橡胶材料的动态力学性能试验

合集下载

橡胶材料力学性能测试方法

橡胶材料力学性能测试方法

橡胶材料力学性能测试方法橡胶材料是一种具有高弹性和耐磨性的材料,广泛应用于汽车、电子、建筑等各行各业。

为了确保橡胶材料的质量和性能,需要对其进行力学性能测试。

本文将介绍一些常见的橡胶材料力学性能测试方法。

1. 拉伸试验拉伸试验是评估橡胶材料拉伸性能的常用方法。

该试验使用拉伸试验机,将橡胶样品固定在两个夹具之间,施加拉力逐渐增加,记录拉力和伸长率的变化。

通过拉伸试验可以获得橡胶的强度、伸长率、断裂强度等性能指标。

2. 压缩试验压缩试验用于评估橡胶材料的弹性和抗压性能。

该试验使用压缩试验机,将橡胶样品置于平板夹具之间,施加垂直压力逐渐增加,记录压力和变形的变化。

通过压缩试验可以获得橡胶的抗压强度、压缩模量等性能指标。

3. 硬度测试硬度测试用于评估橡胶材料的硬度和弹性特性。

常见的硬度测试方法有杜氏硬度测试和洛氏硬度测试。

杜氏硬度测试使用硬度计,通过测量针头对橡胶材料的穿透深度来判断硬度。

洛氏硬度测试使用硬度计,通过测量钢球的反弹高度来判断硬度。

硬度测试结果可用于比较不同橡胶材料的硬度和弹性特性。

4. 压痕测试压痕测试用于评估橡胶材料的耐磨性能和硬度。

常见的压痕测试方法有杜拉布试验和布氏硬度试验。

杜拉布试验使用杜拉布硬度计,在一定载荷下,将橡胶样品与砂纸接触并施加往复运动,记录橡胶样品的耐磨性能。

布氏硬度试验使用布氏硬度计,通过测量钻头在橡胶样品上产生的压痕直径来评估硬度和耐磨性能。

5. 动态力学分析动态力学分析用于评估橡胶材料的动态性能和频率响应。

常见的动态力学测试方法有动态拉伸试验和复合模量测试。

动态拉伸试验使用动态力学分析仪,施加连续变化的拉伸载荷,记录橡胶样品在不同频率下的力学性能。

复合模量测试使用复合模量测试仪,测量橡胶样品在不同温度和频率下的动态模量和耗散因子。

以上是几种常见的橡胶材料力学性能测试方法。

通过这些测试方法,可以客观评估橡胶材料的强度、弹性、硬度、抗压性能、耐磨性能等关键指标。

这些测试结果对于橡胶材料的选择、设计和质量控制具有重要意义,能够保证橡胶制品的性能和可靠性,满足各行各业的需求。

三元乙丙橡胶力学及压缩永久变形性能研究

三元乙丙橡胶力学及压缩永久变形性能研究

三元乙丙橡胶力学及压缩永久变形性能研究硫化胶力学性能越好,但耐老化性能差;蒙脱土和纳米凹凸棒粒径越小,硫化胶力学性能和耐老化性能越好,但压缩永久变形性能差;BaSO_4粒径越小,硫化胶力学性能和耐老化性能越好,压缩永久变形性能先增加后减小。

最后,本文通过扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)、傅里叶变换红外(FTIR)等手段,对填料的微观形貌、结构和化学性质进行了表征和分析,为填料的选择及应用提供了理论和实验依据。

4.3 结果与讨论4.3.1 硫化特性在本研究中,我们使用了两种不同的硫化系统,即常规硫化系统和高效硫化系统,并对其进行了比较。

结果表明,使用高效硫化系统可以显著提高硫化速率和交联密度,从而改善EPDM的硬度和强度。

此外,我们还研究了硫化剂种类和用量对硫化特性的影响。

结果表明,使用过量的硫化剂会导致硫化密度过高,从而降低EPDM的拉伸性能。

4.3.2 力学性能我们测试了EPDM的拉伸强度、断裂伸长率、硬度和抗撕裂性能,并比较了不同硫化条件下的结果。

结果表明,使用高效硫化系统可以显著提高EPDM的拉伸强度和硬度,但对断裂伸长率和抗撕裂性能的影响不大。

此外,我们还研究了填料对EPDM力学性能的影响。

结果表明,添加适量的填料可以显著提高EPDM的强度和硬度,但过量的填料会导致EPDM的断裂伸长率和抗撕裂性能下降。

4.3.3 耐老化性能我们使用热氧老化试验和紫外线老化试验来研究EPDM的耐老化性能,并比较了不同硫化条件下的结果。

结果表明,使用高效硫化系统可以显著提高EPDM的耐热老化性能和耐紫外线老化性能。

此外,我们还研究了填料对EPDM耐老化性能的影响。

结果表明,添加适量的填料可以显著提高EPDM的耐老化性能,但过量的填料会导致EPDM的老化速度加快。

4.3.4 压缩永久变形性能我们测试了EPDM的压缩永久变形率,并比较了不同硫化条件下的结果。

结果表明,使用高效硫化系统可以显著降低EPDM的压缩永久变形率。

橡胶加工分析仪与动态热力学分析仪测试胶料滞后损失的相关性研究

橡胶加工分析仪与动态热力学分析仪测试胶料滞后损失的相关性研究

橡胶加工分析仪与动态热力学分析仪测试胶料滞后损失的相关性研究橡胶是一种广泛应用于工业和消费品领域的复合材料,其性能的稳定性和耐久性对产品的质量和寿命至关重要。

橡胶材料的滞后损失是指在经历应力周期性变化时,材料发生的内部能量损耗,这会导致材料的变形能力下降。

本研究的目的是探索橡胶加工分析仪和动态热力学分析仪对于胶料滞后损失的测试结果之间的相关性。

通过对不同类型的橡胶材料进行测试和分析,可以了解测试方法之间的差异及其对结果的影响。

首先,我们将选择几种常见的橡胶材料,如丁腈橡胶、氯丁橡胶和丙烯酸酯橡胶等。

然后,在橡胶加工分析仪上进行硬度测试、拉伸测试和导热性能测试,以评估材料的机械性能和热传导性能。

接下来,我们将使用动态热力学分析仪对相同的橡胶样品进行热分析,并测量其热膨胀系数、玻璃转化温度和动态力学性能等。

通过这些测试结果,我们可以获得材料在不同温度和频率下的热特性和机械特性。

最后,我们将对橡胶加工分析仪和动态热力学分析仪的测试结果进行对比和分析。

通过比较滞后损失的测试数据和其他参数的测试数据,我们可以确定测试方法之间的相关性和一致性。

通过这项研究,我们可以深入了解橡胶材料的性能和特性,特别是其滞后损失的表现。

这将有助于我们更好地设计和选择适合特定应用的橡胶材料,提高产品的质量和耐久性。

此外,我们还可以进一步探索滞后损失与其他因素之间的关联性,如材料成分、处理方式和应力历史等。

这将提供更全面的了解和分析,为橡胶材料的性能优化和应用提供指导。

在未来的研究中,可以将这项研究扩展到其他材料和测试方法,如粘弹性分析、拉伸寿命测试和应力松弛测试等。

通过同步进行多种测试和分析,可以更全面地研究材料的性能和特性,并拓宽橡胶材料研究的领域。

材料力学性能试验有哪些带你了解材料力学性能试验!

材料力学性能试验有哪些带你了解材料力学性能试验!

材料力学性能试验有哪些带你了解材料力学性能试验!材料力学性能又称机械性能,任何材料受力后都要产生变形,变形到一定程度即发生断裂。

这种在外载作用下材料所表现的变形与断裂的行为叫力学行为,它是由材料内部的物质结构决定的,是材料固有的属性。

检测可靠性实验室可材料力学性能试验服务。

作为第三方检测中心,机构拥有CMA、CNAS检测资质,检测设备齐全、数据科学可靠。

材料力学性能试验:拉伸试验拉伸试验是其中一种最常用的试验方法,用于测定试样在受到轴向拉伸载荷后的行为。

这些试验类型可在室温或受控(加热或制冷)条件下进行,以确定材料的拉伸性能。

适用材料:金属、塑料、弹性体、纸张、复合材料、橡胶、纺织品、粘合剂、薄膜等。

常见的拉伸试验结果:最大载荷、最大载荷下的挠度、最大载荷做功、刚度、断裂载荷、断裂时的形变、断裂做功、弦斜率、应力、应变、杨氏模量试验仪器:万能试验机,高速试验机等测试标准GB/T 6397-1986《金属拉伸试验试样》ASTM D3039-76用于测定高模量纤维增强聚合物复合材料面内拉伸性能ASTM D638用于测定试件的拉伸强度和拉伸模量材料力学性能试验:压缩试验压缩试验是一种常用于测定材料的压缩负载或抗压性的试验方法,同时也用于测定材料在受到一个特定的压缩负载并保持一段设定时间后的恢复能力。

压缩试验用于测定材料在加载下的行为。

此外也可测定一段时间内材料在(恒定或递增)载荷下可承受的最大应力。

适用材料金属、塑料、弹性体、纸张、复合材料、橡胶、纺织品、粘合剂、薄膜等。

试验仪器:万能试验机,高速试验机、压缩试验机等注意事项:(1)压缩试验主要适用于脆性材料,如铸铁、轴承合金和建筑材料等;(2)对于塑性材料,无法测出压缩强度极限,但可以测量出弹性模量、比例极限和屈服强度等。

测试标准GB/T7314-2023《金属压缩实验试样》ASTM D3410-75(剪切荷载法测定带无支撑标准截面的聚合体母体复合材料压缩特性的试验方法)GB/T7314-2023《金属材料室温压缩试验方法》材料力学性能试验:弯曲试验材料机械性能试验的基本方法之一,测定材料承受弯曲载荷时的力学特性的试验。

橡胶隔振器动态特性计算与建模方法的研究

橡胶隔振器动态特性计算与建模方法的研究

橡胶隔振器动态特性计算与建模方法的研究一、本文概述随着现代工业的发展,振动和噪声问题日益突出,而橡胶隔振器作为一种重要的减振元件,广泛应用于各种机械设备中。

橡胶隔振器的动态特性对于设备的振动控制和噪声抑制具有关键作用。

因此,对橡胶隔振器的动态特性进行准确计算和建模具有重要的理论价值和实践意义。

本文旨在研究橡胶隔振器的动态特性计算与建模方法。

通过对橡胶材料的力学性能和隔振原理的深入分析,建立橡胶隔振器的动力学模型。

在此基础上,采用数值计算和实验验证相结合的方法,研究橡胶隔振器在不同激励条件下的动态响应特性。

本文的研究内容主要包括:橡胶材料的力学特性分析、橡胶隔振器的动力学建模、动态特性计算方法的研究、实验验证及结果分析等。

通过本文的研究,旨在提出一种准确、高效的橡胶隔振器动态特性计算方法,为工程应用提供理论支持和技术指导。

本文的研究方法和结果不仅有助于深入理解橡胶隔振器的动态特性,还可以为相关领域的科研工作者和工程师提供有益的参考和借鉴。

本文的研究成果对于提高机械设备的振动控制和噪声抑制能力,推动相关领域的科技进步具有积极意义。

二、橡胶隔振器的基本理论橡胶隔振器是一种广泛应用于各种机械和设备中的减振元件,其基础理论主要涉及到材料力学、振动理论以及非线性动力学等领域。

橡胶作为一种高分子弹性材料,具有独特的粘弹性和非线性特性,这些特性使得橡胶隔振器在承受动态载荷时,能够表现出良好的隔振效果。

橡胶隔振器的减振原理主要基于材料的弹性变形。

在受到外部振动时,橡胶隔振器能够吸收并转化振动能量,通过其内部的弹性变形来减小传递到基础的振动。

这种弹性变形在橡胶隔振器的工作范围内是可逆的,因此橡胶隔振器可以承受多次循环载荷而不发生永久变形。

橡胶隔振器的动态特性受到多种因素的影响,包括材料的物理特性(如弹性模量、泊松比等)、几何尺寸(如厚度、直径等)以及外部激励的频率和幅值等。

这些因素共同决定了橡胶隔振器的刚度、阻尼以及动态响应等特性。

橡胶材料拉伸试验报告

橡胶材料拉伸试验报告

橡胶材料拉伸实验报告北京理工大学橡胶材料拉伸实验报告一、实验目的1.进一步熟悉电子万能实验机操作以及拉伸实验的基本操作过程;2.通过橡胶材料的拉伸实验,理解高分子材料拉伸时的力学性能,观察橡胶拉伸时的变形特点,测定橡胶材料的弹性模量E,强度极限σ,伸长率δ和截面收缩率Ψb二、实验设备1.WDW3050型50kN电子万能实验机;2.游标卡尺;3.橡胶材料试件一件。

三、实验原理拉伸橡胶试件时,实验机可自动绘出橡胶的拉伸应力-应变曲线。

图中曲线的最初阶段会呈曲线,这是由于试样头部在夹具内有滑动及实验机存在间隙等原因造成的。

分析时应将图中的直线段延长与横坐标相交于O点,作为其坐标原点。

橡胶的拉伸只有弹性阶段。

拉伸曲线可以直观而又比较准确地反映出橡胶拉伸时的变形特征及受力和变形间的关系。

橡胶拉伸时,基本满足胡克定律,在应力-应变曲线上大致为一段直线,因此可以用这一段直线的斜率tanα来表示弹性模量E。

为了更准确地计算出弹性模量的值,可以用Matlab对比例极限内的数据进行直线拟合,得到拟合直线的斜率,即为弹性模量的值。

四、实验过程1.用游标卡尺测量橡胶试件实验段的宽度h和厚度b,并标注一个20 mm的标距,并做记录;2.打开实验机主机及计算机等实验设备,安装试件;3.打开计算机上的实验软件,进入实验程序界面,选择联机,进行式样录入和参数设置,输入相关数据并保存;4.再认真检查试件安装等实验准备工作,并对实验程序界面上的负荷、轴向变形和位移进行清零,确保没有失误;、5.点击程序界面上的实验开始按钮,开始实验;6.试件被拉断后,根据实验程序界面的提示,测量相关数据并输入,点击实验结束;7.从实验程序的数据管理选项中,调出相关实验数据,以备之后处理数据使用。

五、实验注意事项1.在实验开始前,必须检查横梁移动速度设定,严禁设定高速度进行实验。

在实验进行中禁止在▲、▼方向键之间直接切换,需要改变方向时,应先按停止键;2.安装试件时,要注意不能把试件直接放在下侧夹口处,而是应该用手将试件提起, . . . .橡胶材料拉伸实验报告观察夹口下降的高度是否合适,之后再将试件夹紧、固定;3.横梁速度v=10m/s,最大载荷为500N,最大位移400mm;4.实验过程中不能点“停止”,而是“实验结束”,否则将不能保存已经产生的数据;5.安装试件时横梁的速度要调整好,不能太快,试件安装完成后,要确认横梁是否停止运动,以免造成事故。

聚合物动态力学性能测定

聚合物动态力学性能测定

实验7 聚合物动态力学性能的测定聚合物材料,如塑料、橡胶、纤维及其复合材料等都具有粘弹性,用动态力学的方法研究聚合物材料的粘弹性,已证明是一种非常有效的方法。

材料的动态力学行为是指材料在振动条件下,即在交变应力(或交变应变)作用下作出的力学响应。

测定材料在一定温度范围内的动态力学性能的变化即为动态力学分析(dynamic mechanical thermal analysis, DMTA )一、二、实验目的了解动态力学分析的测量原理及仪器结构。

了解影响动态力学分析实验结果的因素,正确选择实验条件。

掌握动态力学分析的试样制备及测试步骤。

掌握动态力学分析在聚合物分析中的应用。

实验原理聚合物的粘弹性是指聚合物既有粘性又有弹性的性质,实质是聚合物的力学松弛行为。

研究聚合物的粘弹性常采用正弦的交变应力,使试样产生的应变也以正弦方式随时间变化。

这种周期性的外力引起试样周期性的形变,其中一部分所做功以位能形式贮存在试样中,没有损耗,而另一部分所做功,在形变时以热的形式消耗掉。

应变始终落后应力一个相位,以拉伸为例,当试样受到交变的拉伸应力作用时,其交变应力和应变随时间的变化关系如下: 应力 )sin(0δϖσσ+=t (7-1))900(0<<δ应变t ϖεεsin 0= (7-2) 式中0σ和0ε为应力和形变的振幅;ω是角频率;δ是应变相位角。

式(7-1)和式(7-2)说明应力变化要比应变领先一个相位差δ,见图7.1。

图7.1 应力应变和时间的关系将式(7-1)展开为:δϖσδωσσsin cos cos sin 00t t += (7-3)即认为应力由两部分组成,一部分)cos sin (δϖσt 与应变同相位,另一部分)sin cos (0δϖσt 与应变相差2/π。

根据模量的定义可以得到两种不同意义的模量,定义'E 为同相位的应力和应变的比值,而''E 为相位差2/π的应力和应变的振幅的比值,即t E t E ϖεωεσcos ''sin '00+= (7-4)此时模量是一个复数,叫复数模量*E 。

橡胶材料力学性能指标的测定

橡胶材料力学性能指标的测定

2=
L2 =23.04% L0
七.橡胶材料负荷—位移曲线。 八.断口照片。
九.分析橡胶材料试样断口形貌及产生原因。 (1)断口形貌:断口有明显锯齿形貌,断面较为平滑,断裂处尺寸与未断裂区域无明显的 差异。断面中心部分较边缘粗糙,有波浪纹路。 (2)产生原因分析:橡胶的断裂时分子链拉断的宏观表现,而不同于金属材料断裂的晶间 滑移。 断口的边缘平滑是由于裂纹源出现后裂纹一条一条均匀扫过该区域, 并且相邻裂纹间 距较大,并且在扯断时,许多分子链同时被快速拉断,所以宏观上看来比较平滑;而接近中 间区域时,裂纹扩展缓慢,而且裂纹的密集程度增加,众多裂纹的聚集导致了在扯断时沿外 载荷方向取向的分子链被一条条或一束束相继拉断, 从而导致该区域的凹凸不平; 该区域可 以认为是从两端扩展来的裂纹彼此相交而互相受到对面来的裂纹扩展的阻挡而出现聚集。 十.对拉伸曲线进行解释。 拉伸曲线成锯齿状上升, 锯齿非常密集且上下波动范围在 2N 以内, 整条曲线上升的趋 势接近一条正比例函数的图像。当外载荷达到 Pmax 后,橡胶拉断,载荷瞬时呈直线下降。 由图像可得橡胶拉断的瞬间其延伸长度达到 245mm 左 右,与金属材料的延伸长度相比,可见橡胶塑性优良。 拉伸曲线呈现锯齿状说明出现应力波动, 橡胶为高分子 材料, 高分子材料在拉伸过程中首先是分子链之间出现 相对错动, 此过程会因克服分子间摩擦力而释放一定热 量, 这些热量有可能造成组织的局部软化从而应力会有 所下降, 但是伴随着拉伸会进一步开动更多数量的微裂 纹或扯断更多的分子链,此过程需要外 载荷克服分子间作用力而做功, 体现出应力的小范围上 升; 这样周而复始宏观上就体现出了锯齿状上升的拉力 ——位移曲线。
所需载荷值为 : 扯断强度: s = Pmax=55.2N
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档