2020-2021学年最新山东省聊城市中考数学一模试卷及答案
2024年山东省聊城市中考数学模拟考试试题(含答案)

2024年山东省初中学业水平模拟考试数学试题(总分120分考试时间120分钟)2024.05注意事项:1.答卷前务必将你的姓名、座号和准考证号按要求填写在试卷和答题卡上的相应位置。
2.本试题不分I、II卷,所有答案都写在答题卡上,不要直接在本试卷上答题。
3.必须用0.5毫米黑色签字笔书写在对应的答题卡区域,不得超出规定范围。
一、选择题:本题共10小题,每小题3分,共30分.每小题只有一个选项符合题目要求.1.的相反数是()A.B.C.D.2.以下山东省各场馆的Logo中属于轴对称图形的是()A.山东博物馆B.山东省图书馆C.山东省科技馆D.山东美术馆3.在《九章算术》中,将底面为直角三角形的直三棱柱叫堑堵.如图是一堑堵,其俯视图为()A.B.C.D.4.下列等式一定成立的是()A.B.C.D.5.“五一”假期,山东省文旅市场火爆,全省接待国内游客约4871.2万人次.数据“4871.2万”用科学记数法表示为()A.B.C.D.6.山东博物馆在2024年5月份举办“走近考古”展览,为公众揭开考古学神秘面纱.现小张同学参观博物馆,343434-4343-11a ab b+=+2a abb b=33a ab b=a a cb b c+=+80.4871210⨯84.871210⨯74.871210⨯44871.210⨯由于参观人数较多,准备从3楼展厅的“走进考古”展览、“山东龙——穿越白垩纪”展览、“考古成果”展览、“非洲野生动物大迁徙”展览4个中随机选择2个进行参观,则正好选择“走进考古”展览和“山东龙——穿越白垩纪”展览的概率是()A. B . C . D .7.请根据学习函数的经验,自主尝试探究表达式为的函数图像与性质,下列说法正确的是()A .图像与y 轴的交点是(0,) B .图像与x 轴有一个交点C .当时, D .y 随x 的增大而减小8.如图,在中,点C 为上的点,.若,且AC 是的内接正n 边形的一边,则n 的值为()A .8B .9C .10D .129.如图,在中,,CD 是中线,过点A 作CD 的垂线,分别交BC 、CD 于点E 、F .若,,则CD 的长为()A .39 B . C .D .19.510.如图,在底面积为,高为20cm 的长方体水槽内放入一个底面积为的圆柱形烧杯,以恒定不变的速度先向烧杯中注水,注满烧杯后,继续注水,直至注满水槽为止,此过程中,烧杯本身的质量、体积忽略不计,烧杯在大水槽中的位置始终不变,则水槽中水面上升的高度h 与注水时间t 之间的函数图像可能为()16122391623y x =-230x <0y <O AB 2BC AC =120ACB ∠=︒O Rt ABC △90ACB ∠=︒2tan 3CAE ∠=26AE =280cm 216cmA .B .C .D .二、填空题:本题共6小题,每小题3分,共18分.11在实数范围内有意义,则x 的取值范围为________.12.因式分解:________.13.分式方程的解为________.14.如图,在菱形ABCD 中,,,垂足为E .若,则菱形ABCD 的周长为________.15.在测量某物体的重量时,得到如下数据:,,…,.当关于x 的函数取得最小值时,相应的x 值表示该物体重量的估计值.若,,…,的和为24,则该物体重量的估计值为________.16.如图是从原点开始的通道宽度为1的回形图,,反比例函数与该回形图的交点依次记为、、、……,则的坐标为________.24ab a -=213242x x+=--4sin 5B =AE BC ⊥2CE =1a 2a 8a 222128()()()y x a x a x a =-+-++- 1a 2a 8a 1OA =1y x=1B 2B 3B 2024B三、解答题:本题共8小题,共72分.解答应写出文字说明、证明过程演算步骤.17.(本小题满分8分)(1)计算:2)解不等式组:18.(本小题满分8分)山东大樱桃以“北方春果第一枝”而闻名,品种丰富.某水果店计划购进其中的“美早”与“黄水晶”两个品种的樱桃,已知2箱“美早”樱桃的进价与3箱“黄水晶”樱桃的进价之和为280元,且每箱“美早”樱桃的进价比每箱“黄水晶”樱桃的进价贵10元.(1)求每箱“美早”樱桃的进价与每箱“黄水晶”樱桃的进价分别是多少元?(2)水果店欲购进“美早”与“黄水晶”樱桃共50箱,在进货总价不超过3000元的情况下,最多可购进“美早”樱桃多少箱?19.(本小题满分8分)为增进学生对数学文化的了解,某校开展了两次数学文化知识问答活动,从中随机抽取了20名学生两次活动的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下图是将这20名学生的第一次活动成绩作为横坐标,第二次活动成绩作为纵坐标绘制而成.(1)学生甲第一次活动成绩是70分,则该生第二次活动成绩是________分,两次活动的平均成绩为________分;两次活动成绩均达到或高于90分的学生有________个;这20名学生的第一次活动成绩的中位数为________分;(2)请在下图中画一条直线,使得该直线上方的点表示两次活动的平均成绩高于80分.(3)假设全校有1200名学生参加活动,估计两次活动平均成绩不低于80分的学生人数.21()2sin 602-+︒+764,23.x x x x +>⎧⎨-≤⎩20.(本小题满分8分)如图,在中,D 是BC 延长线上一点,且,过点C 作且,连接DE .(1)利用直尺、圆规作出满足条件的点E ,并连接DE (不写作法,保留作图痕迹)(2)证明:.21.(本小题满分9分)如图,为了测量河对岸A 、B 两点间的距离,数学兴趣小组在河岸南侧选定观测点C ,测得点A ,B 均在点C 的北偏东方向上,沿正东方向行走105米至观测点D ,测得点A 在点D 的正北方向,点B 在点D 的北偏西方向上.求A 、B 两点间的距离.同学甲:在纸上利用“比例尺”画出相应的图,并测得纸上CD 长度约为21cm ,AB 长度约为20cm ,再求出实际A 、B 两点间的距离.同学乙:通过计算器得到数据:,,,再结合三角函数知识求出A 、B 两点间的距离.请按照同学甲、乙的方法分别计算出A 、B 两点间的距离.22.(本小题满分9分)在平面直角坐标系xOy 中,二次函数()的图像上有两点A (,)、B (,),它的对称轴为直线.ABC △CD AB =CE AB ∥CE BC =A D ∠=∠37︒45︒sin 370.60︒≈cos370.80︒≈tan 370.75︒≈2y ax bx =+0a <1x 1y 2x 2y x t =(1)当该二次函数图像过点(6,0)时.①求t 的值;②当,轴,且到x 轴距离为2,求a 的值;(2)当时,若对于任意,都有成立,直接写出t 的取值范围.23.(本小题满分10分)【实践探究】如图1,在矩形ABCD 中,,,交AB 于点E,则的值是________;【变式探究】如图2,在平行四边形ABCD 中,,,,交AB 于点E ,求的值;【灵活应用】如图3,在矩形ABCD 中,,点E ,F 分别在AD ,BC 上,以EF 为折痕,将四边形ABFE 翻折,使得AB 的对应边恰好经过点D ,交CD 于点I ,过点D 作交AB 于点P .若,且与的面积比为,求的值.24.(本小题满分12分)定义:平面直角坐标系xOy 中,点P (a ,b ),点Q (c ,d ),若,,其中k 为常数,且,则称点Q 是点P 的“k 级变换点”.例如,点(,7)是点(2,3)的“级变换点”.(1)点(1,1)的“3级变换点”是点________;(2)设点Q (p ,q )是点P (1,1)的“k 级变换点”.①M (p ,m )为反比例函数的图像上,当时,判断m ,q 的大小关系:________;②点A 的坐标为(,2),若,求点Q 的坐标;(3)若以(n ,0)为圆心,1为半径的圆上恰有两个点,这两个点的“1级变换点”都在直线上,求n 的取值范围.2024年山东省初中学业水平模拟考试212x x -=AB x ∥101x <<122x x +=120y y >8AB =6BC =DE AC ⊥DE AC90DBC ∠=︒8BD =6BC =DE AC ⊥DE AC8AD =A B ''B F 'DP EF ⊥4A D '=ADP △BPF △16:24DP EF1c ka =+1d kb =-+0k ≠3-2-4y x=0p >3-45QAO ∠=︒5y x =-+数学试题参考答案一、选择题:本题共10小题,每小题3分,共30分.1.B 2.A 3.C 4.B 5.C 6.A 7.C 8.B 9.D 10.B二、填空题:本题共6小题,每小题3分,共18分.11. 12. 13.14.20 15.3 16.(,507)三、解答题:本题共8小题,共72分.17.(1)解:原式(2)解:由①得,;由②得,;∴.18.解:(1)设每箱“美早”樱桃的进价是x 元,每箱“黄水晶”樱桃的进价是y 元,解得答:每箱“美早”樱桃的进价是62元,每箱“黄水晶”樱桃的进价是52元.(2)设购进a 箱“美早”樱桃,则,解得.答:最多可购进“美早”樱桃40箱.19.(1)75,72.5;5;80;(2)如图所示;2x ≤(2)(2)a b b +-52x =150742=++4=+76423x x x x +>⎧⎨-≤⎩①②2x >-3x ≤23x -<≤10,23280,x y x y -=⎧⎨+=⎩62,52.x y =⎧⎨=⎩62(50)523000a a +-⨯≤40a ≤(3)(人),答:估计两次活动平均成绩不低于80分的学生人数有660人.20.(1)如图即为所求.(方法不唯一)(2)证明:∵,∴.在和中,∴,∴.21.同学甲:,则.答:实际A 、B 两点间的距离为100m .同学乙:作,垂足为M .由题意,,,∴,.∴设,,∴,.∴.∴.11120066020⨯=AB CE ∥ABC ECD ∠=∠ABC △DCE △,,,AB DC B ECDBC CE =⎧⎪∠=∠⎨⎪=⎩ABC DCE ≌△△A D ∠=∠2120105AB=100AB =BM CD ⊥37CBM ∠=︒45BDM ∠=︒37CAD ∠=︒tan 0.75CM CBM BM ∠=≈tan 1DM DBM BM∠==3CM k =4BM k =5CB k ==4DM BM k ==347105CD k k k =+==15k =∴.在中,,∴.∴.答:A 、B 两点间的距离为100m .22.(1)①;②时,∵,轴,且到x 轴距离为2,∴A (2,2),B (4,2).∴,解得答:a 的值为.(2)或.23.【实践探究】;【变式探究】作于M ,交AB 的延长线于N ,∴.∵,∴.∴.∴.∴.即.由题意得,,,.∴,.75CB =Rt ACD △sin 0.6CD CAD AC∠=≈1750.6CD AC ==17575100AB =-=0632t +==3t =212x x -=AB x ∥32422b a a b ⎧-=⎪⎨⎪+=⎩1,43.2a b ⎧=-⎪⎪⎨⎪=⎪⎩14-0t ≤1t ≥34DM AB ⊥CN AB ⊥90EDM DEM ∠+∠=︒AC DE ⊥90CAN DEM ∠+∠=︒EDM CAN ∠=∠cos cos EDM CAN ∠=∠DM AN DE AC =DE DM AC AN=10CD AB ===63cos cos 105CBN BCD ∠=∠==84sin sin 105CBN BCD ∠=∠==424655CN =⨯=36810655AN AB BN =+=+⨯=∴.【灵活应用】过点E 作,垂足为Q ,∵翻折,∴,,,,,∴,解得.∴的面积为.的面积为24.易得,.∴设,,.∴.∴.∴.∴,解得,(舍).∴.由,得.(另解)延长FE 、BA 交于点M ,,则,即.246568175DE AC ==EQ BC ⊥4A D AP '==A E AE '=DE DP =BP B D '=B F BF '=222(4)8AE AE +=-3AE =ADP △148162⨯⨯=PBF △AEP B DI '△∽△AEP CFI △∽△3B D k BP '==4B I k '=5DI k =43542CI k k k =+-=-33(42)342CF k k =-⨯=-3852BF CF k =-=+133(5)2422k k ⨯+=12k =2163k =-4310EQ AB k ==+=ADP QEF ∽△△84105DP AD EF EQ ===ADP EMP ∠=∠tan tan ADP EMP ∠=∠AP AE BF AD AM BM ==∵翻折,∴,,,,,∴,解得.∴的面积为.的面积为24.∵,∴.∴,.设,则.∴.解得,(舍).∴.由,得.24.(1)(4,)(2)①②由题意得,所以点Q 在直线上.设点A 绕坐标原点O 按顺时针方向旋转至点M ,连结AM ,交直线于点Q ,作轴于H ,轴于K .在和中,∴,∴M (2,3).∴:.4A D AP '==A E AE '=DE DP =BP B D '=B F BF '=222(4)8AE AE +=-3AE =ADP △148162⨯⨯=PBF △AP AE BF AD AM BM==438BF AM BM==6AM =2BM BF =BP x =641022x x BF +++==1102422x x +⨯=16x =216x =-4610EQ AB ==+=ADP QEF △∽△84105DP AD EF EQ ===2-m q>1,1p k q k =+⎧⎨=-+⎩2y x =-+90︒2y x =-+AH x ⊥MK x ⊥AHO △OKM △,,,AO OM AOH OMK AHO OKM =⎧⎪∠=∠⎨⎪∠=∠⎩AHO OKM ≌△△AM l 11355y x =+联立,得Q (,).(3)若A (,),B (,),则它们的一级变换点(,),(,),∵该两点在上,∴,,即A ,B 两点在上,由直线与圆的位置关系可得,当时,圆与直线相切,∴当时,圆与直线有2个公共点,∴2y x =-+12-521x 1y 2x 2y A '11x +11y -+B '21x +21y -+5y x =-+11115y x -+=--+22115y x -+=--+3y x =-3n =3y x =-33n <<+3y x =-33n -<<。
2021年山东省聊城市中考数学模拟试卷(含答案解析)

山东省聊城市中考数学试卷一、选择题(本题共12个小题,每小题3分.在每小题给出的四个选项中,只有一项符合题目要求)1.(3分)−√2的相反数是( ) A .−√22B .√22C .−√2D .√22.(3分)如图所示的几何体的左视图是( )A .B .C .D .3.(3分)如果分式|x|−1x+1的值为0,那么x 的值为( )A .﹣1B .1C .﹣1或1D .1或04.(3分)在光明中学组织的全校师生迎“五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示.这些成绩的中位数和众数分别是( )A .96分、98分B .97分、98分C .98分、96分D .97分、96分5.(3分)下列计算正确的是( ) A .a 6+a 6=2a 12B .2﹣2÷20×23=32C .(−12ab 2)•(﹣2a 2b )3=a 3b 3 D .a 3•(﹣a )5•a 12=﹣a 206.(3分)下列各式不成立的是( ) A .√18−√89=73√2B .√2+23=2√23C .√8+√182=√4+√9=5D .√3+√2=√3−√27.(3分)若不等式组{x+13<x2−1x <4m无解,则m 的取值范围为( )A .m ≤2B .m <2C .m ≥2D .m >28.(3分)如图,BC 是半圆O 的直径,D ,E 是BĈ上两点,连接BD ,CE 并延长交于点A ,连接OD ,OE .如果∠A =70°,那么∠DOE 的度数为( )A .35°B .38°C .40°D .42°9.(3分)若关于x 的一元二次方程(k ﹣2)x 2﹣2kx +k =6有实数根,则k 的取值范围为( ) A .k ≥0B .k ≥0且k ≠2C .k ≥32D .k ≥32且k ≠210.(3分)某快递公司每天上午9:00﹣10:00为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y (件)与时间x (分)之间的函数图象如图所示,那么当两仓库快递件数相同时,此刻的时间为( )A .9:15B .9:20C .9:25D .9:3011.(3分)如图,在等腰直角三角形ABC 中,∠BAC =90°,一个三角尺的直角顶点与BC边的中点O 重合,且两条直角边分别经过点A 和点B ,将三角尺绕点O 按顺时针方向旋转任意一个锐角,当三角尺的两直角边与AB ,AC 分别交于点E ,F 时,下列结论中错误的是( )A .AE +AF =ACB .∠BEO +∠OFC =180°C .OE +OF =√22BCD .S 四边形AEOF =12S △ABC12.(3分)如图,在Rt △ABO 中,∠OBA =90°,A (4,4),点C 在边AB 上,且AC CB=13,点D 为OB 的中点,点P 为边OA 上的动点,当点P 在OA 上移动时,使四边形PDBC 周长最小的点P 的坐标为( )A .(2,2)B .(52,52)C .(83,83)D .(3,3)二、填空题(本题共5个小题,每小题3分,共15分。
2024届山东省聊城市莘县九年级中考数学模拟试题(一模)附答案

A. B.C. D.11三、解答题(本题共8个小题,共(1)求证:四边形ABCD是矩形;(2)根据频数分布表分别计算有关统计量:(1)求二次函数的表达式;绕点A 逆时针旋转,连接BD ,CE .ADE △(1)探究发现旋转过程中,线段BD 和CE 的长度存在怎样的数量关系?写出你的猜想,并证明.(2)性质应用如图3,当DE 所在直线首次经过点B 时,求CE 的长.(3)延伸思考如图4,在中,,,,分别取AB ,BC 的中点D ,E .作,Rt ABC △90ABC ∠=︒8AB =6BC =BDE △将绕点B 逆时针旋转,连接AD ,CE .当边AB 平分线段DE 时,求的值.BDE △tan ECB ∠数学答案一、选择题:(本题共10个小题,每小题3分,共30分,每小题只有一个选项符合题目要求).题号12345678910答案BDBDBABCBC二、填空题:(本题共6小题,每小题3分,共18分).11.且13.-10;13.-4或6;14.;15.16;16.(1,2025).2x ≥-3x ≠6π三、解答题:(本题共8小题,共72分,解答应写出文字说明、证明过程或演算步骤.)17.(每小题4分,共8分)(1)解;原式314312314312343=-++⨯-+-=-++-+-=(2)解不等式①,得,3x <解不等式②,得.1x ≥∴原不等式组的解集是,13x ≤<∴该不等式组的整数解为1,2.18.(8分)解:(1)∵,,∴AE BD ⊥DF AC ⊥90AEO DFO ∠=∠=︒又∵,,∴,AE DF =AOE DOF ∠=∠AEO DFO ≌△△∴,AO DO =∵四边形ABCD 是平行四边形,∴,∴,AO CO DO BO ===AC BD =∴四边形ABCD 是矩形;(2)解:∵,四边形ABCD 是矩形,:2:3BAE EAD ∠∠=∴,290365BAE ∠=︒⨯=︒∴在中,,Rt ABE △9054ABE BAE ∠=︒-∠=︒在矩形ABCD 中∵∴OA OB =54OAB OBA ∠=∠=︒∴.180180545472AOE AOB OAB ABE ∠=∠=︒-∠-∠=︒-︒-︒=︒19.(8分)解:(1)两个年级随机抽取的学生数量为7+10+15+12+6=50(人),172103154x ⨯+⨯+⨯+=由题意得,在Rt EFD △∴,.33AH EF == 1.5HF AE ==∵,3.530.5CF CD FD =-=-=∴.1.50.51CH HF CF =-=-=∴在中,,.Rt BCH △90H ∠=︒180********BCH BCD ∠=︒-∠=︒-︒=︒∴,.cos CH BCH BC ∠=tan BH BCH CH ∠=∴.()112 1.4m cos cos 4522CH BC BCH ====≈∠︒∴,tan 1tan 451BH CH BCH =⋅∠=⨯︒=∴.()3313 1.731 4.2m AB AH BH =-=-≈⨯-≈答:BC 的长约为1.4m ,AB 的长约为4.2m.21.(8分)解:(1)设购进A 种纪念品每件需x 元,B 种纪念品每件需y 元,根据题意得:,104120058900x y x y +=⎧⎨+=⎩解得.10050x y =⎧⎨=⎩经检验,方程组的解符合题意,答:购进A 种纪念品每件需100元,B 种纪念品每件需50元;(2)设购进A 种纪念品m 件,则购进B 种纪念品件,()200m -根据题意得:,2003m m -≤解得.50m ≥设购进的200件纪念品全部售出后获得的总利润为w 元,则,()30500.8200w m m =+⨯-即,108000w m =-+∵-10<0,∴w 随m 的增大而减小,又∵,且m 为正整数,50m ≥∴当时,w 取得最大值,最大值=-10×50+8000=7500,此时50m =.20020050150m -=-=∵点M 在新抛物线上,∵设,()2,87M t t t -+①当BQ 为边时.则点Q 向右平移4个单位得到点B ,同样点向右平移4个单位得到点,即:()M N ()N M ,42t ±=解得:或62t =-即点M 的坐标的坐标为:(6,-5)或(-2,27);②当BQ 为对角线时由中点坐标公式得:,512t +=+解得:4t =则;()4,9M -综上,满足条件的点M 的坐标有或(6,-5)或(-2,27)()4,9M -24.(12分)(1)解:(或或),理由如下:22BD CE =22BD CE =2CE BD =∵点D 和点E 分别为AB ,AC 中点∴由图1可知:,12AD AB =12AE AC =∴12AD AE AB AC ==根据旋转的性质可得:BAD CAE ∠=∠∴ABD ACE ∽△△∴BD AB CE AC=在中,∵,ABC △90B ∠=︒4AB AC ==∴∴∴45BAC ∠=︒2cos 2AB BAC AC ∠==22BD AB CE AC ==(2)解:由图1可知∵点D 和点E 为分别为AB ,AC 中点,∴,,∴,DE BC ∥122AD AB ==ADE B ∠=∠AED C ∠=∠∴,∴ABC ADE ∽△△90ADE ABC ∠=∠=︒。
山东省聊城市2020版中考数学一模试卷(I)卷

山东省聊城市2020版中考数学一模试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)若a= ,b= ,c= ,则()A . a<b<cB . b<c<aC . c<b<aD . a<c<b2. (2分)有一圆柱形的水池,已知水池的底面直径为4米,水面离池口2米,水池内有一小青蛙,它每天晚上都会浮在水面上赏月,则它能观察到的最大视角为()A . 45°B . 60°C . 90°D . 135°3. (2分)温家宝总理在2010年3月5日的十一届全国人大第三次会议的政府工作报告中指出,就业形势依然严峻,中央财政拟投入433亿元,用于促进就业433亿用科学记数法表示应为()A .B .C .D .4. (2分)如图,在▱ABCD中,E是BC的中点,且∠AEC=∠DCE,下列结论不正确的是()A . BF=DFB . 四边形AECD是等腰梯形C . S△FAD=2S△FBED . ∠AEB=∠ADC5. (2分)(2020·南岸模拟) 如图所示,直线y1=﹣ x与双曲线y= 交于A,B两点,点C在x轴上,连接AC,BC.当AC⊥BC,S△ABC=15时,求k的值为()A . ﹣10B . ﹣9C . 6D . 46. (2分) (2019七下·许昌期末) 若关于x的不等式mx- n>0的解集是,则关于x的不等式的解集是()A .B .C .D .7. (2分)(2017·苏州模拟) 在平行四边形ABCD中,点P从起点B出发,沿BC,CD逆时针方向向终点D 匀速运动.设点P所走过的路程为x,则线段AP,AD与平行四边形的边所围成的图形面积为y,表示y与x的函数关系的图象大致如下图,则AB边上的高是()A . 3B . 4C . 5D . 68. (2分)(2019·花都模拟) 如图,将边长为3的正方形纸片ABCD对折,使AB与DC重合,折痕为EF,展平后,再将点B折到边CD上,使边AB经过点E,折痕为GH,点B的对应点为M,点A的对应点为N,那么折痕GH的长为()A .B .C .D .9. (2分)(2017·徐州模拟) 在同一平面直角坐标系中,函数y=kx+k与y= (k≠0)的图象可能是()A .B .C .D .10. (2分)(2017·浙江模拟) 下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A . 64B . 77C . 80D . 85二、填空题 (共5题;共5分)11. (1分)计算: =________.12. (1分)(2017·汉阳模拟) 如图所示,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为________.13. (1分) (2018九上·杭州期中) 若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数,如796就是一个“中高数”.若十位上的数字为6,则从3,4,5,7,8中任选两数(不重复),与6组成“中高数”的概率是为________.14. (1分) (2018九上·扬州期中) 如图,在△ABC中,AB=6,将△ABC绕点B顺时针旋转60°后得到△DBE,点A经过的路径为弧AD,则图中阴影部分的面积是________.15. (1分) (2020九上·川汇期末) 如图,在矩形ABCD中,已知AB=2,点E是BC边的中点,连接AE,△AB′E 和△ABE关于AE所在直线对称,若△B′CD是直角三角形,则BC边的长为________.三、解答题 (共8题;共88分)16. (5分)(2017·嘉祥模拟) 先化简,再求值(a﹣)(﹣1)÷ ,其中a,b分别为关于x的一元二次方程x2﹣ x+1=0的两个根.17. (13分)某校对600名学生进行了一次“心理健康”知识测试,从中抽取了部分学生的成绩(得分取正整数,满分为100分)作为样本,绘制了如图尚未完成的表格和频数分布直方图(注:无50.5以下成绩)分组频数频数50.5~60.520.0460.5~70.580.1670.5~80.510CA~90.5B0.3290.5~100.5140.28合计(1)频数分布表中,A=________,B=________,C=________.(2)补全频数分布直方图.(3)若成绩在90分以上(不含90分)为优秀,试估计该校成绩优秀的有多少人?18. (11分) (2019九上·中原月考) 如图1,△ABC为等腰三角形,AB=AC=a,P点是底边BC上的一个动点,PD∥AC,PE∥AB.(1)用a表示四边形ADPE的周长为________;(2)点P运动到什么位置时,四边形ADPE是菱形,请说明理由;(3)如果△ABC不是等腰三角形(图2),其他条件不变,点P运动到什么位置时,四边形ADPE是菱形(不必说明理由).19. (5分)(2017·松北模拟) 如图,为了测量山顶铁塔AE的高,小明在27m高的楼CD底部D测得塔顶A 的仰角为45°,在楼顶C测得塔顶A的仰角36°52′.已知山高BE为56m,楼的底部D与山脚在同一水平线上,求该铁塔的高AE.(参考数据:sin36°52′≈0.60,tan36°52′≈0.75)20. (7分)(2020·淮安模拟) 一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为)(km),图中的折线表示y与x之间的函数关系,根据图象进行探究:(1)甲、乙两地之间的距离为________ ;(2)请解释图中点B的实际意义:________;(3)求线段CD所表示的y与x之间的函数关系式,并写出自变量x的取值范围.21. (15分)(2016·南通) 如图,平面直角坐标系xOy中,点C(3,0),函数y= (k>0,x>0)的图象经过▱OABC的顶点A(m,n)和边BC的中点D.(1)求m的值;(2)若△OAD的面积等于6,求k的值;(3)若P为函数y═ (k>0,x>0)的图象上一个动点,过点P作直线l⊥x轴于点M,直线l与x轴上方的▱OABC的一边交于点N,设点P的横坐标为t,当时,求t的值.22. (17分)(2017·江东模拟) 如图,梯形ABCD中,AD∥BC,∠BAD=90°,CE⊥AD于点E,AD=8cm,BC=4cm,AB=5cm.从初始时刻开始,动点P,Q 分别从点A,B同时出发,运动速度均为1cm/s,动点P沿A﹣B﹣﹣C﹣﹣E 的方向运动,到点E停止;动点Q沿B﹣﹣C﹣﹣E﹣﹣D的方向运动,到点D停止,设运动时间为xs,△PAQ的面积为ycm2 ,(这里规定:线段是面积为0的三角形)解答下列问题:(1)当x=2s时,y=________cm2;当x= s时,y=________cm2 .(2)当5≤x≤14 时,求y与x之间的函数关系式.(3)当动点P在线段BC上运动时,求出 S梯形ABCD时x的值.(4)直接写出在整个运动过程中,使PQ与四边形ABCE的对角线平行的所有x的值.23. (15分)(2016·黄陂模拟) 已知直线l:y=kx(k<0),将直线y=kx沿y轴向下平移m(m>0)个单位得到直线y=kx﹣m,平移后的直线与抛物线y=ax2相交于A(x1 , y1),B(x2 , y2)两点,抛物线y=ax2经过点P(6,﹣9).(1)求a的值;(2)如图1,当∠AOB<90°时,求m的取值范围;(3)如图2,将抛物线y=ax2向右平移一个单位,再向上平移n个单位(n>0).若第一象限的抛物线上存在点M,N两点,且M,N两点关于直线y=x轴对称,求n的取值范围.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共88分)16-1、17-1、17-2、17-3、18-1、18-2、18-3、19-1、20-1、20-2、20-3、21-1、21-2、22-1、22-2、22-3、22-4、23-1、23-2、23-3、。
2021年山东省聊城市莘县中考数学一模试卷(解析版)

2021年山东省聊城市莘县中考数学一模试卷一.选择题(共12小题).1.的倒数的绝对值是()A.1B.﹣2C.±2D.22.如图,AB∥CD,点P为CD上一点,PF是∠EPC的平分线,若∠1=55°,则∠EPD 的大小为()A.60°B.70°C.80°D.100°3.下列计算正确的是()A.a2•a3=a6B.a6÷a﹣2=a﹣3C.(﹣2ab2)3=﹣8a3b6D.(2a+b)2=4a2+b24.据报道,2020年某市户籍人口中,60岁以上的老人有1230000人,预计未来五年该市人口“老龄化”还将提速.将1230000用科学记数法表示为()A.12.3×105B.1.23×105C.0.12×106D.1.23×1065.下列各式不成立的是()A.﹣=B.=2C.=+=5D.=﹣6.某中学开展“读书伴我成长”活动,为了解八年级学生四月份的读书册数,对从中随机抽取的20名学生的读书册数进行调查,结果如下表:册数/册12345人数/人25742根据统计表中的数据,这20名同学读书册数的众数,中位数分别是()A.3,3B.3,7C.2,7D.7,37.如图,△ABC是⊙O的内接三角形,AB=BC,∠BAC=30°,AD是直径,AD=8,则AC的长为()A.4B.4C.D.28.如图是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积是()A.12πcm2B.15πcm2C.24πcm2D.30πcm29.函数y=和y=﹣kx+2(k≠0)在同一平面直角坐标系中的大致图象可能是()A.B.C.D.10.不等式组的解集是x>2,则a的取值范围是()A.a≤2B.a≥2C.a≤1D.a>111.如图,在边长为4的正方形ABCD中,点M为对角线BD上一动点,ME⊥BC于E,MF⊥CD于F,则EF的最小值为()A.B.C.2D.112.对称轴为直线x=1的抛物线y=ax2+bx+c(a、b、c为常数,且a≠0)如图所示,小明同学得出了以下结论:①abc<0,②b2>4ac,③4a+2b+c>0,④3a+c>0,⑤a+b≤m (am+b)(m为任意实数),⑥当x<﹣1时,y随x的增大而增大.其中结论正确的个数为()A.3B.4C.5D.6二、填空题(每小题3分,共15分)13.因式分解:x2y﹣9y=.14.写出不等式组的解集为.15.若关于x的方程(k﹣1)x2+4x+1=0有实数解,则k的取值范围是.16.如图,一扇形纸片,圆心角∠AOB为120°,弦AB的长为cm,用它围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为.17.如表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,…,我们把第一个数记为a1,第二个数记为a2,第三个数记为a3,…,第n 个数记为a n,则a4+a200=.三、解答题(本题共8小题,共69分.解答题应写出文字说明、证明过程或推演步骤)18.先化简,再求值:,其中x是不等式3x+7>1的负整数解.19.随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共调查了人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为;(2)将条形统计图补充完整.观察此图,支付方式的“众数”是“”;(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.20.如图,△ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D作BA和BC 的平行线,两线交于点E,且DE交AC于点O,连接AE.(1)求证:四边形ADCE是菱形;(2)若∠B=60°,BC=6,求四边形ADCE的面积.21.如图,在平面直角坐标系中,一次函数y=x+5和y=﹣2x的图象相交于点A,反比例函数y=的图象经过点A.(1)求反比例函数的表达式;(2)设一次函数y=x+5的图象与反比例函数y=的图象的另一个交点为B,连接OB,求△ABO的面积.22.如图,小莹在数学综合实践活动中,利用所学的数学知识对某小区居民楼AB的高度进行测量,先测得居民楼AB与CD之间的距离AC为35m,后站在M点处测得居民楼CD 的顶端D的仰角为45°,居民楼AB的顶端B的仰角为55°,已知居民楼CD的高度为16.6m,小莹的观测点N距地面1.6m.求居民楼AB的高度(精确到1m).(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈l.43).23.为支援灾区,某校爱心活动小组准备用筹集的资金购买A、B两种型号的学习用品共1000件.已知B型学习用品的单价比A型学习用品的单价多10元,用180元购买B型学习用品的件数与用120元购买A型学习用品的件数相同.(1)求A、B两种学习用品的单价各是多少元?(2)若购买这批学习用品的费用不超过28000元,则最多购买B型学习用品多少件?24.如图,已知△ABC内接于⊙O,AB是⊙O的直径,点F在⊙O上,且满足=,过点C作⊙O的切线交AB的延长线于D点,交AF的延长线于E点.(1)求证:AE⊥DE;(2)若∠CBA=60°,AE=3,求AF的长.25.如图,在平面直角坐标系中,抛物线y=x2+mx+n经过点A(3,0)、B(0,﹣3),点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t.(1)分别求出直线AB和这条抛物线的解析式.(2)若点P在第四象限,连接AM、BM,当线段PM最长时,求△ABM的面积.(3)是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.参考答案一.选择题(每小题3分,共36分)1.的倒数的绝对值是()A.1B.﹣2C.±2D.2【分析】根据倒数的定义,两数的乘积为1,这两个数互为倒数,先求出﹣的倒数,然后根据负数的绝对值等于它的相反数即可求出所求的值.解:∵﹣的倒数是﹣2,∴|﹣2|=2,则﹣的倒数的绝对值是2.故选:D.2.如图,AB∥CD,点P为CD上一点,PF是∠EPC的平分线,若∠1=55°,则∠EPD 的大小为()A.60°B.70°C.80°D.100°【分析】根据平行线和角平分线的定义即可得到结论.解:∵AB∥CD,∴∠1=∠CPF=55°,∵PF是∠EPC的平分线,∴∠CPE=2∠CPF=110°,∴∠EPD=180°﹣110°=70°,故选:B.3.下列计算正确的是()A.a2•a3=a6B.a6÷a﹣2=a﹣3C.(﹣2ab2)3=﹣8a3b6D.(2a+b)2=4a2+b2【分析】根据同底数幂的乘法和除法法则,积的乘方法则以及完全平方公式逐一计算判断即可.解:A、a2•a3=a5,原计算错误,故此选项不合题意;B、a6÷a﹣2=a8,原计算错误,故此选项不合题意;C、(﹣2ab2)3=﹣8a3b6,原计算正确,故此选项合题意;D、(2a+b)2=4a2+4ab+b2,原计算错误,故此选项不合题意.故选:C.4.据报道,2020年某市户籍人口中,60岁以上的老人有1230000人,预计未来五年该市人口“老龄化”还将提速.将1230000用科学记数法表示为()A.12.3×105B.1.23×105C.0.12×106D.1.23×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:将1230000用科学记数法表示为1.23×106.故选:D.5.下列各式不成立的是()A.﹣=B.=2C.=+=5D.=﹣【分析】根据二次根式的性质、二次根式的加法法则、除法法则计算,判断即可.解:﹣=3﹣=,A选项成立,不符合题意;==2,B选项成立,不符合题意;==,C选项不成立,符合题意;==﹣,D选项成立,不符合题意;故选:C.6.某中学开展“读书伴我成长”活动,为了解八年级学生四月份的读书册数,对从中随机抽取的20名学生的读书册数进行调查,结果如下表:册数/册12345人数/人25742根据统计表中的数据,这20名同学读书册数的众数,中位数分别是()A.3,3B.3,7C.2,7D.7,3【分析】找到出现次数最多的数据,即为众数;求出第10、11个数据的平均数即可得这组数据的中位数,从而得出答案.解:这20名同学读书册数的众数为3册,中位数为=3(册),故选:A.7.如图,△ABC是⊙O的内接三角形,AB=BC,∠BAC=30°,AD是直径,AD=8,则AC的长为()A.4B.4C.D.2【分析】连接CD,根据等腰三角形的性质得到∠ACB=∠BAC=30°,根据圆内接四边形的性质得到∠D=180°﹣∠B=60°,求得∠CAD=30°,根据直角三角形的性质即可得到结论.解:连接CD,∵AB=BC,∠BAC=30°,∴∠ACB=∠BAC=30°,∴∠B=180°﹣30°﹣30°=120°,∴∠D=180°﹣∠B=60°,∵AD是直径,∴∠ACD=90°,∵∠CAD=30°,AD=8,∴CD=AD=4,∴AC===4,故选:B.8.如图是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积是()A.12πcm2B.15πcm2C.24πcm2D.30πcm2【分析】由几何体的三视图可得出原几何体为圆锥,根据图中给定数据求出母线l的长度,再套用侧面积公式即可得出结论.解:由三视图可知,原几何体为圆锥,∵l==5(cm),∴S侧=•2πr•l=×2π××5=15π(cm2).故选:B.9.函数y=和y=﹣kx+2(k≠0)在同一平面直角坐标系中的大致图象可能是()A.B.C.D.【分析】根据题目中函数的解析式,利用一次函数和反比例函数图象的特点解答本题.解:在函数y=和y=﹣kx+2(k≠0)中,当k>0时,函数y=的图象在第一、三象限,函数y=﹣kx+2的图象在第一、二、四象限,故选项A、B错误,选项D正确,当k<0时,函数y=的图象在第二、四象限,函数y=﹣kx+2的图象在第一、二、三象限,故选项C错误,故选:D.10.不等式组的解集是x>2,则a的取值范围是()A.a≤2B.a≥2C.a≤1D.a>1【分析】根据不等式的性质求出不等式①的解集,根据不等式组的解集得出a+1≤2,求出不等式的解集即可.解:,∵解不等式①得:x>2,解不等式②得:x>a+1,又∵不等式组的解集是x>2,∴a+1≤2,∴a≤1.故选:C.11.如图,在边长为4的正方形ABCD中,点M为对角线BD上一动点,ME⊥BC于E,MF⊥CD于F,则EF的最小值为()A.B.C.2D.1【分析】连接MC,证出四边形MECF为矩形,由矩形的性质得出EF=MC,当MC⊥BD时,MC取得最小值,此时△BCM是等腰直角三角形,得出MC=BC=2,即可得出结果.解:连接MC,如图所示:∵四边形ABCD是正方形,∴∠C=90°,∠DBC=45°,∵ME⊥BC于E,MF⊥CD于F∴四边形MECF为矩形,∴EF=MC,当MC⊥BD时,MC取得最小值,此时△BCM是等腰直角三角形,∴MC=BC=2,∴EF的最小值为2;故选:B.12.对称轴为直线x=1的抛物线y=ax2+bx+c(a、b、c为常数,且a≠0)如图所示,小明同学得出了以下结论:①abc<0,②b2>4ac,③4a+2b+c>0,④3a+c>0,⑤a+b≤m (am+b)(m为任意实数),⑥当x<﹣1时,y随x的增大而增大.其中结论正确的个数为()A.3B.4C.5D.6【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解:①由图象可知:a>0,c<0,∵﹣=1,∴b=﹣2a<0,∴abc>0,故①错误;②∵抛物线与x轴有两个交点,∴b2﹣4ac>0,∴b2>4ac,故②正确;③当x=2时,y=4a+2b+c<0,故③错误;④当x=﹣1时,y=a﹣b+c=a﹣(﹣2a)+c>0,∴3a+c>0,故④正确;⑤当x=1时,y取到值最小,此时,y=a+b+c,而当x=m时,y=am2+bm+c,所以a+b+c≤am2+bm+c,故a+b≤am2+bm,即a+b≤m(am+b),故⑤正确,⑥当x<﹣1时,y随x的增大而减小,故⑥错误,故选:A.二、填空题(每小题3分,共15分)13.因式分解:x2y﹣9y=y(x+3)(x﹣3).【分析】先提取公因式y,再对余下的多项式利用平方差公式继续分解.解:x2y﹣9y,=y(x2﹣9),=y(x+3)(x﹣3).14.写出不等式组的解集为﹣1≤x<3.【分析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集解:不等式①的解集为x<3,不等式②的解集为x≥﹣1,所以不等式组的解集为﹣1≤x<3.故答案为:﹣1≤x<3.15.若关于x的方程(k﹣1)x2+4x+1=0有实数解,则k的取值范围是k≤5.【分析】分k﹣1=0和k﹣1≠0两种情况,其中k﹣1≠0时根据题意列出关于k的不等式求解可得.解:当k﹣1=0时,方程为4x+1=0,显然有实数根;当k﹣1≠0,即k≠1时,△=42﹣4×(k﹣1)×1≥0,解得k≤5且k≠1;综上,k≤5.故答案为:k≤5.16.如图,一扇形纸片,圆心角∠AOB为120°,弦AB的长为cm,用它围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为cm.【分析】因为圆锥的高,底面半径,母线构成直角三角形.先求出扇形的半径,再求扇形的弧长,利用扇形的弧长等于圆锥底面周长作为相等关系求底面半径.解:设扇形OAB的半径为R,底面圆的半径为r,则R2=()2+,解得R=2cm,∴扇形的弧长==2πr,解得,r=cm.故答案为cm.17.如表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,…,我们把第一个数记为a1,第二个数记为a2,第三个数记为a3,…,第n 个数记为a n,则a4+a200=20110.【分析】观察“杨辉三角”可知第n个数记为a n=(1+2+…+n)=n(n+1),依此求出a4,a200,再相加即可求解.解:观察“杨辉三角”可知第n个数记为a n=(1+2+…+n)=n(n+1),则a4+a200=×4×(4+1)+×200×(200+1)=20110.故答案为:20110.三、解答题(本题共8小题,共69分.解答题应写出文字说明、证明过程或推演步骤)18.先化简,再求值:,其中x是不等式3x+7>1的负整数解.【分析】先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可.解:原式=•=,由3x+7>1,解得x>﹣2,∵x是不等式3x+7>1的负整数解,∴x=﹣1,∴原式=319.随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共调查了200人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为81°;(2)将条形统计图补充完整.观察此图,支付方式的“众数”是“微信”;(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.【分析】(1)用支付宝、现金及其他的人数和除以这三者的百分比之和可得总人数,再用360°乘以“支付宝”人数所占比例即可得;(2)用总人数乘以对应百分比可得微信、银行卡的人数,从而补全图形,再根据众数的定义求解可得;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两人恰好选择同一种支付方式的情况,再利用概率公式即可求得答案.解:(1)本次活动调查的总人数为(45+50+15)÷(1﹣15%﹣30%)=200人,则表示“支付宝”支付的扇形圆心角的度数为360°×=81°,故答案为:200、81°;(2)微信人数为200×30%=60人,银行卡人数为200×15%=30人,补全图形如下:由条形图知,支付方式的“众数”是“微信”,故答案为:微信;(3)将微信记为A、支付宝记为B、银行卡记为C,画树状图如下:画树状图得:∵共有9种等可能的结果,其中两人恰好选择同一种支付方式的有3种,∴两人恰好选择同一种支付方式的概率为=.20.如图,△ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D作BA和BC 的平行线,两线交于点E,且DE交AC于点O,连接AE.(1)求证:四边形ADCE是菱形;(2)若∠B=60°,BC=6,求四边形ADCE的面积.【分析】(1)欲证明四边形ADCE是菱形,需先证明四边形ADCE为平行四边形,然后再证明其对角线相互垂直;(2)根据勾股定理得到AC的长度,由含30度角的直角三角形的性质求得DE的长度,然后由菱形的面积公式:S=AC•DE进行解答.【解答】(1)证明:∵DE∥BC,EC∥AB,∴四边形DBCE是平行四边形.∴EC∥DB,且EC=DB.在Rt△ABC中,CD为AB边上的中线,∴AD=DB=CD.∴EC=AD.∴四边形ADCE是平行四边形.∴ED∥BC.∴∠AOD=∠ACB.∵∠ACB=90°,∴∠AOD=∠ACB=90°.∴平行四边形ADCE是菱形;(2)解:Rt△ABC中,CD为AB边上的中线,∠B=60°,BC=6,∴AD=DB=CD=6.∴AB=12,由勾股定理得.∵四边形DBCE是平行四边形,∴DE=BC=6.∴.21.如图,在平面直角坐标系中,一次函数y=x+5和y=﹣2x的图象相交于点A,反比例函数y=的图象经过点A.(1)求反比例函数的表达式;(2)设一次函数y=x+5的图象与反比例函数y=的图象的另一个交点为B,连接OB,求△ABO的面积.【分析】(1)联立y=x+5①和y=﹣2x并解得:,故点A(﹣2,4),进而求解;(2)S△AOB=S△AOC﹣S△BOC=OC•AM OC•BN,即可求解.解:(1)联立y=x+5①和y=﹣2x并解得:,故点A(﹣2,4),将点A的坐标代入反比例函数表达式得:4=,解得:k=﹣8,故反比例函数表达式为:y=﹣②;(2)联立①②并解得:x=﹣2或﹣8,当x=﹣8时,y=x+5=1,故点B(﹣8,1),设y=x+5交x轴于点C,令y=0,则x+5=0,∴x=﹣10,∴C(﹣10,0),过点A、B分别作x轴的垂线交x轴于点M、N,则S△AOB=S△AOC﹣S△BOC=OC•AM OC•BN=.22.如图,小莹在数学综合实践活动中,利用所学的数学知识对某小区居民楼AB的高度进行测量,先测得居民楼AB与CD之间的距离AC为35m,后站在M点处测得居民楼CD 的顶端D的仰角为45°,居民楼AB的顶端B的仰角为55°,已知居民楼CD的高度为16.6m,小莹的观测点N距地面1.6m.求居民楼AB的高度(精确到1m).(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈l.43).解:过点N作EF∥AC交AB于点E,交CD于点F,则AE=MN=CF=1.6,EF=AC=35,∠BEN=∠DFN=90°,EN=AM,NF=MC,则DF=DC﹣CF=16.6﹣1.6=15,在Rt△DFN中,∵∠DNF=45°,∴NF=DF=15,∴EN=EF﹣NF=35﹣15=20,在Rt△BEN中,∵tan∠BNE=,∴BE=EN•tan∠BNE=20×tan55°≈20×1.43=28.6,∴AB=BE+AE=28.6+1.6≈30.答:居民楼AB的高度约为30米.23.为支援灾区,某校爱心活动小组准备用筹集的资金购买A、B两种型号的学习用品共1000件.已知B型学习用品的单价比A型学习用品的单价多10元,用180元购买B型学习用品的件数与用120元购买A型学习用品的件数相同.(1)求A、B两种学习用品的单价各是多少元?(2)若购买这批学习用品的费用不超过28000元,则最多购买B型学习用品多少件?解:(1)设A型学习用品单价x元,根据题意得:=,解得:x=20,经检验x=20是原方程的根,x+10=20+10=30.答:A型学习用品20元,B型学习用品30元;(2)设可以购买B型学习用品a件,则A型学习用品(1000﹣a)件,由题意,得:20(1000﹣a)+30a≤28000,解得:a≤800.答:最多购买B型学习用品800件.24.如图,已知△ABC内接于⊙O,AB是⊙O的直径,点F在⊙O上,且满足=,过点C作⊙O的切线交AB的延长线于D点,交AF的延长线于E点.(1)求证:AE⊥DE;(2)若∠CBA=60°,AE=3,求AF的长.【解答】(1)证明:连接OC,∵OC=OA,∴∠BAC=∠OCA,∵=,∴∠BAC=∠EAC,∴∠EAC=∠OCA,∴OC∥AE,∵DE切⊙O于点C,∴OC⊥DE,∴AE⊥DE;(2)解:∵AB是⊙O的直径,∴△ABC是直角三角形,∵∠CBA=60°,∴∠BAC=∠EAC=30°,∵△AEC为直角三角形,AE=3,∴AC=2,连接OF,∵OF=OA,∠OAF=∠BAC+∠EAC=60°,∴△OAF为等边三角形,∴AF=OA=AB,在Rt△ACB中,AC=2,∠CBA=60°,∴AB===4,∴AF=2.25.如图,在平面直角坐标系中,抛物线y=x2+mx+n经过点A(3,0)、B(0,﹣3),点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t.(1)分别求出直线AB和这条抛物线的解析式.(2)若点P在第四象限,连接AM、BM,当线段PM最长时,求△ABM的面积.(3)是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.解:(1)把A(3,0)B(0,﹣3)代入y=x2+mx+n,得解得,所以抛物线的解析式是y=x2﹣2x﹣3.设直线AB的解析式是y=kx+b,把A(3,0)B(0,﹣3)代入y=kx+b,得,解得,所以直线AB的解析式是y=x﹣3;(2)设点P的坐标是(t,t﹣3),则M(t,t2﹣2t﹣3),因为p在第四象限,所以PM=(t﹣3)﹣(t2﹣2t﹣3)=﹣t2+3t,当t=﹣=时,二次函数的最大值,即PM最长值为=,则S△ABM=S△BPM+S△APM==.(3)存在,理由如下:∵PM∥OB,∴当PM=OB时,点P、M、B、O为顶点的四边形为平行四边形,①当P在第四象限:PM=OB=3,PM最长时只有,所以不可能有PM=3.②当P在第一象限:PM=OB=3,(t2﹣2t﹣3)﹣(t﹣3)=3,解得t1=,t2=(舍去),所以P点的横坐标是;③当P在第三象限:PM=OB=3,t2﹣3t=3,解得t1=(舍去),t2=,所以P点的横坐标是.综上所述,P点的横坐标是或.。
山东省聊城市2020年中考数学一模试卷(I)卷

山东省聊城市2020年中考数学一模试卷(I)卷姓名:________ 班级:________ 成绩:________一、填空题 (共10题;共11分)1. (1分) (2019七上·天台月考) 据中国科学院统计,到今年5月,我国已经成为世界第四风力发电大国,年发电量约为12000000千瓦,12000000用科学记数法表示为________千瓦;2. (1分)(2017·广元) 在函数y= 中,自变量x的取值范围是________.3. (1分) (2017八下·河东期中) 如图,在△ABC中,∠ACB=90°,M、N分别是AB、AC的中点,延长BC 至点D,使CD= BD,连接DM、DN、MN.若AB=6,则DN=________.4. (1分)如图为一个电路图,在该电路图上有四个开关S1 , S2 , S3 , S4和一个灯泡⊗,闭合开关S1或同时闭合开关S2 , S3 , S4都能够使灯泡发光,现在任意闭合其中两个开关,灯泡能够发光的概率为________.5. (1分)使不等式成立的________叫做不等式的解; 要判断一个数是不是不等式的解,将这个数代入不等式,如果不等式成立,则它就是不等式的解,否则就不是.6. (1分)如图,∠A是⊙O的圆周角,若∠A=40°,则∠OBC=________ 度。
7. (1分)已知关于x的分式方程的解是非负数,则m的取值范围是________ .8. (1分)(2018·深圳模拟) 如图,中,∠C=90°,,则________.9. (1分) (2016七上·临海期末) 有一个数值转换器,其工作原理如图所示,若输入的数据是3,则输出的结果是________.10. (2分)(2018·河源模拟) 菱形的两条对角线分别是6 cm,8 cm,则菱形的边长为________cm,面积为________cm2 .二、选择题 (共10题;共20分)11. (2分)下列算式中正确的是()A .B .C .D .12. (2分) (2017九上·平桥期中) 如图,将△ABC绕点C(0,﹣1)旋转180°得到△A'B'C,设点A的坐标为(a,b),则点A'的坐标为()A . (﹣a,﹣b)B . (﹣a,﹣b﹣1)C . (﹣a,﹣b+1)D . (﹣a,﹣b﹣2)13. (2分)下列关于y与x的表达式中,表示y是x的反比例函数的是()A . y=4xB . =﹣2C . xy=4D . y=4x﹣314. (2分) (2019七上·郑州月考) 一个小立方块的六个面分别标有字母A,B,C,D,E,F,从三个不同的方向看形如图所示,则字母D的对面是()A . 字母AB . 字母FC . 字母ED . 字母B15. (2分)(2017·怀化模拟) 某中学九年级舞蹈兴趣小组8名学生的身高分别为(单位:cm):168,165,168,166,170,170,176,170,则下列说法错误的是()A . 这组数据的众数是170B . 这组数据的中位数是169C . 这组数据的平均数是169D . 若从8名学生中任选1名学生参加校文艺会演,则这名学生的身高不低于170的概率为16. (2分)某星期下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中折线表示小强离开家的路程y(公里)和所用的时间x(分)之间的函数关系.下列说法错误的是()A . 小强从家到公共汽车在步行了2公里B . 小强在公共汽车站等小明用了10分钟C . 公共汽车的平均速度是30公里/小时D . 小强乘公共汽车用了20分钟17. (2分)若|x﹣3|+(y+3)2=0,则yx=()A . -9B . 9C . ﹣27D . 2718. (2分)(2016·葫芦岛) 如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE=30°,DF=4,则BF的长为()A . 4B . 8C . 2D . 419. (2分)某单位职工的平均年龄为40岁,其中男职工的平均年龄为50岁,女职工的平均年龄为35岁,那么男女职工人数之比为()A . 2:1B . 3:2C . 1:2D . 2:320. (2分)(2017·宁波) 如图,四边形ABCD是边长为6的正方形,点E在边AB上,BE=4,过点E作EF∥BC,分别交BD、CD于G、F两点.若M、N分别是DG、CE的中点,则MN的长为()A . 3B .C .D . 4三、解答题 (共8题;共98分)21. (5分)(2017·赤峰) (﹣)÷ ,其中a=2017°+(﹣)﹣1+ tan30°.22. (15分) (2016七下·宜昌期中) 平面内有三点A(2,2 ),B(5,2 ),C(5,).(1)请确定一个点D,使四边形ABCD为长方形,写出点D的坐标.(2)求这个四边形的面积(精确到0.01).(3)将这个四边形向右平移2个单位,再向下平移3 个单位,求平移后四个顶点的坐标.23. (15分) (2018九上·十堰期末) 如图,已知抛物线y=ax2+bx+c经过点A(﹣1,0),点B(3,0)和点C(0,3).(1)求抛物线的解析式和顶点E的坐标;(2)点C是否在以BE为直径的圆上?请说明理由;(3)点Q是抛物线对称轴上一动点,点R是抛物线上一动点,是否存在点Q、R,使以Q、R、C、B为顶点的四边形是平行四边形?若存在,直接写出点Q、R的坐标,若不存在,请说明理由.24. (14分) (2017八下·湖州期中) 为了解甲、乙两名运动员的体能训练情况,对他们进行了跟踪测试,并把连续十周的测试成绩绘制成如图所示的折线统计图.教练组规定:体能体能测试成绩70分以上(包括70分)为合适.(1)请根据图中所提供的信息填写下表:平均数中位数体能测试成绩合格次数甲________65________乙60________________(2)请从下面两个不同的角度对运动员体能测试结果进行判断:①依据平均数与成绩合格的次数比较甲和乙,谁的体能测试成绩较好?②依据平均数与中位数比较甲和乙,谁的体能测试成绩较好?(3)依据折线统计图和成绩合格的次数,分析哪位运动员体能训练的效果较好.25. (11分)(2017·佳木斯) 在甲、乙两城市之间有一服务区,一辆客车从甲地驶往乙地,一辆货车从乙地驶往甲地.两车同时出发,匀速行驶,客车、货车离服务区的距离y1(千米),y2(千米)与行驶的时间x(小时)的函数关系图象如图1所示.(1)甲、乙两地相距________千米.(2)求出发3小时后,货车离服务区的路程y2(千米)与行驶时间x(小时)之间的函数关系式.(3)在客车和货车出发的同时,有一辆邮政车从服务区匀速去甲地取货后返回乙地(取货的时间忽略不计),邮政车离服务区的距离y3(千米)与行驶时间x(小时)之间的函数关系图线如图2中的虚线所示,直接写出在行驶的过程中,经过多长时间邮政车与客车和货车的距离相等?26. (10分) (2019八下·东莞月考) 如图,在菱形ABCD中,对角线AC、BD相交于点O ,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求平行四边形ACDE的面积.27. (17分) (2019七下·萍乡期中) 为了迎接2022年北京冬奥会,萍乡外国语学校组织了一次大型长跑比赛。
2020年聊城市莘县中考数学一模试卷 (含答案解析)

2020年聊城市莘县中考数学一模试卷一、选择题(本大题共12小题,共36.0分)1.−35的绝对值是()A. −53B. 35C. −35D. 532.如图,已知∠1=85°,∠2=95°,∠4=125°,则∠3的度数为()A. 95°B. 85°C. 70°D. 125°3.为了了解某市50000名学生参加初中毕业考试数学成绩情况,从中抽取了1000名考生的数学成绩进行统计.下列说法错误的是()A. 50000名学生的数学成绩的全体是总体B. 每个考生是个体C. 从中抽取的1000名考生的数学成绩是总体的一个样本D. 样本容量是10004.如图是由4个大小相同的正方体组合而成的几何体,其左视图是()A.B.C.D.5.下列运算正确的是()A. a3⋅a3=2a3B. a0÷a3=a−3C. (ab2)3=ab6D. (a3)2=a56.若把不等式1−3x<7的解集在数轴上表示出来,则正确的是()A. B.C. D.7.7.下列语句是真命题的有()①点到直线的垂线段叫做点到直线的距离;②内错角相等;③两点之间线段最短;④过一点有且只有一条直线与已知直线平行;⑤在同一平面内,若两条直线都与第三条直线垂直,那么这两条直线互相平行.A. 2个B. 3个C. 4个D. 5个8.某市4月份日平均气温统计图情况如图所示,则这组数据中,众数和中位数分别是()A. 13,13B. 13,13.5C. 13,14D. 16,139.下图是一个正方体纸盒的展开图,其中的六个正方形内分别标有数字“0”“1”“2”“5”和汉字“数”“学”,将其围成一个正方体后,与“5”相对的是()A. 0B. 2C. 数D. 学10.如图,某地修建高速公路,要从A地向B地修一条隧道(点A,B在同一水平面上).为了测量A,B两地之间的距离,一架直升飞机从A地起飞,垂直上升1000米到达C处,在C处观察B地的俯角为α,则AB两地之间的距离约为()A. 1000sinα米B. 1000tanα米C. 1000tanα米 D. 1000sinα米11.如图,函数y=mx−4m(m<0)的图象分别交x轴、y轴于点M,N,线段MN上A,B两点在x轴的射影分别为A1,B1,若OA1+OB1>4,则△OAA1的面积S1与△OBB1的面积S2的大小关系是()A. S1>S2B. S1=S2C. S1<S2D. 不确定12.如图,△ABC的三个顶点都在4×5的网格(每个小正方形的边长为1个单位长度)的格点上,将△ABC绕点B顺时针旋转到△A1BC1的位置,且点A1、C1仍落在格点上,则图中阴影部分的面积是()A. 9π4B. √13−22πC. πD. 13π4二、填空题(本大题共5小题,共15.0分)13.方程2x2=3x的根是______.14.计算:√45−√25×√50=______.15.如图,在△ABC中,AB=AC=5,BC=8.若∠BPC=12∠BAC,则tan∠BPC=________.16.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①b2−4ac>0;②abc>0;③8a+c>0;④9a+3b+c<0.其中,正确结论的有______.17.如图,在△ABC中,∠A=80°,∠ABC和∠ACD的平分线交于点E,则∠E=______.三、解答题(本大题共8小题,共69.0分)18.化简:(3x+1−x+1)÷x2−2xx+1,并从−2<x<2中选一个你喜欢的整数代入求值.19.如图,△ABC三个顶点的坐标分别是A(1,1),B(4,2),C(3,4).(1)请画出△ABC向左平移5个单位长度后得到的△A1B1C1;(2)请画出△ABC关于原点对称的△A2B2C2;(3)△A1B1C1和△A2B2C2关于x轴上的某点成中心对称,请通过画图找到该点,并直接写出该点的坐标;(4)在x轴上求一点P,使△PAB周长最小,请画出△PAB,并求出点P的坐标.20.如图,一次函数y=12x+1的图象与反比例函数y=kx的图象相交于A(2,m)和B两点.(1)求反比例函数的解析式;(2)求点B的坐标.21.如图,在△ABC中,点E是AC的中点,ED//AB,交BC于点D,连接AD,AD平分∠BAC.求证:AB=AC.22.五⋅一期间,某商场开展购物抽奖活动,在不透明的抽奖箱中有4个分别标有数字1、2、3、4的小球,每个小球除数字外其余都相同.顾客随机抽取一个小球,不放回,再随机摸取一个小球,若两次摸出球的数字之和为“7”,则抽中一等奖,请用画树状图(或列表)的方法,求顾客抽中一等奖的概率.23.列方程解应用题:某商店在2017年至2019年期间销售一种玩具,2017年该商店用2200元购进了这种玩具并且全部售完;2019年这种玩具每个的进价是2017年的一半,且该商店用2100元购进的玩具数比2017年的玩具数多100个.那么,2017年这种玩具每个的进价是多少元?24.如图,四边形ABCD内接于⊙O,BD是⊙O的直径,过点A作AE⊥CD,交CD的延长线于点E,DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)已知AE=8cm,CD=12cm,求⊙O的半径.25.如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(−1,0),B(4,0),C(0−4),三点,点P是直线BC下方抛物线上一动点.(1)求这个二次函数的解析式和顶点坐标;(2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;【答案与解析】1.答案:B解析:解:−35的绝对值是35,即|−35|=35.故选:B.根据负数的绝对值等于它的相反数解答.本题考查了绝对值,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.答案:D解析:【试题解析】本题考查了平行线的判定和性质,对顶角相等,熟记平行线的判定和性质定理是解题的关键,属于基础题.根据对顶角相等得到∠5=∠1=85°,由同旁内角互补,两直线平行得到a//b,再根据两直线平行,同位角相等即可得到结论.解:如图,∵∠5=∠1=85°,∴∠5+∠2=85°+95°=180°,∴a//b,∴∠3=∠4=125°,故选D.3.答案:B解析:此题主要考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.解:A、这50000名学生的数学考试成绩的全体是总体,说法正确;B、每个考生是个体,说法错误,应该是每个考生的数学成绩是个体;C、从中抽取的1000名考生的数学成绩是总体的一个样本;说法正确;D、样本容量是1000,说法正确;故选:B.4.答案:A解析:本题主要考查了几何体的视图,关键是熟练掌握视图的特征.根据所给的几何体的位置,从左边看视图的特征,画出符合条件的图即可.解:由左视图定义,得选项A中的图形是这个几何体的左视图.故选A.5.答案:B解析:解:A、a3⋅a3=a6故A不符合题意;B、a0÷a3=a−3,故B符合题意;C、积的乘方的乘方等于乘方的积,故C不符合题意;D、底数不变指数相乘,故D不符合题意;故选:B.根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.本题考查了同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.6.答案:A解析:本题考查了一元一次不等式的解法,在数轴上表示不等式的解集(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示,“<”,“>”要用空心圆圈表示.先求出不等式的解集,然后表示在数轴上即可.解:1−3x<7,−3x<6,x>−2.解集在数轴上表示为:故选A.7.答案:A解析:根据垂线段的性质、平行线的性质、平行线的判定定理判断即可.【详解】①点到直线的垂线段的长度叫做点到直线的距离,故为假命题;②两直线平行,内错角相等,故为假命题;③两点之间线段最短,真命题;④过一点有且只有一条直线与已知直线平行,假命题,必须是在平面内直线外一点且只有一条直线与已知直线平行;⑤在同一平面内,若两条直线都与第三条直线垂直,则这两条直线互相平行.真命题,故选A.本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.答案:C解析:本题考查了众数和中位数的定义,一组数据中出现次数最多的数据叫做众数;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.也考查了条形统计图,根据条形统计图得到各数据的权,然后根据众数和中位数的定义求解.解:这组数据中,13出现了10次,出现次数最多,所以众数为13,第15个数和第16个数都是14,所以中位数是14.故选C.9.答案:A解析:本题主要考查正方体的展开图及相对面上的文字,将展开图折成正方体,可知“1”与“数”相对,“2”与“学”相对,“0”与“5”相对,进而求解.解:将展开图折成正方体,可知“1”与“数”相对,“2”与“学”相对,“0”与“5”相对.故选A.10.答案:C解析:解:在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=1000米,∴tanα=ACAB,∴AB=ACtanα=1000tanα米.故选:C.在Rt△ABC中,∠CAB=90°,∠B=α,AC=1000米,根据tanα=ACAB,即可解决问题.本题考查解直角三角形的应用−仰角俯角问题,解题的关键是熟练掌握基本知识,属于中考常考题型.11.答案:A本题考查了一次函数图象上点的坐标特征及一次函数的应用,数形结合,用A、B的坐标表示出S1、S2是解题的关键.设A(a,ma−4m),B(b,mb−4m)表示出S1、S2,然后让两式相减即可比较出大小.解:设A(a,am−4m),B(b,bm−4m),结合图象知,S1=12a(am−4m),S2=12b(bm−4m),S1−S2=12am(a−4)−12bm(b−4)=12m×(a2−4a−b2+4b)=12m[(a+b)(a−b)−4(a−b)]=12m(a−b)(a+b−4),∵OA1+OB1=a+b>4,m<0,a<b,∴S1−S2=12m⋅(a−b)(a+b−4)>0,∴S1>S2.故选A.12.答案:A解析:解:根据题意,可得BC=2,A1B=√13,AC=3,∠CBC1=90°,∠ABA1=90°,S扇形ABA1=90⋅π×(√13)2360=13π4,S扇形CBC1=90⋅π×22360=π,S阴影=S扇形ABA1−S扇形CBC1=13π4−π=9π4,故选:A.根据勾股定理求出BC=2,A1B=√13,AC=3,再根据扇形的面积公式求出扇形ABA1和扇形CBC1的面积,进而求出阴影部分的面积.本题主要考查了扇形面积的计算以及勾股定理的知识,解题的关键是熟练掌握扇形的面积公式,此题难度不大.13.答案:x1=0,x2=32本题考查了因式分解法解一元二次方程的知识,解此题的关键是能把一元二次方程转化成一元一次方程,难度适中.移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.解:2x2=3x,2x2−3x=0,x(2x−3)=0,x=0,2x−3=0,x1=0,x2=32.故答案为x1=0,x2=32.14.答案:√5解析:解:原式=3√5−√25×50=3√5−2√5=√5.故答案为:√5.先根据二次根式的乘法法则运算,然后化简后合并即可.本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.15.答案:43解析:本题考查了解直角三角形,求锐角的三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法求三角函数值,或者利用同角(或余角)的三角函数关系式求三角函数值.先过点A作AE⊥BC于点E,求得∠BAE=12∠BAC,故∠BPC=∠BAE.再在Rt△BAE中,利用锐角三角函数的定义,求得tan∠BPC=tan∠BAE=BEAE =43.解析:解:过点A作AE⊥BC于点E,∵AB=AC=5,∴BE=12BC=12×8=4,∠BAE=12∠BAC,∵∠BPC=12∠BAC,∴∠BPC=∠BAE.在Rt△BAE中,AE=√AB2−BE2=3,∴tan∠BPC=tan∠BAE=BEAE =43.故答案为43.16.答案:①②③④解析:本题考查二次函数的性质,解题的关键是明确二次函数的性质,利用数形结合的思想将图象与所求的结论结合在一起,由图象可以判断题目中的结论是否正确.①由图象与x轴的交点可以判断;②根据开口方向可以判断a的正负,根据顶点坐标所在的位置可以判断b的正负,根据与y轴的交点可以判断c的正负,从而可以解答本题;③根据对称轴可以确定a、b的关系,由x=−2对应的函数图像,可以判断该结论是否正确;④根据对称轴和二次函数具有对称性可以判断该结论是否正确.解:由二次函数的图象与x轴两个交点可知,b2−4ac>0,故①正确;由二次函数的图象可知,开口向上,则a>0,顶点在y轴右侧,则b<0(左同右异),图象与y轴交于负半轴,则c<0,故abc>0,故②正确;由图象可知:−b2a=1,则b=−2a,当x=−2时,y=4a−2b+c>0,则y=4a−2×(−2a)+c>0,即8a+c>0,故③正确;由图象可知:此函数的对称轴为x=1,当x=−1时和x=3时的函数值相等并且都小于0,故x=3时,y=9a+3b+c<0,故④正确;故答案为①②③④.17.答案:40°解析:解:∵CE是∠ACD的角平分线,∴∠ECD=12∠ACD.又∵∠ACD=∠A+∠ABC,∴∠ECD=12∠A+12∠ABC,又∵∠ECD=∠E+12∠ABC,∴12∠A+12∠ABC=∠E+12∠ABC,∴∠E=12∠A=40°,故答案为:40°.利用角平分线定义可知∠ECD=12∠ACD.再利用外角性质,可得∠ACD=∠A+∠ABC①,∠ECD=∠E+12∠ABC②,那么可利用∠ECA=∠ECD,可得相等关系,从而可求∠E的度数.本题考查三角形外角的性质及三角形的内角和定理,解题的关键是熟记三角形的内角和.18.答案:解:原式=4−x2x+1×x+1x(x−2)=−x+2x当x=1时,原式=−3.解析:本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x的值代入计算可得.19.答案:解:(1)如图所示,△A1B1C1就是所要求画的三角形;(2)如图所示,△A2B2C2就是所要求画的三角形;(3)如图所示 ,(−2.5,0);(4)作出A 的对称点A′(1,−1),连接BA′,与x 轴交点即为P ;如图所示,由作图可知,A′(1,−1),设直线A′B 解析式为y =kx +b ,把A′(1,−1)、B(4,2)代入,得{−1=k +b 2=4k +b, 解得:{k =1b =−2, ∴y =x −2,令y =0,得x =2,∴P(2,0).解析:本题考查平移与旋转作图,平移与轴对称,中心对称的性质.待定系数法求一次函数解析式,点的坐标的确定.熟练掌握平移与轴对称,中心对称的性质是解题的关键.(1)利用平移性质作图即可;(2)利用关于原点对称的性质作图即可;(3)连接A 1A 2、C 1C 2相交于一点,即为对称中心;(4)作出A 的对称点A′(1,−1),连接BA′,与x 轴交点即为P ,此时PA +PB 最小,即△PAB 周长最小;再用待定系数法求出直线A′B 解析式,然后求出一次函数与x 轴交点坐标即可.20.答案:解:(1)∵一次函数y =12x +1的图象过点A(2,m),∴m =12×2+1=2,∴点A(2,2),∵反比例函数y =k x 的图象经过点A(2,2),∴k =2×2=4,∴反比例函数的解析式为:y =4x ;(2)联立方程组可得:{y =12x +1y =4x , 解得:{x 1=−4y 1=−1或{x 2=2y 2=2, ∴点B(−4,−1).解析:(1)将点A 坐标代入一次函数解析式可求m 的值,再将点A 坐标代入反比例函数解析式,可求解;(2)联立方程组可求解.本题考查了一次函数与反比例函数的交点问题,用待定系数法求反比例函数的解析式.本题难度适中.21.答案:解:∵AD 平分∠BAC ,∴∠CAD =∠BAD ,∵ED//AB ,∴∠BAD =∠EDA ,∴∠CAD =∠EDA ,∴EA =ED ,∵点E 是AC 的中点,∴EA =EC ,∴EC =ED ,∴∠C =∠EDC ,∵ED//AB ,∴∠EDC =∠B ,∴∠C =∠B ,∴AB =AC .解析:本题考查的是角平分线的定义、等腰三角形的判定和性质、平行线的性质,掌握等腰三角形的判定定理、性质定理以及平行线的性质定理是解题的关键.根据角平分线的定义和平行线的性质得到EA =ED ,根据平行线的性质和等腰三角形的判定定理证明即可.22.答案:解:列表得:∵共有12种等可能的结果,顾客抽中一等奖的有2种情况,∴P(顾客抽中一等奖)=16.解析:首先根据题意列出表格,然后由表格即可求得所有等可能的结果与顾客抽中一等奖的情况,再利用概率公式即可求得答案.本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.23.答案:解:设2017年这种玩具每个的进价是x 元,则2019年这种玩具每个的进价是12x 元, 依题意,得:210012x −2200x =100,解得:x =20,经检验,x =20是原方程的解,且符合题意.答:2017年这种玩具每个的进价是20元.x元,根据数量=总解析:设2017年这种玩具每个的进价是x元,则2019年这种玩具每个的进价是12价÷单价结合2019年用2100元购进的玩具数比2017用2200元购进的玩具数多100个,即可得出关于x的分式方程,解之经检验后即可得出结论.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.24.答案:(1)证明:连结OA,∵OA=OD,∴∠ODA=∠OAD.∵DA平分∠BDE,∴∠ODA=∠EDA.∴∠OAD=∠EDA,∴EC//OA.∵AE⊥CD,∴OA⊥AE.∵点A在⊙O上,∴AE是⊙O的切线.(2)解:过点O作OF⊥CD,垂足为点F.∵∠OAE=∠AED=∠OFD=90°,∴四边形AOFE是矩形.∴OF=AE=8cm.又∵OF⊥CD,CD=6cm.∴DF=12在Rt△ODF中,OD=√OF2+DF2=10cm,即⊙O的半径为10cm.解析:本题考查了等腰三角形的性质,垂径定理,平行线的判定和性质,切线的判定和性质,勾股定理的应用等,熟练掌握性质定理是解题的关键.(1)根据等边对等角得出∠ODA=∠OAD,进而得出∠OAD=∠EDA,证得EC//OA,从而证得AE⊥OA,即可证得AE是⊙O的切线;(2)过点O作OF⊥CD,垂足为点F.从而证得四边形AOFE是矩形,得出OF=AE=8cm,根据垂径定理得出DF=12CD=6cm,在Rt△ODF中,根据勾股定理即可求得⊙O的半径.25.答案:解:(1)设抛物线解析式为y=ax2+bx+c,把A、B、C三点坐标代入可得{a−b+c=016a+4b+c=0 c=−4,解得{a=1b=−3 c=−4,∴抛物线解析式为y=x2−3x−4.(2)作OC的垂直平分线DP,交OC于点D,交BC下方抛物线于点P,如图,∴PO=PD,此时P点即为满足条件的点,∵C(0,−4),∴D(0,−2),∴P点纵坐标为−2,代入抛物线解析式可得x2−3x−4=−2,解得x=3−√172(小于0,舍去)或x=3+√172,∴存在满足条件的P点,其坐标为(3+√172,−2).解析:本题为二次函数的综合应用,待定系数法、等腰三角形的性质、二次函数的性质、三角形的面积有关知识.(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)由题意可知点P在线段OC的垂直平分线上,则可求得P点纵坐标,代入抛物线解析式可求得P 点坐标.。
2020年山东省聊城市中考数学一模试卷 (含解析)

2020年山东省聊城市中考数学一模试卷一、选择题(本大题共12小题,共36.0分)1.实数−π,−3.14,0,√2四个数中,最小的是()A. −πB. −3.14C. √2D. 02.如图中几何体的俯视图是()A.B.C.D.3.如图,在△ABC中,∠ABC、∠ACB的平分线相交于点O,MN过O,且MN//BC,分别交AB、AC于点M、N.若BM=5,MN=9,则线段CN的长是()A. 3B. 4C. 4.5D. 54.下列计算正确的是()A. x2x3=x6B. (m+3)2=m2+9C. a10÷a5=a5D. (xy2)3=xy65.某次数学趣味竞赛共有10道题目,每道题答对得10分,答错或不答得0分.人数25131073成绩(分)5060708090100全班40名同学的成绩的中位数和众数分别是()A. 75,70B. 70,70C. 80,80D. 75,806. 给出下列化简①(−√2)2=2:②√(−2)2=2;③√122+142=12√3;④√1−14=12,其中正确的是( ) A. ①②③④ B. ①②③ C. ①② D. ③④7. 如图所示,△ABC 的顶点是正方形网格的格点,则sin A 的值为( )A. 12B. √55C. √1010D. 2√55 8. 用配方法解方程2x 2−x −1=0时,配方结果正确的是( )A. (x −12)2=34B. (x −14)2=34C. (x −14)2=1716D. (x −14)2=916 9. 如图,CD 是⊙O 的直径,AB ,EF 是⊙O 的弦,且AB//CD//EF ,AB =16,CD =20,EF =12,则图中阴影部分的面积是( )A. 96+25πB. 88+50πC. 50πD. 25π10. 某同学用一扇形纸片为玩偶制作了一个圆锥形帽子(不考虑接缝),已知扇形的半径为13cm ,扇形的弧长为10π cm ,那么这个圆锥形帽子的高是( )A. 5cmB. 12cmC. 13cmD. 14cm11. 按照如图所示的方法排列黑色小正方形地砖,则第13个图案中黑色小正方形地砖的块数是( )A. 273B. 293C. 313D. 33312. 如图,在△ABC 中,∠BAC =108°,将△ABC 绕点A 按逆时针方向旋转得到△AB′C′.若点B′恰好落在BC 边上,且AB′=CB′,则∠C′的度数为( )A. 18°B. 20°C. 24°D. 28°二、填空题(本大题共5小题,共15.0分)13. 因式分解:x(x −3)−x +3=______.14. 如图,点A 、B 、C 、D 、E 在⊙O 上,且AB ⏜为50°,则∠E +∠C =______°.15. 化简:(1x−4+1x+4)÷2x 2−16=______.16. 某校举行唱歌比赛活动,每个班级唱两首歌曲,一首是必唱曲目校歌,另外一首是从A ,B ,C ,D 四首歌曲中随机抽取1首,则九年级(1)班和(2)班抽取到同一首歌曲的概率是______.17. 在平面直角坐标系中,已知A 、B 两点的坐标分别为A(−1,1)、B(3,2),若点M 为x 轴上一点,且MA +MB 最小,则点M 的坐标为______.三、解答题(本大题共8小题,共69.0分)18. 解不等式组{x −32(2x −1)≤41+3x 3>2x −1,并写出x 的所有整数解.19.某校开设武术、舞蹈、剪纸等三项活动课程,随机抽取了部分学生对这三项活动课程的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成下面两幅统计图,请你结合图中信息解答问题.(1)本次抽样调查的样本容量是____;(2)将条形统计图补充完整;(3)已知该校有1200名学生,请你根据样本估计全校学生中喜欢剪纸的人数.20.公历3月12日是植树节,为宣传保护树木,激发人们爱林造林的热情,政府投资13万元给某村民小组用于购买与种植A、B两种树苗共3000棵,完成这项种植后,剩余的款项作为村民小组的纯收入,已知用160元购买A树苗比购买B树苗多3棵.这两种树苗的单价、成活率及移栽费用见下表:树苗品种A树苗B树苗购买价格(元/棵)a a+12树苗成活率90%95%移栽费用(元/棵)35(1)求表中a的值;(2)设购买A树苗x棵,其它购买的是B树苗,把这些树苗种植完成后,村民小组获得的纯收入为y元,请你写出y与x之间的函数关系式;(3)若要求这批树苗种植后,成活率达到93%以上(包含93%),则最多种植A树苗多少棵?此时,村民小组在这项工作中,所得的纯收入最大值可以是多少元?21.如图,将▱ABCD的边AB延长至点E,使AB=BE,连接DE,EC,DE交BC于点O.(1)求证:△ABD≌△BEC;(2)连接BD,若四边形BECD是矩形,求证:∠BOD=2∠A.22.如图,线段AB,CD表示甲、乙两幢居民楼的高,两楼间的距离BD是60米.某人站在A处测得C点的俯角为37°,D点的俯角为48°(人的身高忽略不计),求乙楼的高度CD.(参考数据:sin37°≈35,tan37°≈34,sin48°≈710,tan48°≈1110)23. 一次函数y =kx +b 的图象与反比例函数y =mx 的图象交于A(−2,1),B(1,n)两点.(1)试确定上述反比例函数和一次函数的表达式;(2)求△AOB 的面积.(3)当kx +b ≤mx 时,请直接写出x 的取值范围.24.如图,AB,CD为⊙O的直径,弦AE//CD,连接BE交CD于点F,过点E的直线EP与CD的延长线交于点P,并且使得∠PED=∠C.(1)求证:PE是⊙O的切线;(2)求证:ED平分∠BEP;(3)若⊙O的半径为6,CF=2EF,求PD的长.25.如图,抛物线y=−x2+bx+c经过A(−1,0),B(3,0)两点,且与y轴交于点C,点D是抛物线的顶点,抛物线的对称轴DE交x轴于点E,连接BD.(1)求经过A,B,C三点的抛物线的函数表达式;(2)点P是线段BD上一点,当PE=PC时,求点P的坐标;(3)在(2)的条件下,过点P作PF⊥x轴于点F,G为抛物线上一动点,M为x轴上一动点,N为直线PF上一动点,当以F、M、N、G为顶点的四边形是正方形时,请求出点M的坐标.【答案与解析】1.答案:A解析:本题考查了无理数大小比较:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.解:∵|−π|=π,|−3.14|=3.14,∴−π<−3.14,∴−π,−3.14,0,√2这四个数的大小关系为−π<−3.14<0<√2.故选A.2.答案:C解析:解:人站在几何体的正面,从上往下看,正方形个数依次为1,1,1,故选:C.找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.答案:B解析:本题考查了等腰三角形的判定与性质和平行线性质的理解与掌握.此题证出∠MBO=∠MOB,∠NOC=∠NCO是解题的关键.解:∵MN//BC,∴∠OBC=∠MOB,∠OCB=∠NOC,∵OB是∠ABC的角平分线,OC是∠ACB的角平分线,∴∠MBO=∠OBC,∠NCO=∠OCB,∴∠MBO=∠MOB,∠NOC=∠NCO,∴OM=BM,ON=CN,∴MN=MO+ON=BM+CN,又∵BM=5,MN=9,∴CN=4,故选B.4.答案:C解析:解:A.x2⋅x3=x5,故选项A不合题意;B.(m+3)2=m2+6m+9,故选项B不合题意;C.a10÷a5=a5,故选项C符合题意;D.(xy2)3=x3y6,故选项D不合题意.故选:C.分别根据同底数幂的乘法法则,完全平方公式,同底数幂的除法法则以及积的乘方运算法则逐一判断即可.本题主要考查了同底数幂的乘除法以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.5.答案:A解析:解:把这些数据从小到大排列,最中间的两个数是第20、21个数,分别为70和80,中位数是这两个数的平均数,=75;∴全班40名同学的成绩的中位数是:70+80270出现了13次,出现的次数最多,则众数是70;故选A.根据中位数和众数的定义分别进行解答即可.此题考查了中位数和众数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.6.答案:C解析:根据二次根式的运算法则即可求出答案.本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.解:①原式=2,故①正确;②原式=2,故②正确;③原式=√340=2√85,故③错误;④原式=√34=√32,故④错误;故选:C.7.答案:B解析:此题主要考查了锐角三角函数关系,正确构造直角三角形是解题关键.直接连接DC,得出CD⊥AB,再结合勾股定理以及锐角三角函数关系得出答案.解:连接DC,设每个正方形网格的边长为1,由网格可得:CD⊥AB,则DC=√2,AC=√10,故sinA=DCAC =√210=√55.故选:B.8.答案:D解析:本题考查了解一元二次方方程--配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.本题具体做法是把常数项−1移项后,再在左右两边同时除以2,最后在左右两边同时加上一次项系数−12的一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.解:把方程2x2−x−1=0的常熟项移到等号的右边,得2x2−x=1,在左右两边同时除以2,得x2−12x=12方程两边同时加上一次项系数一半的平方,得到x 2−12x +116=12+116,配方得(x −14)2=916. 故选D .9.答案:C解析:解:延长BO 交⊙O 于G ,则BG 是⊙O 的直径,连接AG ,则∠GAB =90°,∵AB =16,BG =CD =20,∴AG =√BG 2−AB 2=12,∴AG =EF ,∴AG⏜=EF ⏜, 连接OE ,OF ,则S 扇形AOG =S 扇形EOF ,∵CD//EF ,∴S △OEF =S △DEF ,∴S 阴影DEF =S 扇形EOF ,∴S 阴影DEF =S 扇形AOG ,∴图中阴影部分的面积=12S 圆O =12⋅π×102=50π,故选:C .延长BO 交⊙O 于G ,则BG 是⊙O 的直径,连接AG ,根据圆周角定理得到∠GAB =90°,根据勾股定理得到AG =√BG 2−AB 2=12,求得AG =EF ,推出S 扇形AOG =S 扇形EOF ,根据已知条件得到S △OEF =S △DEF ,于是得到结论.本题考查学生的观察能力及计算能力.本题中找出两个阴影部分面积之间的联系是解题的关系. 10.答案:B解析:解:先求底面圆的半径,即2πr=10π,r=5cm,∵扇形的半径13cm,∴圆锥的高=√132−52=12cm.故选:B.首先求得圆锥的底面半径,然后利用勾股定理求得圆锥的高即可.此题主要考查圆锥的侧面展开图和勾股定理的应用,牢记有关公式是解答本题的关键,难度不大.11.答案:C解析:本题考查了图形的变化规律,通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般规律,利用规律解决问题.由图形可知:第1个图案中黑色小正方形地砖的块数=1×1+0×0=12+02,第2个图案中黑色小正方形地砖的块数=2×2+1×1=22+12,第3个图案中黑色小正方形地砖的块数=3×3+ 2×2=32+22,…则第n个图案中黑色小正方形地砖的块数=n×n+(n−1)×(n−1)=n2+ (n−1)2,由此代入求得答案即可.解:∵第1个图案中黑色小正方形地砖的块数=1×1+0×0=12+02,第2个图案中黑色小正方形地砖的块数=2×2+1×1=22+12,第3个图案中黑色小正方形地砖的块数=3×3+2×2=32+22,…∴第n个图案中黑色小正方形地砖的块数=n×n+(n−1)×(n−1)=n2+(n−1)2,则第13个图案中黑色小正方形地砖的块数是132+122=313.故选C.12.答案:C解析:【试题解析】本题考查了旋转的性质,等腰三角形的性质,灵活运用这些的性质解决问题是本题的关键.由旋转的性质可得∠C=∠C′,AB=AB′,由等腰三角形的性质可得∠C=∠CAB′,∠B=∠AB′B,由三角形的外角性质和三角形内角和定理可求解.解:∵AB′=CB′,∴∠C=∠CAB′,∴∠AB′B=∠C+∠CAB′=2∠C,∵将△ABC绕点A按逆时针方向旋转得到△AB′C′,∴∠C=∠C′,AB=AB′,∴∠B=∠AB′B=2∠C,∵∠B+∠C+∠CAB=180°,∴3∠C=180°−108°,∴∠C=24°,∴∠C′=∠C=24°,故选:C.13.答案:(x−1)(x−3)解析:此题考查了因式分解−提公因式法,熟练掌握因式分解的方法是解本题的关键.原式变形后,提取公因式即可.解:原式=x(x−3)−(x−3)=(x−1)(x−3),故答案为:(x−1)(x−3).14.答案:155解析:解:连接EA,∵AB⏜为50°,∴∠BEA=25°,∵四边形DCAE为⊙O的内接四边形,∴∠DEA+∠C=180°,∴∠DEB+∠C=180°−25°=155°,故答案为:155.连接EA,根据圆周角定理求出∠BEA,根据圆内接四边形的性质得到∠DEA+∠C=180°,结合图形计算即可.本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.15.答案:x解析:解:(1x−4+1x+4)÷2x2−16=x+4+x−4(x+4)(x−4)⋅(x+4)(x−4)2=2x2=x,故答案为:x.根据分式的加法和除法可以解答本题.本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.16.答案:14解析:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.画树状图展示所有16种等可能的结果数,再找出九年级(1)班和(2)班抽取到同一首歌曲的结果数,然后根据概率公式求解.解:画树状图为:共有16种等可能的结果数,其中九年级(1)班和(2)班抽取到同一首歌曲的有4种情况,所以九年级(1)班和(2)班抽取到同一首歌曲的概率为416=14,故答案为:14.17.答案:(13,0)解析:解:如图,作点A 作关于x 轴的对称点A′,连接A′B 与x 轴的交于点M ,点M 即为所求.∵点B 的坐标(3,2)点A′的坐标(−1,−1),∴直线BA′的解析式为y =34x −14,令y =0,得到x =13∴点M(13,0)故答案为(13,0).可过点A 作关于x 轴的对称点A′,连接A′B 与轴的交点即为所求.此题考查轴对称问题,熟练掌握轴对称的性质,理解两点之间线段最短的涵义.18.答案:解:{x −32(2x −1)≤4①1+3x 3>2x −1② 解不等式①,得:x ≥−54,解不等式②,得:x <43,则不等式组的解集为−54≤x <43,∴不等式组的整数解为:−1、0、1.解析:分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.答案:解:(1)100;(2)由(1)得女生总人数为50人,∴女生中喜欢舞蹈的人数为:50−10−16=24(人),如图所示:(3)∵样本中喜欢剪纸的人数为30人,样本容量为100,∴估计全校学生中喜欢剪纸的人数=1200×30100=360人.解析:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.(1)根据扇形统计图可得出女生喜欢武术的占20%,利用条形图中喜欢武术的女生有10人,即可求出女生总人数,进而求得样本容量;(2)由(1)得女生总人数,即可得出喜欢舞蹈的人数,进而补全条形统计图即可;(3)用全校学生数×喜欢剪纸的学生在样本中所占百分比即可求出.解:(1)∵根据扇形统计图可得出女生喜欢武术的占20%,利用条形图中喜欢武术的女生有10人,∴女生总人数为:10÷20%=50(人),∴本次抽样调查的样本容量是:30+6+14+50=100,故答案为100;(2)见答案;(3)见答案.20.答案:解:(1)根据题意,得:160a −160a+12=3,解得:a1=20,a2=−32,经检验,它们都是原方程的解,但a2=−32不合题意,舍去,所以a=20;(2)由(1)可知:A树苗购买价格:20元/棵;B树苗购买价格:32元/棵,根据题意,得:y=130000−[20x+(3000−x)⋅32+3x+5(3000−x)]=14x+19000,即:y与x之间的函数关系式是:y=14x+19000;(3)设种植A树苗b棵,则有:90%b+(3000−b)×95%≥93%×3000,解得:b≤1200,由(2)可知:y=14x+19000,其中14>0,对于此一次函数,当x取最大值时,纯收入y的值最大.所以有:y最大值=14×1200+19000=35800(元),因此:最多种植A树苗1200棵,纯收入最大值是35800元.解析:(1)根据题意列出方程解答即可;(2)根据题意列出函数解析式即可;(3)设种植A树苗b棵,列出解析式根据增函数解答即可.此题考查一次函数的应用,关键是根据题意列出分式方程和函数解析式进行解答.21.答案:证明:(1)在平行四边形ABCD中,AD=BC,AB=CD,AB//CD,则BE//CD.又∵AB=BE,∴BE=DC,∴四边形BECD为平行四边形,∴BD=EC.∴在△ABD与△BEC中,{AB=BE BD=EC AD=BC,∴△ABD≌△BEC(SSS);(2)由(1)知,四边形BECD为平行四边形,则OD=OE,OC=OB.∵四边形ABCD为平行四边形,∴∠A=∠BCD,即∠A=∠OCD.又∵平行四边形BECD为矩形,∴OC=OD,∴∠OCD=∠ODC,∴∠BOD=∠OCD+∠ODC=2∠A,∴∠BOD=2∠A.解析:本题考查了平行四边形的性质和判定,矩形的判定,平行线的性质,全等三角形的性质和判定,三角形的外角性质等知识点的综合运用,难度较大.(1)根据平行四边形的判定与性质得到四边形BECD为平行四边形,然后由SSS推出两三角形全等即可;(2)由四边形ABCD为平行四边形可知∠A=∠BCD,即∠A=∠OCD,由四边形BECD是矩形,推知OC=OD,由等腰三角形的性质得到∠OCD=∠ODC.22.答案:解:过点C作CE⊥AB交AB于点E,则四边形EBDC为矩形,∴BE=CD CE=BD=60(米),如图,根据题意可得,∠ADB=48°,∠ACE=37°,∵tan48°=AB,BD在Rt△ADB中,×60=66(米),则AB=tan48°⋅BD≈1110∵tan37°=AE,CE在Rt△ACE中,×60=45(米),则AE=tan37°⋅CE≈34∴CD=BE=AB−AE=66−45=21(米),∴乙楼的高度CD为21米.解析:过点C作CE⊥AB交AB于点E,在直角△ADB中利用三角函数求得AB的长,然后在直角△AEC 中求得AE的长,即可求解.本题考查了解直角三角形的应用−仰角俯角问题,本题要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.23.答案:解:(1)∵把A(−2,1)代入y=mx得:m=−2,∴反比例函数的解析式是y=−2x,∵B(1,n)代入反比例函数y=−2x,得:n=−2,∴B的坐标是(1,−2),把A、B的坐标代入一次函数y=kx+b得:{1=−2k+b−2=k+b,解得:k=−1,b=−1,∴一次函数的解析式是y=−x−1;(2)设直线AB交x轴于点C,∵把y=0代入一次函数的解析式y=−x−1得:0=−x−1,即x=−1,∴C(−1,0),△AOB的面积S=S AOC+S△BOC=12×|−1|×1+12×|−1|×|−2|=1.5;(3)从图象可知:当kx+b≤mx时,x的取值范围x≥1或−2≤x<0.解析:本题考查了反比例函数、一次函数图象上点的坐标特征,用待定系数法求一次函数的解析式,三角形的面积等知识点的综合运用,主要考查学生的计算能力和观察图形的能力.(1)把A的坐标代入反比例函数的解析式即可求出反比例函数的解析式,把B的坐标代入求出B的坐标,把A、B的坐标代入一次函数y=kx+b即可求出函数的解析式;(2)求出直线AB交x轴于点C的坐标,求出△AOC和△BOC的面积,即可求出答案;(3)根据函数的图象和A、B的坐标即可得出答案.24.答案:(1)证明:如图,连接OE.∵CD是圆O的直径,∴∠CED=90°.∵OC=OE,∴∠1=∠2.又∵∠PED=∠C,即∠PED=∠1,∴∠PED=∠2,∴∠PED+∠OED=∠2+∠OED=90°,即∠OEP=90°,∴OE⊥EP,又∵点E在圆上,∴PE是⊙O的切线;(2)证明:∵AB、CD为⊙O的直径,∴∠AEB=∠CED=90°,∴∠3=∠4(同角的余角相等).又∵∠PED=∠1,∴∠PED=∠4,即ED平分∠BEP;(3)解:设EF=x,则CF=2x,∵⊙O的半径为6,∴OF=2x−6,在Rt△OEF中,OE2=OF2+EF2,即62=x2+(2x−6)2,解得x=4.8,∴EF=4.8,∴BE=2EF=9.6,CF=2EF=9.6,∴DF=CD−CF=12−9.6=2.4,∵AB为⊙O的直径,∴∠AEB=90°,∵AB=12,BE=9.6,∴AE=365,∵∠BEP=∠A,∠EFP=∠AEB=90°,∴△AEB∽△EFP,∴PFBE =EFAE,即PF9.6=4.8365,∴PF=325,∴PD=PF−DF=4.解析:本题考查了切线的判定和性质,圆周角定理的应用,勾股定理的应用,三角形相似的判定和性质,熟练掌握性质定理是解题的关键.(1)如图,连接OE.欲证明PE是⊙O的切线,只需推知OE⊥PE即可;(2)由圆周角定理得到∠AEB=∠CED=90°,根据“同角的余角相等”推知∠3=∠4,结合已知条件证得结论;(3)设EF=x,则CF=2x,在Rt△OEF中,根据勾股定理得出62=x2+(2x−6)2,求得EF,进而求得BE和CF,在Rt△AEB中,根据勾股定理求得,然后根据△AEB∽△EFP,求得PF的长,继而求出PD=PF−DF的长.25.答案:解:(1)∵抛物线y=−x2+bx+c经过A(−1,0),B(3,0)两点,∴{−1−b+c=0−9+3b+c=0,解得,{b =2c =3, ∴经过A ,B ,C 三点的抛物线的函数表达式为y =−x 2+2x +3;(2)如图1,连接PC 、PE ,x =−b 2a =−22×(−1)=1,当x =1时,y =4,∴点D 的坐标为(1,4),设直线BD 的解析式为:y =mx +n ,则{m +n =43m +n =0, 解得,{m =−2n =6, ∴直线BD 的解析式为y =−2x +6,设点P 的坐标为(x,−2x +6),则PC 2=x 2+(3+2x −6)2,PE 2=(x −1)2+(−2x +6)2,∵PC =PE ,∴x 2+(3+2x −6)2=(x −1)2+(−2x +6)2,解得,x =2,则y =−2×2+6=2,∴点P 的坐标为(2,2);(3)设点M 的坐标为(a,0),则点G 的坐标为(a,−a 2+2a +3),∵以F、M、N、G为顶点的四边形是正方形,∴FM=MG,即|2−a|=|−a2+2a+3|,当2−a=−a2+2a+3时,整理得,a2−3a−1=0,解得,a=3±√132;当2−a=−(−a2+2a+3)时,整理得,a2−a−5=0,解得,a=1±√212,∴当以F、M、N、G为顶点的四边形是正方形时,点M的坐标为(3+√132,0),(3−√132,0),(1+√212,0),(1−√212,0).解析:本题考查的是二次函数的图象和性质、待定系数法求函数解析式以及正方形的性质,掌握二次函数的图象和性质、灵活运用待定系数法是解题的关键.(1)利用待定系数法求出过A,B,C三点的抛物线的函数表达式;(2)连接PC、PE,利用公式求出顶点D的坐标,利用待定系数法求出直线BD的解析式,设出点P 的坐标为(x,−2x+6),利用两点间距离公式表示出PC2和PE2,根据题意列出方程,解方程求出x 的值,计算求出点P的坐标;(3)设点M的坐标为(a,0),表示出点G的坐标,根据正方形的性质列出方程,解方程即可.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学中考一模试卷一、单选题1.﹣2的倒数是()A.﹣B.C.﹣2D.2 【答案】A【考点】有理数的倒数【解析】【解答】解:﹣2的倒数是﹣.故答案为:A.【分析】根据乘积为1的两个数叫做互为倒数,即可得出答案。
2.如图,直线l1∥l2,等腰直角△ABC的两个顶点A,B 分别落在直线l1、l2上,∠ACB=90°,若∠1=15°,则∠2的度数是()A.35°B.30°C.25°D.20°【答案】B【考点】平行线的性质【解析】【解答】如图,∵△ABC是等腰直角三角形,∴∠CAB=45°,∵l1∥l2,∴∠2=∠3,∵∠1=15°,∴∠2=45°-15°=30°,故答案为:B.【分析】根据二直线平行,内错角相等得出∠2=∠3,再根据角的和差即可得出答案。
3.将数据0.0000025用科学记数法表示为()A.25×10﹣7B.0.25×10﹣8C.2.5×10﹣7D.2.5×10﹣6【考点】科学记数法—表示绝对值较小的数【解析】【解答】解:0.0000025=2.5×10﹣6.故答案为:D.【分析】用科学记数法表示一个绝对值较小的数,一般表示为a×10-n的形式,其中1≤|a|<10,n是原数从左边起第一个非零数字前面的所有0的个数,包括小数点前面的0.4.下面的几何体中,主视图为三角形的是()A. B.C. D.【答案】C【考点】简单几何体的三视图【解析】【解答】解:A、主视图是长方形,故A选项错误;B、主视图是长方形,故B选项错误;C、主视图是三角形,故C选项正确;D、主视图是正方形,中间还有一条线,故D选项错误;故选:C.【分析】主视图是从几何体的正面看所得到的图形,根据主视图所看的方向,写出每个图形的主视图及可选出答案.5.在平面直角坐标系中,经过点(4sin45°,2cos30°)的直线,与以原点为圆心,2为半径的圆的位置关系是()A.相交B.相切C.相离D.以上三者都有可能【答案】D【考点】直线与圆的位置关系【解析】【解答】解:设直线经过的点为A.∵点A的坐标为(4sin45°,2cos30°),∴OA=.∵圆的半径为2,∴OA>2,∴点A在圆外,∴直线和圆相交,相切、相离都有可能.故答案为:D.【分析】过点A的直线有无数条,故圆心到这条直线的距离就不可能固定,根据直线与圆的位置关系,必须知道圆心到这条直线的距离,再与该圆的半径比大小,才能做出判断,故直线和圆相交,相切、相离都有可能.6.下列函数中,对于任意实数x1,x2,当x1>x2时,满足y1<y2的是()A.y=-3x+2B.y=2x+1C.y=2x2+1D.y=【考点】反比例函数的性质,二次函数的性质,一次函数的性质【解析】【解答】根据一次函数、二次函数和反比例函数的性质可得:只有A选项为减函数,故答案为:A.【分析】根据题意可知:这个函数必须是y随x的增大而减小,根据一次函数、二次函数和反比例函数的性质可得。
7.某校安排三辆车,组织九年级学生团员去敬老院参加学雷锋活动,其中小王与小菲都可以从这三辆车中任选一辆搭乘,则小王与小菲同车的概率为()A. B. C. D.【答案】A【考点】列表法与树状图法,概率公式【解析】【解答】解:设3辆车分别为A,B,C.画树状图如下:共有9种情况,在同一辆车的情况数有3种,所以坐同一辆车的概率为.故答案为:A.【分析】设3辆车分别为A,B,C.根据题意画树状图,根据图可知共有9种情况,在同一辆车的情况数有3种,根据概率公式即可得出坐同一辆车的概率。
8.关于x的方程x2+5x+m=0的一个根为﹣2,则另一个根是()A.﹣6B.﹣3C.3D.6【答案】B【考点】一元二次方程的根与系数的关系【解析】【解答】解:设方程的另一个根为n,则有﹣2+n=﹣5,解得:n=﹣3.故答案为:B.【分析】根据一元二次方程根与系数之间的关系,由两根之和等于-即可得出答案。
9.观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做法,…将这种做法继续下去(如图2,图3…),则图6中挖去三角形的个数为()A.121B.362C.364D.729【答案】C【考点】探索图形规律【解析】【解答】①图1,0×3+1=1;②图2,1×3+1=4;③图3,4×3+1=13;④图4,13×3+1=40;⑤图5,40×3+1=121;故答案为:C【分析】此题是一道探寻图形规律的题,只需要依次找出图形挖去三角形的个数即可得出结论;根据观察发现①图1,0×3+1=1;②图2,1×3+1=4;③图3,4×3+1=13;……就会发现后一个图形挖去的三角形的个数等于前一个图形挖去的个数乘以3再加1即可。
从而即可得出答案。
二、填空题10.如图,在直径为AB的⊙O中,C,D是⊙O上的两点,∠AOD=58°,CD∥AB,则∠ABC的度数为________.【答案】61°【考点】圆周角定理【解析】【解答】解:∵∠AOD=58°,∴∠ACD= ∠AOD=29°.∵CD∥AB,∴∠CAB=∠ACD=29°.∵AB 是直径,∴∠ACB=90°,∴∠ABC=90°﹣29°=61°.故答案为:61°.【分析】根据同弧所对的圆周角是圆心角的一半得出∠ACD=∠AOD=29°.根据二直线平行,内错角相等得出∠CAB=∠ACD=29°,根据直径所对的圆周角是直角得出∠ACB=90°,根据三角形的内角和得出答案。
11.如图,矩形ABCD中,AB=4,BC=6,E为AB上一点,将△BCE沿CE翻折至△FCE,EF与AD相交于点G,且AG=FG,则线段AE的长为________.【答案】1【考点】全等三角形的判定与性质,矩形的性质,翻折变换(折叠问题)【解析】【解答】解:如图所示.∵四边形ABCD是矩形,∴∠D=∠B=∠A=90°,AB=CD=4,AD=BC=6,根据题意得:△BCE≌△CEF,∴EF=BE,∠F=∠B=90°,CF=BC=6.在△GAE和△GFH中,,∴△GAE≌△GFH(ASA),∴EG=GH,AE=FH,∴AH=EF,设BE=EF=x,则AE=FH=4﹣x,AH=x,∴DH=6﹣x,CH=6﹣(4﹣x)=2+x,根据【分析】根据矩形的性质得出∠D=∠B=∠A=90°,AB=CD=4,AD=BC=6,根据翻折的性质得出△BCE≌△CEF,根据全等三角形的性质得出EF=BE,∠F=∠B=90°,CF=BC=6,然后利用ASA判断出△GAE≌△GFH,根据全等三角形的性质得出EG=GH,AE=FH,故AH=EF,设BE=EF=x,则AE=FH=4﹣x,AH=x,DH=6﹣x,CH=6﹣(4﹣x)=2+x,根据勾股定理得出关于x的方程,求解得出x的值,从而得出答案。
12.如图所示,某拦水大坝的横断面为梯形ABCD,AE、DF为梯形的高,其中迎水坡AB的坡角α=45°,坡长AB= 米,背水坡CD的坡度i=1:(i为DF与FC的比值),则背水坡CD的坡长为________米.【答案】12【考点】解直角三角形的应用﹣坡度坡角问题【解析】【解答】∵AE⊥BC、DF⊥BC,AD//BC,∴∠DAE=∠AEB=90°,∠AEF=∠DFE=∠DFC=90°,∴四边形AEFD是矩形,∴DF=AE,在Rt△AEB中,∠AEB=90°,AB=6 ,∠ABE=45°,∴AE=AB·sin∠ABE=6,∴DF=6,在Rt△DFC中,∠DFC=90°,DF:FC=i=1:=tan∠C,∴∠C=30°,∴CD=2DF=12,即背水坡CD在坡长为12米,故答案为:12.【分析】首先判断出四边形AEFD是矩形,根据矩形的性质得出DF=AE,在Rt△AEB中,根据等腰直角三角形的边之间的关系,由正弦函数得出AE=AB·sin∠ABE=6,故DF=6,在Rt△DFC中根据坡比的定义得出DF:FC=i=1∶=tan∠C,根据特殊锐角的三角函数值得出∠C=30°,根据含30°角的直角三角形的边之间的关系即可得出CD的长。
13.如图,已知等边三角形OAB的顶点O(0,0),A(0,3),将该三角形绕点O顺时针旋转,每次旋转60°,则旋转2018次后,顶点B的坐标为________.【答案】(0,﹣3)【考点】探索图形规律【解析】【解答】解:由题意知点B旋转=6次后与点B重合,即点B的旋转周期为6.∵2018÷6=336…2,∴点B旋转2018次后的坐标与旋转2次后的坐标相同,如图:∵∠AOB=60°,∴∠BOC=120°,则两次旋转后点B落在y轴的负半轴,且OB=3,所以点B的坐标为(0,﹣3).故答案为:(0,﹣3).【分析】由题意知点B旋转=6次后与点B重合,即点B的旋转周期为6.∵2018÷6=336…2,故点B 旋转2018次后的坐标与旋转2次后的坐标相同,如图:根据等边三角形的性质及平角的定义得出则两次旋转后点B落在y轴的负半轴,且OB=3,从而根据y轴上的点的坐标特点即可得出B点的坐标,从而得出答案。
三、解答题14.先化简,再求值:÷﹣3,其中a= .【答案】解:原式= =a﹣3当a= 时,原式=【考点】利用分式运算化简求值【解析】【分析】首先计算分式的除法,将各个分式的分子分母能分解因式的分别分解因式,同时将除式的分子分母交换位置,将除法转变为乘法,然后约分化为最简形式,再计算整式的减法,最后将a的值代入即可按有理数的减法运算得出答案。
15.中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对七年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如下所示:本书(本)频数(人数)频率5 a 0.26 18 0.67 14 b8 8 0.16合计 c 1(1)统计表中的a=________,b=________,c=________;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校七年级共有1200名学生,请你分析该校七年级学生课外阅读7本及以上的人数.【答案】(1)10;0.28;50(2)解:将频数分布表直方图补充完整,如图所示:(3)解:所有被调查学生课外阅读的平均本数为:(5×10+6×18+7×14+8×8)÷50=320÷50=6.4(本) (4)解:该校七年级学生课外阅读7本及以上的人数为:(0.28+0.16)×1200=528(人)【考点】用样本估计总体,频数(率)分布表,条形统计图,加权平均数【解析】【解答】(1)有题意得a=50×0.2=10,b==0.28,c==50.【分析】(1)根据统计图表可知:读6本书的人数是18人,其所占的频率是0.2,用读6本书的人数除以其所占的频率即可得出本次被调查的学生人数,即c的值;用本次被调查的学生人数乘以读5本书的人数所占的频率,即可得出a的值;用读7本书的人数除以本次调查的总人数即可得出b的值;(2)根据(1)中计算的a的值,补全直方图即可;(3)利用加权平均数的计算方法,用读5本书的人数×5+读6本书的人数×6+读7本书的人数×7+读8本书的人数×8的和除以这次调查的总人数即可得出所有被调查学生课外阅读的平均本数;(4)该校七年级的所有学生人数乘以样本中学生课外阅读7本及以上的人数所占的百分比即可得出该校七年级学生课外阅读7本及以上的人数。