375 .300 .824 b Error 666.750 6 111.125 A * B Hypothesis 666.750 6 111.125 .491 .803 c Error 2715.500 12 226.292 a. Cannot compute the error degrees of freedom using Satterthwaite's method. b. MS(A * B) c. MS(Error) Source Intercept
F 3.591 4582.977 .012 .459 4.763 11.346 .311 7.954 .290
Sig. .016 .000 .914 .508 .044 .004 .585 .012 .598
18
方差分析的随机效应模型
一 随机效应模型
二 固定效应模型
19
一、固定效应和随机效应模型的定义
9
研究目的
研究目的之三为A药与B药是否有交互作用。 所谓有协同作用,是指同时用A、B两药起的作 用大于单独用A药和B药的作用之和。所谓有拮 抗作用,是指同时用A、B两药起的作用小于单 独用A药各B药的作用之和。
10
研究目的
不论协同或拮抗作用均意味着A、B药同时使用的作 用不等于单独作用之和。两药有无协同作用或拮抗作用, 只要检验假设:
方差分析中的因子有选择型与随机型之分, 方差分析中的因子有选择型与随机型之分,若 数据资料中涉及到因子水平是研究者关心的因子水 平全体,则该因子属于选择型因子; 平全体,则该因子属于选择型因子;相应的模型称 为固定效应模型。 为固定效应模型。
20
一、固定效应和随机效应模型的定义
若数据资料中涉及到因子水平只是研究者关心 的因子水平总体的一个样本,则该因子属于随机型 因子;若你的研究中有某些因子是随机型因子或全 为随机型因子时,方差分析的模型与固定效应模型 相同,但关于主效应、和交互效应的假定及F统计量 的计算公式有些不同。
第二章
多因素方差分析
第一节 第二节 第三节
引言 基本概念 多因素方差分析
第四节 协方差分析 第五节 多因子方差应用实例与计 算机实现
1
概述: 概述: 单因素方差分析是检验多个样本均数间 差别有无统计学意义的统计学方法。 差别有无统计学意义的统计学方法。 在医学领域中, 在医学领域中,还经常碰到研究多个因 素对某个观察指标的作用的问题 。 多因素方差分析是分析两个及两个以上 因素对观察指标影响的统计方法。 因素对观察指标影响的统计方法。
14
三因子方差分析
某研究者以大白鼠作试验, 例题 某研究者以大白鼠作试验,观 察指标是肝重与体重之比(5%), ),主要想 察指标是肝重与体重之比(5%),主要想 了解正氟醚对观察指标的作用, 了解正氟醚对观察指标的作用,同时要考 察用生理盐水和用戊巴比妥作为诱导药对 正氟醚毒性作用有无影响, 正氟醚毒性作用有无影响,对不同性别大 白鼠诱导的作用有何不同, 白鼠诱导的作用有何不同,以及对不同性 别大白鼠正氟醚的作用是否相同。 别大白鼠正氟醚的作用是否相同。
3
第二节 基本概念
一 方差分析的基本思想
二 主效应和单独效应
三 交互作用
4
一、方差分析基本思想
将全部观测值的总变异按影响结果的诸 因素分解为相应的若干部分变异,构造出反 映各部分变异作用的统计量,在此基础上, 构建假设检验统计量,以实现对总体参数的 推断。
5
主效应和单独效应
主效应(main effect): 主效应(main effect):某一因素各个水平间的平 均差别 单独效应(simple effect): 单独效应(simple effect): 指其它因素水平固定在一个水平时, 指其它因素水平固定在一个水平时,某一因素不同 水平之间均数的差别。 水平之间均数的差别。
29
用混合效应作方差分析时,离均差平方和与自由度的计算与固定效应相同, 但无效假设与F统计量不同。它们的计算公式为:
MA S FA =
FAB = M AB S
M AB S
Me S
7
二因子方差分析
例:A、B两药治疗缺铁性贫血24例,试验结果如下: 两药治疗缺铁性贫血24例 24 四种疗法治疗缺铁性贫血后红细胞增加数( /L) 四种疗法治疗缺铁性贫血后红细胞增加数(1012/L)
疗法 号 一般疗法 一般疗法加A 一般疗法加A药 一般疗法加B 一般疗法加B药 一般疗法加A药加B 一般疗法加A药加B药
11
两因素有重复数据的方差分析变异分解
方差分析表
变异来源
处理间模型 因子A 因子A 因子B 因子B A与B的交互作用 误差 总的
SS
2.9625 1.6875 0.9075 0.3675 0.0800 3.0425
df
3 1 1 1 8 11
MS
0.9875 1.6875 0.9075 0.3675 0.0100 0.2766
27
方差分析的混合效应模型
例题:设某人研究围产期窒息对新生儿中血中次黄 围产期窒息对新生儿中 例题:设某人研究围产期窒息对新生儿中血中次黄 嘌呤浓度是否有影响 同时还了解新生出生一小时 是否有影响, 嘌呤浓度是否有影响,同时还了解新生出生一小时 内次黄嘌呤浓度是否有变化。他随机抽取围产期窒 内次黄嘌呤浓度是否有变化。他随机抽取围产期窒 不窒息的正常新生儿9 作为对照) 息9名,不窒息的正常新生儿9名(作为对照)对每 组的9名新生儿随机安排三个不同时间, 组的9名新生儿随机安排三个不同时间,测定血中 次黄嘌呤浓度如下: 次黄嘌呤浓度如下:
红细胞增加数 0.8 0.9 1.3 1.2 0.9 1.1 2.1 2.2 0.7 1.1 1.0 2.0
总体均数记
8
研究目的
本例研究目的之一为A 本例研究目的之一为A药的使用是 否会引起病人的红细胞数变化。 否会引起病人的红细胞数变化。 研究目的之二为B药的使用是否会引 研究目的之二为B 起病人的红细胞数的变化。 起病人的红细胞数的变化。
2
第一节 引言
方差分析中, 方差分析中,影响观察指标的因素称为 因子(factor);因子所处的状态称为因子的 因子(factor);因子所处的状态称为因子的 一个水平( factor);各因子水平 一个水平(level of factor);各因子水平 的组合称为处理( 的组合称为处理(treatment).
23
医生甲(b=1) 血压计 医生甲(b=1) a=1 a=2 a=3 60 , 97 91 , 60 85 , 67
医生乙(b=2) 医生乙(b=2) 84 , 63 85 , 88 90 , 71
医生丙(b=3) 医生丙(b=3) 70 , 99 90 , 74 65 , 79
医生丁(b=4) 医生丁(b=4) 74 , 68 76 , 62 75 , 96
28
因子B 因子
因子A 因子 出生时 出生后20分钟 出生后 分钟 出生后30分钟 出生后 分钟
对照组
围产期 窒息组
6.20 5.80 8.25 23.06 21.46 11.43
11.50 13.37 24.10 25.56 30.40 18.19
14.53 11.40 12.37 10.52 13.66 18.20
F
98.75 168.75 90.75 36.75
P
0.0000 0.0000 0.0000 0.0000
相关文档
最新文档