大学物理作业11.1
张三慧《大学物理学:力学、电磁学》(第3版)(B版)(课后习题 恒定电流)【圣才出品】

第11章 恒定电流11.1 北京正负电子对撞机的储存环是周长为240m 的近似圆形轨道。
当环中电子流强度为8mA 时,在整个环中有多少电子在运行?已知电子的速率接近光速。
解:以N 1表示单位长度轨道上的电子数,则。
在整个环中的电子数为11.2 在范德格拉夫静电加速器中,一宽为30cm 的橡皮带以20cm/s 的速度运行,在下边的滚轴处给橡皮带带上表面电荷,橡皮带的面电荷密度足以在带子的每一侧产生的电场,求电流是多少毫安?解:11.3设想在银这样的金属中,导电电子数等于原子数。
当1mm 直径的银线中通过30A 的电流时,电子的漂移速度是多大?给出近似答案,计算中所需要的那些你一时还找不到的数据,可自己估计数量级并代入计算。
若银线温度是20℃,按经典电子气模型,其中自由电子的平均速率是多大?解:银的摩尔质量取密度取,则11.4 一铜棒的横截面积为长为2 m ,两端的电势差为。
已知铜的电阻率为,铜内自由电子的数密度为。
求:(1)棒的电阻;(2)通过棒的电流;(3)棒内的电流密度;(4)棒内的电场强度;(5)棒所消耗的功率;(6)棒内电子的漂移速度。
解:11.5 一铁制水管,内、外直径分别为 2.0cm 和2.5 cm ,这水管常用来使电气设备接地。
如果从电气设备流入到水管中的电流是20A ,那么电流在管壁中和水中各占多少?假设水的电阻率是,铁的电阻率为解:以I 1和I2分别表示通过水和铁管的电流,则由于I 1和I 2相比甚小,所以11.6 地下电话电缆由一对导线组成,这对导线沿其长度的某处发生短路(图11-3)。
电话电缆长 5 m。
为了找出何处短路,技术人员首先测量AB 间的电阻,然后测量CD 间的电阻。
前者测得电阻为,后者测得为,求短路出现在何处。
图11-1解:设在P 处短路,则又因,,所以得即短路出现在离A端1.5 m 处。
11.7 大气中由于存在少量的自由电子和正离子而具有微弱的导电性。
(1)地表附近,晴天大气平均电场强度约为大气平均电流密度约为。
大学物理课后习题答案(第十一章) 北京邮电大学出版社

习题十一11-1 圆柱形电容器内、外导体截面半径分别为1R 和2R (1R <2R ),中间充满介电常数为ε的电介质.当两极板间的电压随时间的变化k t U =d d 时(k 为常数),求介质内距圆柱轴线为r 处的位移电流密度.解:圆柱形电容器电容12ln 2R R l C πε= 12ln 2R R lU CU q πε== 1212ln ln 22R R r U R R r lU S q D εππε=== ∴ 12ln R R r k t D j ε=∂∂=11-2 试证:平行板电容器的位移电流可写成t U C I d d d =.式中C 为电容器的电容,U 是电容器两极板的电势差.如果不是平板电容器,以上关系还适用吗?解:∵ CU q = S CU D ==0σ ∴ CU DS D ==Φ不是平板电容器时0σ=D 仍成立 ∴ t UC ID d d =还适用.题11-3图11-3 如题11-3图所示,电荷+q 以速度v向O 点运动,+q 到O 点的距离为x ,在O 点处作半径为a 的圆平面,圆平面与v 垂直.求:通过此圆的位移电流.解:如题11-3图所示,当q 离平面x 时,通过圆平面的电位移通量 )1(222a x x q D +-=Φ[此结果见习题8-9(3)] t U C t I D D d d d d ==Φ∴ 23222)(2d d a x v qa tI D D +==Φ 题11-4图11-4 如题11-4图所示,设平行板电容器内各点的交变电场强度E =720sin t π510V ·m -1,正方向规定如图.试求:(1)电容器中的位移电流密度;(2)电容器内距中心联线r =10-2m 的一点P ,当t =0和t =51021-⨯s 时磁场强度的大小及方向(不考虑传导电流产生的磁场).解:(1)t Dj D ∂∂=,E D 0ε= ∴ t t t t E j D ππεπεε50550010cos 10720)10sin 720(⨯=∂∂=∂∂=2m A -⋅ (2)∵ ⎰∑⎰⋅+=⋅)(0d d S D l S j I l H取与极板平行且以中心连线为圆心,半径r 的圆周r l π2=,则D j r r H 22ππ=D j r H 2=0=t 时0505106.3107202πεπε⨯=⨯⨯=r H P 1m A -⋅ 51021-⨯=t s 时,0=P H11-5 半径为R =0.10m 的两块圆板构成平行板电容器,放在真空中.今对电容器匀速充电,使两极板间电场的变化率为t Ed d =1.0×1013 V ·m -1·s -1.求两极板间的位移电流,并计算电容器内离两圆板中心联线r (r <R )处的磁感应强度Br 以及r =R 处的磁感应强度BR .解: (1)t E t D j D ∂∂=∂∂=0ε 8.22≈==R j S j I D D D πA (2)∵ S j I l H S D l d d 0⋅+=⋅⎰∑⎰取平行于极板,以两板中心联线为圆心的圆周r l π2=,则202d d 2r t E r j r H D πεππ==∴t E r H d d 20ε=t E r H B r d d 2000εμμ==当R r =时,600106.5d d 2-⨯==t E R B R εμT *11-6 一导线,截面半径为10-2m ,单位长度的电阻为3×10-3Ω·m -1,载有电流25.1 A .试计算在距导线表面很近一点的以下各量:(1)H 的大小;(2)E 在平行于导线方向上的分量;(3)垂直于导线表面的S 分量.解: (1)∵ ⎰∑=I l H d取与导线同轴的垂直于导线的圆周r l π2=,则I r H =π2 21042⨯==rI H π1m A -⋅(2)由欧姆定律微分形式 E j σ=得 21053.7/1/-⨯====IR RS S I j E σ 1m V -⋅ (3)∵H E S ⨯=,E 沿导线轴线,H 垂直于轴线 ∴S 垂直导线侧面进入导线,大小1.30==EH S 2m W -⋅*11-7 有一圆柱形导体,截面半径为a ,电阻率为ρ,载有电流0I . (1)求在导体内距轴线为r 处某点的E 的大小和方向; (2)该点H 的大小和方向; (3)该点坡印廷矢量S的大小和方向;(4)将(3)的结果与长度为l 、半径为r 的导体内消耗的能量作比较. 解:(1)电流密度S I j 00=由欧姆定律微分形式E j σ=0得2000a I j j E πρρσ===,方向与电流方向一致(2)取以导线轴为圆心,垂直于导线的平面圆周r l π2=,则 由 ⎰⎰=⋅S l S j l H d d 0可得2202a r I r H =π∴202a rI H π=,方向与电流成右螺旋 (3)∵ H E S⨯= ∴ S垂直于导线侧面而进入导线,大小为 42202a r I EH S πρ==可见,电磁波的幅射压强(包括光压)是很微弱的.。
赵近芳大学物理学第五版第十一章课后习题答案

习题1111.1选择题(1)一圆形线圈在均匀磁场中作下列运动时,哪些情况会产生感应电流()(A )沿垂直磁场方向平移;(B )以直径为轴转动,轴跟磁场垂直;(C )沿平行磁场方向平移;(D )以直径为轴转动,轴跟磁场平行。
[答案:B](2)下列哪些矢量场为保守力场()(A )静电场;(B )稳恒磁场;(C )感生电场;(D )变化的磁场。
[答案:A](3)用线圈的自感系数L 来表示载流线圈磁场能量的公式221LI W m=()(A )只适用于无限长密绕线管;(B )只适用于一个匝数很多,且密绕的螺线环;(C )只适用于单匝圆线圈;(D )适用于自感系数L 一定的任意线圈。
[答案:D](4)对于涡旋电场,下列说法不正确的是():(A )涡旋电场对电荷有作用力;(B )涡旋电场由变化的磁场产生;(C )涡旋场由电荷激发;(D )涡旋电场的电力线闭合的。
[答案:C]11.2填空题(1)将金属圆环从磁极间沿与磁感应强度垂直的方向抽出时,圆环将受到。
[答案:磁力](2)产生动生电动势的非静电场力是,产生感生电动势的非静电场力是,激发感生电场的场源是。
[答案:洛伦兹力,涡旋电场力,变化的磁场](3)长为l 的金属直导线在垂直于均匀的平面内以角速度ω转动,如果转轴的位置在,这个导线上的电动势最大,数值为;如果转轴的位置在,整个导线上的电动势最小,数值为。
[答案:端点,221l B ω;中点,0]11.3一半径r =10cm 的圆形回路放在B =0.8T的均匀磁场中.回路平面与B垂直.当回路半径以恒定速率trd d =80cm/s 收缩时,求回路中感应电动势的大小.解:回路磁通2πr B BS m ==Φ感应电动势大小40.0d d π2)π(d d d d 2====trr B r B t t m ΦεV 11.4一对互相垂直的相等的半圆形导线构成回路,半径R =5cm,如题11.4图所示.均匀磁场B =80×10-3T,B 的方向与两半圆的公共直径(在Oz 轴上)垂直,且与两个半圆构成相等的角α当磁场在5ms内均匀降为零时,求回路中的感应电动势的大小及方向.解:取半圆形cba 法向为i,题11.4图则αΦcos 2π21B R m=同理,半圆形adc 法向为j,则αΦcos 2π22B R m=∵B 与i 夹角和B 与j夹角相等,∴︒=45α则αΦcos π2R B m =221089.8d d cos πd d -⨯-=-=Φ-=tBR t m αεV 方向与cbadc 相反,即顺时针方向.题11.5图11.5如题11.5图所示,载有电流I 的长直导线附近,放一导体半圆环MeN 与长直导线共面,且端点MN 的连线与长直导线垂直.半圆环的半径为b ,环心O 与导线相距a .设半圆环以速度v 平行导线平移.求半圆环内感应电动势的大小和方向及MN 两端的电压N M U U -.解:作辅助线MN ,则在MeNM 回路中,沿v方向运动时0d =m Φ∴0=MeNM ε即MNMeN εε=又∵⎰+-<+-==ba ba MN ba ba Iv l vB 0ln 2dcos 0πμπε所以MeN ε沿NeM 方向,大小为ba ba Iv -+ln 20πμM 点电势高于N 点电势,即ba ba Iv U U N M -+=-ln 20πμ题11.6图11.6如题11.6所示,在两平行载流的无限长直导线的平面内有一矩形线圈.两导线中的电流方向相反、大小相等,且电流以tId d 的变化率增大,求:(1)任一时刻线圈内所通过的磁通量;(2)线圈中的感应电动势.解:以向外磁通为正则(1)]ln [ln π2d π2d π2000da db a b Il r l r I r l r I ab b a d d m +-+=-=⎰⎰++μμμΦ(2)tI b a b d a d l t d d ]ln [ln π2d d 0+-+=-=μΦε11.7如题11.7图所示,用一根硬导线弯成半径为r 的一个半圆.令这半圆形导线在磁场中以频率f 绕图中半圆的直径旋转.整个电路的电阻为R .求:感应电流的最大值.题11.7图解:)cos(2π02ϕωΦ+=⋅=t r B S B m∴Bfr f r B r B t r B t m m i 222202ππ22π2π)sin(2πd d ===+=-=ωεϕωωΦε∴RBf r R I m 22π==ε11.8如题11.8图所示,长直导线通以电流I =5A,在其右方放一长方形线圈,两者共面.线圈长b =0.06m,宽a =0.04m,线圈以速度v =0.03m/s垂直于直线平移远离.求:d =0.05m时线圈中感应电动势的大小和方向.题11.8图解:AB 、CD 运动速度v方向与磁力线平行,不产生感应电动势.DA 产生电动势⎰==⋅⨯=AD I vb vBb l B v d2d )(01πμεBC 产生电动势)(π2d )(02d a I vbl B v CB+-=⋅⨯=⎰με∴回路中总感应电动势8021106.111(π2-⨯=+-=+=ad d Ibv μεεεV 方向沿顺时针.11.9长度为l 的金属杆ab 以速率v在导电轨道abcd 上平行移动.已知导轨处于均匀磁场B中,B 的方向与回路的法线成60°角(如题11.9图所示),B的大小为B =kt (k 为正常).设t =0时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向.解:⎰==︒=⋅=22212160cos d klvt lv kt Blvt S B m Φ∴klvt tm-=-=d d Φε即沿abcd 方向顺时针方向.题11.9图11.10一矩形导线框以恒定的加速度向右穿过一均匀磁场区,B的方向如题11.10图所示.取逆时针方向为电流正方向,画出线框中电流与时间的关系(设导线框刚进入磁场区时t =0).解:如图逆时针为矩形导线框正向,则进入时0d d <Φt,0>ε;题11.10图(a)题11.10图(b)在磁场中时0d d =tΦ,0=ε;出场时0d d >tΦ,0<ε,故t I -曲线如题10-9图(b)所示.题11.11图11.11导线ab 长为l ,绕过O 点的垂直轴以匀角速ω转动,aO =3l磁感应强度B 平行于转轴,如图11.11所示.试求:(1)ab 两端的电势差;(2)b a ,两端哪一点电势高?解:(1)在Ob 上取dr r r +→一小段则⎰==320292d l Ob l B r rB ωωε同理⎰==302181d l Oa l B r rB ωωε∴2261)92181(l B l B Ob aO ab ωωεεε=+-=+=(2)∵0>ab ε即0<-b a U U ∴b 点电势高.题11.12图11.12如题11.12图所示,长度为b 2的金属杆位于两无限长直导线所在平面的正中间,并以速度v平行于两直导线运动.两直导线通以大小相等、方向相反的电流I ,两导线相距2a .试求:金属杆两端的电势差及其方向.解:在金属杆上取r d 距左边直导线为r ,则ba b a Iv r r a r Iv l B v b a b a B A AB -+-=-+-=⋅⨯=⎰⎰+-lnd 211(2d )(00πμπμε ∵<AB ε∴实际上感应电动势方向从A B →,即从图中从右向左,∴ba ba Iv U AB -+=ln 0πμ题11.13图11.13磁感应强度为B的均匀磁场充满一半径为R 的圆柱形空间,一金属杆放在题11.13图中位置,杆长为2R ,其中一半位于磁场内、另一半在磁场外.当tBd d >0时,求:杆两端的感应电动势的大小和方向.解:∵bcab ac εεε+=tBR B R t t ab d d 43]43[d d d d 21=--=-=Φε=-=tabd d 2Φεt BR B R t d d 12π]12π[d d 22=--∴tB R acd d ]12π43[22+=ε∵0d d >tB∴0>ac ε即ε从ca →11.14半径为R的直螺线管中,有dtdB>0的磁场,一任意闭合导线abca ,一部分在螺线管内绷直成ab 弦,a ,b 两点与螺线管绝缘,如题11.14图所示.设ab =R ,试求:闭合导线中的感应电动势.解:如图,闭合导线abca 内磁通量436π(22R R B S B m -=⋅= Φ∴tBR R i d d )436π(22--=ε∵0d d >tB∴0<i ε,即感应电动势沿acba ,逆时针方向.题11.14图题11.15图11.15如题11.15图所示,在垂直于直螺线管管轴的平面上放置导体ab 于直径位置,另一导体cd 在一弦上,导体均与螺线管绝缘.当螺线管接通电源的一瞬间管内磁场如题11.15图示方向.试求:(1)ab 两端的电势差;(2)cd 两点电势高低的情况.解:由⎰⎰⋅-=⋅l S tB l Ed d d d 旋知,此时旋E 以O 为中心沿逆时针方向.(1)∵ab 是直径,在ab 上处处旋E与ab 垂直∴⎰=⋅ll 0d 旋∴0=ab ε,有b a U U =(2)同理,0d >⋅=⎰l E cddc旋ε∴0<-c d U U 即dc U U >题11.16图11.16一无限长的直导线和一正方形的线圈如题11.16图所示放置(导线与线圈接触处绝缘).求:线圈与导线间的互感系数.解:设长直电流为I ,其磁场通过正方形线圈的互感磁通为⎰==32300122ln π2d π2a a Iar r Ia μμΦ∴2ln π2012aI M μΦ==11.17两线圈顺串联后总自感为1.0H,在它们的形状和位置都不变的情况下,反串联后总自感为0.4H.试求:它们之间的互感.解:∵顺串时M L L L 221++=反串联时M L L L 221-+='∴M L L 4='-15.04='-=L L M H题11.18图11.18一矩形截面的螺绕环如题11.18图所示,共有N匝.试求:(1)此螺线环的自感系数;(2)若导线内通有电流I ,环内磁能为多少?解:如题11.18图示(1)通过横截面的磁通为⎰==baabNIh r h r NI ln π2d π200μμΦ磁链abIh N N lnπ220μΦψ==∴ab h N I L lnπ220μψ==(2)∵221LI W m =∴ab h I N W m lnπ4220μ=11.19一无限长圆柱形直导线,其截面各处的电流密度相等,总电流为I .求:导线内部单位长度上所储存的磁能.解:在R r <时20π2R I B r μ=∴4222002π82R r I B w m μμ==取r r V d π2d =(∵导线长1=l )则⎰⎰===RR m I R r r I r r w W 00204320π16π4d d 2μμπ。
上海交大版大学物理习题册下册答案

大学物理(下册)答案第十一章 静电场【例题精选】例11-1 如图所示,在坐标(a ,0)处放置一点电荷+q ,在坐标(-a ,0)处放置另一点电荷-q .P 点是x 轴上的一点,坐标为(x ,0).当x >>a 时,该点场强的大小为:(A)x q 04επ. (B) 30x qa επ. (C) 302x qa επ. (D) 204x qεπ. [ B ]例11-2半径为R 的均匀带电球体的静电场中各点的电场强度的大小E 与距球心的距离r的关系曲线为:[ B ]例11-3 半径为R 的“无限长”均匀带电圆柱面的静电场中各点的电场强度的大小E 与距轴线的距离r 的关系曲线为:[ B ]例11-4一半径为R 的带有一缺口的细圆环,缺口长度为 d (d<<R)环上均匀带有正电,电荷为q ,如图所示.则圆心O 处的场强大小E = ;场强方向为 .()30220824Rqdd R R qd εεπ≈-ππ 从O 点指向缺口中心点. 例11-5 均匀带电直线长为d ,电荷线密度为+λ,以导线中点O 为球心,R 为半径(R >d )作一球面,如图所示,则通过该球面的电场强度通量为______。
带电直线的延长线与球面交点P 处的电场强度的大小为_____,方向________。
0/ελd ; ()2204d R d-πελ ;沿矢径OP例11-6 有一边长为a 的正方形平面,在其中垂线上距中心O 点a /2处,EO r(A) E ∝1/r有一电荷为q 的正点电荷,如图,则通过该平面的电场强度通量为 (A)03εq . (B) 04επq (C) 03επq . (D) 06εq [ D ] 例11-7 两块“无限大”的均匀带电平行平板,其电荷面密度分别 为σ( σ>0)及-2 σ,如图所示。
试写出各区域的电场强度E 。
Ⅰ区E 的大小__________________,方向____________。
大学物理——11-1磁感应强度B

电源电动势的方向:电源内部电势升高的方向; 或在电源内部从负极指向正极。
§11.1磁场 磁感应强度
一、基本磁现象
永磁体的性质:
(1)具有磁性,能吸引铁、 钴、镍等物质。 (2)具有磁极,分磁北极N和磁南极S。 (3)磁极之间存在相互作用,同性相斥,异性相吸。 (4)磁极不能单独存在。
司南勺
在磁极区域,磁性最强。
S
S
载流子:导体中宏观定向运动的带电粒子。
电流强度(I):单位时间内通过导体任一 横截面的电荷 。
dq I dt
3
单位:安培 1A 1 C s 1
6
1A 10 mA 10 μ A
恒定电流(直流电): 导体中通过任一截面的电流不随时间变化(I = 恒量)。 电流的方向:导体中正电荷的流向。
B
dF
dF
B
θ
Idl
三、安培力
电流元 Idl 置于磁感应强度为 B 的外磁场中时,
电流元所受的力为: 安培定律:
dF Idl B
安培定律:
一段电流元Idl在磁场中所受的力dF,其大小与电 流元Idl成正比,与电流元所在处的磁感应强度B成正 比,与电流元Idl和B的夹角的正弦成正比,即
dS
n
dI 大小: j j 速度方向上的单位矢量 d S d 对任意小面元 d S , I j d S j d S dS 对任意 dI I j d S j S 曲面S:
d S
P 处正电荷定向移动 j
三、电源和电动势
+
第11章 恒定电流的磁场
11.1 磁感应强度 B
大学物理课后习题详解(第十一章)中国石油大学

习 题 十 一11-1 如图所示,在点电荷+Q 的电场中放置一导体球。
由点电荷+Q 到球心的径矢为r ,在静电平衡时,求导体球上的感应电荷在球心O 点处产生的场强E 。
[解] 静电平衡时,导体内任一点的场强为零,O 点的场强是点电荷+Q 及球面上感应电荷共同贡献的,由场强叠加原理有0Q 0='+=E E E r E E 20Q 4r Q πε-=-='11-2 一带电量为q 、半径为r 的金属球A ,放在内外半径分别为1R 和2R 的不带电金属球壳B 内任意位置,如图所示。
A 与B 之间及B 外均为真空,若用导线把A ,B 连接,求球A 的电势。
[解] 以导线把球和球壳连接在一起后,电荷全部分布在球壳的外表面上(或者说导体球的电荷与球壳内表面电荷中和),整个系统是一个等势体,因此20B A 4R q U U πε==11-3 如图所示,把一块原来不带电的金属板B 移近一块已带有正电荷Q 的金属板A ,平行放置。
设两板面积都是S ,板间距为d ,忽略边缘效应,求:(1)板B 不接地时,两板间的电势差;(2)板B 接地时,两板间的电势差。
[解] (1) 由61页例1知,两带电平板导体相向面上电量大小相等符号相反,而相背面上电量大小相等符号相同,因此当板B 不接地,电荷分布为因而板间电场强度为 SQ E 02ε=电势差为 SQdEd U 0AB 2ε== (2) 板B 接地时,在B 板上感应出负电荷,电荷分布为B A-Q/2Q/2Q/2Q/2A B -QQ故板间电场强度为 SQ E 0ε=电势差为 SQdEd U 0AB ε==11-4 如图所示,有三块互相平行的导体板,上导体板到中间导体板的距离为5.0cm ,上导体板到下导体板的距离为8.0cm ,外面的两块用导线连接,原来不带电。
中间一块两面上带电,其面电荷密度之和为25m C 103.1-⨯=σ。
求每块板的两个表面的面电荷密度各是多少(忽略边缘效应)?[解] 因忽略边缘效应,可把三个导体板看作无限大平板,由例1知32σσ-= (1) 45σσ-= (2)忽略边缘效应,则导体板可看成无限大的,具有屏蔽性,在相邻导体板之间的电场只由相对于二表面上电荷决定。
大学物理答案(湖南大学版)

第11章 热力学基本原理11.1 一系统由如图所示的状态a 沿abc 到达c ,有350J 热量传入系统,而系统对外做功126J .(1)经adc ,系统对外做功42J ,问系统吸热多少?(2)当系统由状态c 沿曲线ac 回到状态a 时,外界对系统做功为84J ,问系统是吸热还是放热,在这一过程中系统与外界之间的传递的热量为多少?解:(1)当系统由状态a 沿abc 到达c 时,根据热力学第一定律,吸收的热量Q 和对外所做的功A 的关系是Q = ΔE + A ,其中ΔE 是内能的增量.Q 和A 是过程量,也就是与系统经历的过程有关,而ΔE 是状态量,与系统经历的过程无关.当系统沿adc 路径变化时,可得Q 1 = ΔE 1 + A 1, 这两个过程的内能的变化是相同的,即ΔE 1 = ΔE ,将两个热量公式相减可得系统吸收的热量为Q 1 = Q + A 1 - A = 266(J). (2)当系统由状态c 沿曲线ac 回到状态a 时,可得Q 2 = ΔE 2 + A 2, 其中,ΔE 2 = -ΔE ,A 2 = -84(J),可得Q 2 = -(Q – A ) + A 2 = -308(J), 可见:系统放射热量,传递热量的大小为308J .11.2 1mol 氧气由状态1变化到状态2,所经历的过程如图,一次沿1→m →2路径,另一次沿1→2直线路径.试分别求出这两个过程中系统吸收热量Q 、对外界所做的功A 以及内能的变化E 2 -E 1.解:根据理想气体状态方程pV = RT ,可得气体在状态1和2的温度分别为T 1 = p 1V 1/R 和T 2 = p 2V 2. 氧气是双原子气体,自由度i = 5,由于内能是状态量,所以其状态从1到2不论从经过什么路径,内能的变化都是212211()()22i iE R T T p V p V ∆=-=-= 7.5×103(J). 系统状态从1→m 的变化是等压变化,对外所做的功为2121d ()V V A p V p V V ==-⎰= 8.0×103(J).系统状态从m →2的变化是等容变化,对外不做功.因此系统状态沿1→m →2路径变化时,对外做功为8.0×103J ;吸收的热量为Q = ΔE + A = 1.55×104(J).系统状态直接从1→2的变化时所做的功就是直线下的面积,即21211()()2A p p V V =+-= 6.0×103(J).吸收的热量为Q = ΔE + A = 1.35×104(J).11.3 1mol 范氏气体,通过准静态等温过程,体积由V 1膨胀至V 2,求气体在此过程中所做的功?解:1mol 范氏气体的方程为2()()ap v b RT v +-=, 通过准静态等温过程,体积由V 1膨胀至V 2时气体所做的功为图11.12×图11.222112d ()d V V V V RT a A p v v v b v==--⎰⎰21ln()V V a RT v b v =-+212111ln()V b RT a V b V V -=+--.11.4 1mol 氢在压强为1.013×105Pa ,温度为20℃时的体积为V 0,今使其经以下两种过程达同一状态:(1)先保持体积不变,加热使其温度升高到80℃,然后令其作等温膨胀,体积变为原体积的2倍;(2)先使其作等温膨胀至原体积的2倍,然后保持体积不变,升温至80℃.试分别计算以上两过程中吸收的热量,气体所做的功和内能增量.将上述两过程画在同一p-V 图上并说明所得结果.解:氢气是双原子气体,自由度i = 5,由于内能是状态量,所以不论从经过什么路径从初态到终态,内能的增量都是21()2iE R T T ∆=-= 1.2465×103(J). (1)气体先做等容变化时,对外不做功,而做等温变化时,对外所做的功为2211221d d V V V V A p V RT V V==⎰⎰2ln 2RT == 2.0333×103(J), 所吸收的热量为Q 2 = ΔE + A 2 = 3.2798×103(J). (2)气体先做等温变化时,对外所做的功为2211111d d V V V V A p V RT V V==⎰⎰1ln 2RT == 1.6877×103(J), 所吸收的热量为Q 1 = ΔE + A 1 = 2.9242×103(J).如图所示,气体在高温下做等温膨胀时,吸收的热量多些,曲线下的面积也大些.11.5 为了测定气体的γ(γ=C p /C V ),可用下列方法:一定量气体,它的初始温度、体积和压强分别为T 0,V 0和p 0.用一根通电铂丝对它加热,设两次加热电流和时间相同,使气体吸收热量保持一样.第一次保持气体体积V 0不变,而温度和压强变为T 1,p 1;第二次保持压强p 0不变,而温度和体积则变为T 2,V 2,证明:100200()()p p V V V p γ-=-.证:定容摩尔热容为(d )d VV Q C T=,在本题中为C V = ΔQ /(T 1 – T 0);定压摩尔热容为(d )d pp Q C T=,在本题中为C p = ΔQ /(T 2 – T 0).对于等容过程有p 1/T 1 = p 0/T 0,所以T 1 = T 0p 1/p 0;对于等压过程有V 2/T 2 = V 0/T 0,所以T 2 = T 0V 2/V 0. 因此100100200200//p VC T T T p p T C T T T V V T γ--===--100200()()p p V V V p -=-. 证毕.11.7 理想气体的既非等温也非绝热的过程可表示为pV n = 常数,这样的过程叫多方过程,n 叫多方指数.(1)说明n = 0,1,γ和∞各是什么过程. (2)证明:多方过程中理想气体对外做功:11221p V p V A n -=-.(3)证明:多方过程中理想气体的摩尔热容量为:()1V nC C nγ-=-,并就此说明(1)中各过程的值.(1)说明:当n = 0时,p 为常数,因此是等压过程;当n = 1时,根据理想气体状态方程pV = RT ,温度T 为常数,因此是等温过程; 当n = γ时表示绝热过程;当n =∞时,则有p 1/n V = 常数,表示等容过程.(2)证:对于多方过程有pV n = p 1V 1n = p 2V 2n = C (常数), 理想气体对外所做的功为2211d d V V n V V A p V CV V -==⎰⎰11112221()11n n pV p V CV V n n ---=-=--.证毕. (2)[证明]对于一摩尔理想气体有pV = RT ,因此气体对外所做的功可表示为121RT RT A n -=-,气体吸收的热量为Q = ΔE + A = 21211()()21i R T T R T T n-+--,摩尔热容量为2112()212(1)Q i i in C R R T T n n +-==+=---(2)/121Vi i n i nR C n nγ+--=⋅=--.证毕.11.8 一气缸内贮有10mol 的单原子理想气体,在压缩过程中,外力做功209J ,,气体温度升高1℃.试计算气体内能增量和所吸收的热量,在此过程中气体的摩尔热容是多少? 解:单原子分子的自由度为i = 3,一摩尔理想气体内能的增量为2iE R T ∆=∆= 12.465(J),10mol 气体内能的增量为124.65J . 气体对外所做的功为A = - 209J ,所以气体吸收的热量为Q = ΔE + A = -84.35(J). 1摩尔气体所吸收的热量为热容为-8.435J ,所以摩尔热容为C = -8.435(J·mol -1·K -1).11.9 一定量的单原子分子理想气体,从初态A 出发,沿图示直线过程变到另一状态B ,又经过等容、等压过程回到状态A . (1)A →B ,B →C ,C →A ,各过程中系统对外所做的功A ,内能的增量ΔE 以及所吸收的热量Q . (2)整个循环过程中系统对外所做的总功以及从外界吸收的总热量(各过程吸热的代数和).解:单原子分子的自由度i = 3.(1)在A →B 的过程中,系统对外所做的功为AB 直线下的面积,即A AB = (p A + p B )(V B – V A )/2 = 200(J), 内能的增量为()2AB B A i M E R T T μ∆=-()2B B A A ip V p V =-= 750(J). 吸收的热量为Q AB = ΔE AB + A AB = 950(J).B →C 是等容过程,系统对外不做功.内能的增量为()2BC C B i M E R T T μ∆=-()2C C B B ip V p V =-= -600(J). 吸收的热量为Q BC = ΔE BC + A BC = -600(J),就是放出600J 的热量.C →A 是等压过程,系统图11.9对外做的功为A CA = p A (V A – V C ) = -100(J).内能的增量为 ()2CA A C i M E R T T μ∆=-()2A A C C ip V p V =-= -150(J). 吸收的热量为Q CA = ΔE CA + A CA = -250(J),也就是放出250J 的热量.(2)对外做的总功为A = A AB + A BC + A CA = 100(J).吸收的总热量为Q = Q AB + Q BC + Q CA = 100(J).由此可见:当系统循环一周时,内能不变化,从外界所吸收的热量全部转化为对外所做的功.11.10 1mol 单原子分子的理想气体,经历如图所示的的可逆循环,连接ac 两点的曲线Ⅲ的方程为p = p 0V 2/V 02,a 点的温度为T 0.(1)以T 0,R 表示Ⅰ,Ⅱ,Ⅲ过程中气体吸收的热量. (2)求此循环的效率. 解:由题可知:p 0V 0 = RT 0.(1)I 是等容过程,系统不对外做功,内能的变化为I 00()()22b a b i i E R T T p V RT ∆=-=-0000(9)122ip V RT RT =-=. 吸收的热量为Q I = ΔE I = 12RT 0.II 是等容过程,根据III 的方程,当p c = 9p 0时,V c = 3V 0.系统对外所做的功为 A II = p b (V c - V b ) = 9p 02V 0 = 18RT 0. 内能的变化为II ()()22c b c c b b i iE R T T p V p V ∆=-=-00092272i p V RT ==.吸收的热量为Q II = ΔE II + A II = 45RT 0.在过程III 中,系统对外所做的功为20III 20d d aa ccV VV V p A p V V V V ==⎰⎰33002026()33a c p V V RT V =-=-.内能的变化为III 0()()22a c c c i iE R T T RT p V ∆=-=-0000(93)392i RT p V RT =-=-.吸收的热量为Q III = ΔE III + A III = -143RT 0/3.(2)系统对外做的总功为A = A I + A II + A III = 28RT 0/3, 系统从高温热源吸收的热量为Q 1 = Q I + Q II = 57RT 0, 循环效率为1AQ η== 16.37%.11.11 1mol 理想气体在400K 和300K 之间完成卡诺循环.在400K 等温线上,初始体积为1×10-3m 3,最后体积为5×10-3m 3.试计算气体在此循环中所做的功及从高温热源所吸收的热量和向低温热源放出的热量.解:卡诺循环由气体的四个变化过程组成,等温膨胀过程,绝热膨胀过程,等温压缩过程,绝热压缩过程.气体在等温膨胀过程内能不改变,所吸收的热量全部转化为对外所做的功,即22111111d d V V V V Q A p V RT V V ===⎰⎰211ln VRT V == 5.35×103(J).气体在等温压缩过程内能也不改变,所放出的热量是由外界对系统做功转化来的,即90图11.1044332221d d V V V V Q A p V RT V V ===⎰⎰423ln V RT V =,利用两个绝热过程,可以证明V 4/V 3 = V 2/V 1,可得Q 2 = 4.01×103(J).气体在整个循环过程中所做的功为A = Q 1 - Q 2 = 1.34×103(J).11.13 一热机在1000K 和300K 的两热源之间工作,如果 (1)高温热源提高100K , (2)低温热源降低100K ,从理论上说,哪一种方案提高的热效率高一些?为什么? 解:(1)热机效率为η = 1 – T 2/T 1,提高高温热源时,效率为η1 = 1 – T 2/(T 1 + ΔT ), 提高的效率为221111T T T T T ηηη∆=-=-+∆ 2113()110T T T T T ∆==+∆= 2.73%. (2)降低低温热源时,效率为η2 = 1 – (T 2 - ΔT )/T 1, 提高的效率为222211T T T T T ∆ηηη-∆=-=- = ΔT /T = 10%. 可见:降低低温热源更能提高热机效率.对于温度之比T 2/T 1,由于T 2 < T 1,显然,分子减少一个量比分母增加同一量要使比值降得更大,因而效率提得更高.11.14 使用一制冷机将1mol ,105Pa 的空气从20℃等压冷却至18℃,对制冷机必须提供的最小机械功是多少?设该机向40℃的环境放热,将空气看作主要由双原子分子组成. 解:空气对外所做的功为2211d d V V V V A p V p V ==⎰⎰= p (V 2– V 1) = R (T 2– T 1),其中T 2 = 291K ,T 1 = 293K .空气内能的增量为21()2iE R T T ∆=-, 其中i 表示双原子分子的自由度:i = 5.空气吸收的热量为Q = ΔE + A =212()2i R T T +-= -58.17(J). 负号表示空气放出热量.因此,制冷机从空气中吸收的热量为Q 2 = -Q = 58.17(J).空气是低温热源,为了简化计算,取平均温度为T`2 = (T 2 + T 1)/2 = 292(K); 环境是高温热源,温度为T`1 = 313(K).欲求制冷机提供的最小机械功,就要将制冷当作可逆卡诺机, 根据卡诺循环中的公式1122Q T Q T =, 可得该机向高温热源放出的热量为`112`2T Q Q T == 62.35(J),因此制冷机提供的最小机械功为W = Q 1 - Q 2 = 4.18(J).[注意]由于低温热源的温度在变化,所以向高温热源放出的热量的微元为`112`2d d T Q Q T =,其中`222d d d 2i Q Q R T +=-=-,因此``211`2d 2d 2T i Q RT T +=-,积分得制冷机向高温热源放出的热量为`21112ln 2T i Q RT T +=-= 62.35(J), 与低温热源取温度的平均值的计算结果相同(不计小数点后面2位以后的数字).。
《大学物理学》第二版下册习题解答

第九章 静电场中的导体9.1 选无穷远处为电势零点,半径为R 的导体球带电后,其电势为U 0,则球外离球心距离为r 处的电场强度的大小为(A) 302rU R . (B) R U 0. (C) 20rRU . (D) r U 0. [ C ] 9.2如图所示,一厚度为d 的“无限大”均匀带电导体板,电荷面密度为σ ,则板的两侧离板面距离均为h 的两点a 、b 之间的电势差为:(A) 0. (B)2εσ. (C) 0εσh . (D) 02εσh. [ A ]9.3 一个未带电的空腔导体球壳,内半径为R .在腔内离球心的距离为d 处( d < R ),固定一点电荷+q ,如图所示. 用导线把球壳接地后,再把地线撤去.选无穷远处为电势零点,则球心O 处的电势为 (A) 0 . (B)dq04επ.(C)R q 04επ-. (D) )11(4Rd q -πε. [ D ]9.4 在一不带电荷的导体球壳的球心处放一点电荷,并测量球壳内外的场强分布.如果将此点电荷从球心移到球壳内其它位置,重新测量球壳内外的场强分布,则将发现: (A) 球壳内、外场强分布均无变化. (B) 球壳内场强分布改变,球壳外不变. (C) 球壳外场强分布改变,球壳内不变.(D) 球壳内、外场强分布均改变. [ B ]9.5在一个孤立的导体球壳内,若在偏离球中心处放一个点电荷,则在球壳内、外表面上将出现感应电荷,其分布将是:(A) 内表面均匀,外表面也均匀. (B) 内表面不均匀,外表面均匀. (C) 内表面均匀,外表面不均匀.(D) 内表面不均匀,外表面也不均匀. [ B ]9.6当一个带电导体达到静电平衡时: (A) 表面上电荷密度较大处电势较高. (B) 表面曲率较大处电势较高. (C) 导体内部的电势比导体表面的电势高.(D) 导体内任一点与其表面上任一点的电势差等于零. [ D ]9.7如图所示,一内半径为a 、外半径为b 的金属球壳,带有电荷Q ,在球壳空腔内距离球心r 处有一点电荷q .设无限远处为电势零点,试求: (1) 球壳内外表面上的电荷. (2) 球心O 点处,由球壳内表面上电荷产生的电势. (3) 球心O 点处的总电势.解:(1) 由静电感应,金属球壳的内表面上有感生电荷-q ,外表面上带电荷q +Q .(2) 不论球壳内表面上的感生电荷是如何分布的,因为任一电荷元离O 点的 距离都是a ,所以由这些电荷在O 点产生的电势为adqU q 04επ=⎰-aq04επ-=(3) 球心O 点处的总电势为分布在球壳内外表面上的电荷和点电荷q 在O 点产生的电势的代数和q Q q q O U U U U +-++=r q 04επ=a q 04επ-b q Q 04επ++ )111(40b a r q +-π=εbQ04επ+9.8有一"无限大"的接地导体板 ,在距离板面b 处有一电荷为q 的点电荷.如图所示,试求: (1) 导体板面上各点的感生电荷面密度分布.(2) 面上感生电荷的总电荷.解:(1) 选点电荷所在点到平面的垂足O 为原点,取平面上任意点P ,P 点距离原点为r ,设P 点的感生电荷面密度为σ.在P 点左边邻近处(导体内)场强为零,其法向分量也是零,按场强叠加原理,()024cos 0220=++=⊥εσεθb r q E P π 2分 ∴ ()2/3222/b r qb +-=πσ 1分(2) 以O 点为圆心,r 为半径,d r 为宽度取一小圆环面,其上电荷为 ()2/322/d d b r qbrdr S Q +-==σ总电荷为 ()q brrdrqb dS Q S-=+-==⎰⎰∞2/322σ 2分O9.9 如图所示,中性金属球A ,半径为R ,它离地球很远.在与球心O 相距分别为a 与b 的B 、C 两点,分别放上电荷为q A 和q B 的点电荷,达到静电平衡后,问: (1) 金属球A 内及其表面有电荷分布吗?(2) 金属球A 中的P 点处电势为多大?(选无穷远处为电势零点)B解:(1) 静电平衡后,金属球A 内无电荷,其表面有正、负电荷分布,净带电荷为零. (2) 金属球为等势体,设金属球表面电荷面密度为σ. ()()0004///4/d εεσπ++π⋅==⎰⎰a q a q R S U U B A S P A∵0d =⋅⎰⎰AS S σ∴ ()()04///επ+=a q a q U B A P9.10三个电容器如图联接,其中C 1 = 10×10-6 F ,C 2 = 5×10-6 F ,C 3 = 4×10-6 F ,当A 、B 间电压U =100 V 时,试求:(1) A 、B 之间的电容;(2) 当C 3被击穿时,在电容C 1上的电荷和电压各变为多少?解:(1) =+++=321321)(C C C C C C C 3.16×10-6 F(2) C 1上电压升到U = 100 V ,电荷增加到==U C Q 111×10-3 C第十章 静电场中的电介质10.1 关于D的高斯定理,下列说法中哪一个是正确的? (A) 高斯面内不包围自由电荷,则面上各点电位移矢量D为零.(B) 高斯面上处处D为零,则面内必不存在自由电荷.(C) 高斯面的D通量仅与面内自由电荷有关.(D) 以上说法都不正确. [ C ]10.2一导体球外充满相对介电常量为εr 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度σ为(A) ε 0 E . (B) ε 0 ε r E .(C) ε r E . (D) (ε 0 ε r - ε 0)E . [ B ]10.3 一平行板电容器中充满相对介电常量为εr 的各向同性均匀电介质.已知介质表面极化电荷面密度为±σ′,则极化电荷在电容器中产生的电场强度的大小为:(A) 0εσ'. (B) r εεσ0'. (C) 02εσ'. (D)rεσ'. [ A ]10.4一平行板电容器始终与端电压一定的电源相联.当电容器两极板间为真空时,电场强度为0E ,电位移为0D,而当两极板间充满相对介电常量为εr 的各向同性均匀电介质时,电场强度为E ,电位移为D,则(A) r E E ε/0 =,0D D =. (B) 0E E =,0D D rε=.(C) r E E ε/0 =,r D D ε/0 =. (D) 0E E =,0D D=. [ B ]10.5如图所示, 一球形导体,带有电荷q ,置于一任意形状的空腔导体中.当用导线将两者连接后,则与未连接前相比系统静电场能量将 (A) 增大. (B) 减小.(C) 不变. (D) 如何变化无法确定. [ B ]q10.6将一空气平行板电容器接到电源上充电到一定电压后,断开电源.再将一块与极板面积相同的各向同性均匀电介质板平行地插入两极板之间,如图所示. 则由于介质板的插入及其所放位置的不同,对电容器储能的影响为:(A) 储能减少,但与介质板相对极板的位置无关. (B) 储能减少,且与介质板相对极板的位置有关. (C) 储能增加,但与介质板相对极板的位置无关.(D) 储能增加,且与介质板相对极板的位置有关. [ A ]介质板10.7静电场中,关系式 P E D+=0ε(A) 只适用于各向同性线性电介质. (B) 只适用于均匀电介质. (C) 适用于线性电介质.(D) 适用于任何电介质. [ D ]10.8一半径为R 的带电介质球体,相对介电常量为εr ,电荷体密度分布ρ = k / r 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
螺线管与测量线圈的轴线平行,若将测量线圈翻转180°,则通
过测量线圈某导线截面上的电量q为
(A)20nINA /R .
(B) 0nINA /R .
(C) 0NIA /R .
(D) 0nIA /R.
I
答案:[ A ]
A
螺线管中部 磁场为 B 0nI
I
A NBA 0nINA
图3
dt
t
1/16
大学物理
三、计算题
1. 如图15所示,长直导线AC中的电流I沿导线向上,并以dI /dt
= 2 A/s的变化率均匀增长. 导线附近放一个与之同面的直角三
角形线框,其一边与导线平行,位置及线框尺寸如图所示. 求
此线框中产生的感应电动势的大小和方向.
C
解:建立坐标如图所示,取顺时针为三角形 回路电动势正向,得三角形面法线垂直纸面向 里.取窄条面积微元
UAC =
vbl s,in当以速度v沿y轴正向运动时. A、C两点中
点电A势高.
y
B
A
O C
图14
x
9.自感为0.25H的线圈中,当电流在(1/16)s内由2A均 匀减小到零时,线圈中自感电动势的大小为 8V .
L dI L I 0.25 0 2 8V
d dt
rr B dS
r dB dt
r dS
dB dt
dS
Ñ dB R2 dt
rr
EK dl 2 r2EK
方向由右手定则判定
EK
dB dt
R2 2r2
EC
aC
FC m
eEC m
eR2 2mr2
dB dt
大学物理
5. 半径为a的长为l(l>>a)密绕螺线管,单位长度上的匝数为n, 当通
q
d
dt
d dt
( 0I0 sin(t)
2r2
( / 2) (0)
r12
) 0 r12
0
r12
2r2 I0
I0
cos(t)
R
R
2Rr2
大学物理
2. 如图10所示,长直导线中通有电流I,有一与长直导线共面且
垂直于导线的细金属棒AB,以速度v平行于长直导线作匀速运
R
R
R 2aR
大学物理
10. 一圆形线圈C1有N1匝,线圈半径为r.将此线圈放 在另一半径为R(R>>r),匝数为N2的圆形大线圈C2 的中心,两者同轴共面.则此二线圈的互感系数M为
(A) 0N1N2R/2. (B) 0N1N2R2/(2r). (C) 0N1N2r2/(2R). ( D) 0N1N2r/2.
答案:[ D ]
d
dt
磁通量变化率同,感应电动势同,但材料不同, 电阻不同,所以感应电流不同
5. 如4图,当无限长直电流旁的边大长为学l的物正理方形回路abcda
(回路与I共面且bc、da与I平行)以速率v向右运动时,则某
时刻(此时ad距I为r)回路的感应电动势的大小及感应电流
的流向是:
d
Q i dq 1 d
dt
dt R R dt
dq d q (A ) A 20nINA
R
R
R
R
大学物理
4. 若尺寸相同的铁环与铜环所包围的面积中穿过相同变化率 的磁通量,则在两环中 (A)感应电动势不同,感应电流相同. (B) 感应电动势相同,感应电流也相同. (C) 感应电动势不同,感应电流也不同. (D) 感应电动势相同,感应电流不同.
(A)
0 Iv l 2r
,电流流向dcba
.
(B)
0 Ivl 2 2r(r l)
,电流流向dcba.
ab
I
v
dc
(C) 0Ivl ,电流流向abcd.
图4
2r
(D) 0Ivl 2 ,电流流向a b c d
2r(r l)
答案:[ B ] 假设d c b a为正方向,线圈里面磁通量为
3. 半径为R的金属圆板在均匀磁场中以角速度绕中心轴旋转,均
匀磁场的方向平行于转轴,如图11所示.这时板中由中心至同一边
缘点的不同曲线上总感应电动势的大小为 BR2 / 2,
方向 沿曲线中心向外 .
BO
O 图11
大学物理
4. 如图12所示. 匀强磁场局限于半径为R的圆柱形空间区域, B垂直
d
dt
d dt
rr B dS
r dB dt
r dS
dB dt
dS
Ñ
dB dt
r12
rr
EK dl 2 r1EK
方向由右手定则判定
EK
dB dt
r1 2
ED
aD
FD m
eED m
er1 2m
dB dt
大学物理
d
dt
I=I0sint,其中、I0为常数,t为时间,则任一时刻小导线环中
感应电动势的大小为
0 r12
2r2
I0
cost
.
设小导线环的电阻为R,
则在t=0到t=/(2)时间内,通过小导线环某截面的感应电量为
0 r12I0 q= 2Rr2 .
BO
0I
2r2
0 I0
2r2
sin t
a b xldx
a 2 x
b
0 Il 2 b
a
b ln
a
a
b
b
大学物理
y
C Il
Aa
b
x
dm dt
0l 2 b
b
a
b
ln
ab a
dI dt
= 5.18×10-8V
0
2
大学物理
9. 在一通有电流I的无限长直导线所在平面内, 有一半径为r、电
阻为R的导线环,环中心距直导线为a,如图8所示,且a>>r.当直
导线的电流被切断后,沿导线环流过的电量约为
(A) 0Ir2 ( 1 1 )
2R a a r
(B) 0Ia2
2rR
(C) 0Ir ln a r
答案:[ B ]
rr
B dS 0 d 0
d 0
dt
S
N
v
图1
大学物理
2. 一磁铁朝线圈运动,如图2所示,则线圈内的感应电流的方向
(以螺线管内流向为准)以及电表两端电位UA和UB的高低为: (A) I由A到B,UA UB . (B) I由B到A,UA UB . (C) I由B到A,UA UB . (D) I由A到B,UA UB .
大学物理
大学物理作业十一参考解答
一、选择题
1. 在一线圈回路中,规定满足如图1所示的旋转方向时,电动势
, 磁通量为正值。若磁铁沿箭头方向进入线圈,则 (A) d /dt 0, 0 . (B) d /dt 0, 0 . (C) d /dt 0, 0 . (D) d /dt 0, 0 .
时,abc回路中的感应电动势ε和a、c两点的电势差UaUc为
B
(A) ε= 0, UaUc= B l2/2 . (B) ε= B l2, UaUc=B l2/2.
l
b
c
(C) ε= 0, UaUc= B l2/2. (D) ε= B l2 , UaUc= B l2/2 .
于纸面向里,磁感应强度B以dB/dt=常量的速率增加. D点在柱形空
间内, 离轴线的距离为r1, C点在圆柱形空间外, 离轴线上的距离为
r2 . 将一电子(质量为m,电量为-e)置于D点,
则电子的加速度为aD=
er1 dB
2m dt ,方向向
右
;置于C点时,电子的加
eR2 dB
速度为aC= 2mr2 dt ,方向向 下 .
成轴对称分布,图为此磁场的截面,磁场按dB/dt随时间变化,
圆柱体外一点P的感应电场Ei应 (A) 等于零. (B) 无法判定. (C) 不为零,方向向左或向右.
(D) 不为零,方向向内或向外. (E) 不为零,方向向上或向
下. 答案:[ E ]
××× B
× × × × ·P
×××
图5
ຫໍສະໝຸດ ddt
rr B dS
rl 0I ldx 0Il ln r l
r 2 x
2 r
d 0Il d (ln r l ) 0Ivl2 0 方向假设同 dt 2 dt r 2 r(r l)
大学物理
6. 如图5所示,均匀磁场被局限在无限长圆柱形空间内,且
dS=ydx=[(a+bx)l/b]dx
rr
S B dS
ab
0 I
a b xldx
a 2 x
b
I 20cm
A 5cm 10cm 图15
y
C
Il
0 Il 2 b
a
b ln
a
a
b
b