初中中考数学常见几何模型简介

合集下载

中考数学常见几何模型简介

中考数学常见几何模型简介

几何问题初中几何常见模型解析➢模型一:手拉手模型-全等1等边三角形➢条件:均为等边三角形➢结论:①;②;③平分..2等腰➢条件:均为等腰直角三角形➢结论:①;②;③平分..3任意等腰三角形➢条件:均为等腰三角形➢结论:①;②;③平分..➢➢模型二:手拉手模型-相似➢条件:;将旋转至右图位置➢结论:右图中①;②延长AC交BD于点E;必有2特殊情况➢条件:;;将旋转至右图位置➢结论:右图中①;②延长AC交BD于点E;必有;③;④;⑤连接AD、BC;必有;⑥对角线互相垂直的四边形➢➢模型三:对角互补模型➢条件:①;②OC平分➢结论:①CD=CE; ②;③➢证明提示:①作垂直;如图;证明;②过点C作;如上图右;证明;➢当的一边交AO的延长线于点D时:以上三个结论:①CD=CE不变;②;③此结论证明方法与前一种情况一致;可自行尝试..➢条件:①;②平分;➢结论:①;②;③➢证明提示:①可参考“全等型-90°”证法一;②如图:在OB上取一点F;使OF=OC;证明为等边三角形..➢当的一边交AO的延长线于点D时如上图右:原结论变成:①;②;③;可参考上述第②种方法进行证明..3全等型-任意角➢条件:①;②;➢结论:①平分;②;③.➢当的一边交AO的延长线于点D时如右上图:原结论变成:①;②;③;可参考上述第②种方法进行证明..◇请思考初始条件的变化对模型的影响..➢如图所示;若将条件“平分”去掉;条件①不变;平分;结论变化如下:结论:①;②;③.➢对角互补模型总结:①常见初始条件:四边形对角互补;注意两点:四点共圆及直角三角形斜边中线;②初始条件“角平分线”与“两边相等”的区别;③两种常见的辅助线作法;④注意下图中平分时;相等是如何推导的➢模型四:角含半角模型90°1角含半角模型90°-1➢条件:①正方形;②;➢结论:①;②的周长为正方形周长的一半;也可以这样:➢条件:①正方形;②➢结论:2角含半角模型90°-2➢条件:①正方形;②;➢结论:➢辅助线如下图所示:3角含半角模型90°-3➢条件:①;②;➢结论:若旋转到外部时;结论仍然成立..4角含半角模型90°变形➢条件:①正方形;②;➢结论:为等腰直角三角形..➢1倍长中线类模型-1➢条件:①矩形;②;③;➢结论:模型提取:①有平行线;②平行线间线段有中点;可以构造“8”字全等..2倍长中线类模型-2➢条件:①平行四边形;②;③;④.➢结论:➢➢模型六:相似三角形360°旋转模型1相似三角形等腰直角360°旋转模型-倍长中线法➢条件:①、均为等腰直角三角形;②➢结论:①;②1相似三角形等腰直角360°旋转模型-补全法➢条件:①、均为等腰直角三角形;②;➢结论:①;②2任意相似直角三角形360°旋转模型-补全法➢条件:①;②;③..➢结论:①;②2任意相似直角三角形360°旋转模型-倍长法➢条件:①;②;③..➢结论:①;②➢➢模型七:最短路程模型1最短路程模型一将军饮马类2最短路程模型二点到直线类1➢条件:①平分;②为上一定点;③为上一动点;④为上一动点;➢求:最小时;的位置3最短路程模型二点到直线类24最短路程模型二点到直线类3➢条件:➢问题:为何值时;最小➢求解方法:①轴上取;使;②过作;交轴于点;即为所求;③;即.5最短路程模型三旋转类最值模型6最短路程模型三动点在圆上➢➢➢。

初中中考数学常见几何模型简介

初中中考数学常见几何模型简介

初中中考数学常见几何模型简介中考数学中,几何知识是一个非常重要的部分。

其中涵盖了许多常见的几何模型,掌握这些几何模型可以帮助学生更好地理解和解决几何题目。

本文将介绍几种常见的几何模型。

1. 点、直线、线段、射线点、直线、线段和射线是初中数学中最基本的几何概念。

点是没有任何大小和形状的;直线是由无数个点组成的,没有宽度和长度;线段是直线上的两个端点和它们之间的线段组成的;射线则是直线上一点和这个点向前的某个方向组成的。

2. 三角形、直角三角形、等边三角形、等腰三角形三角形是由三条线段组成的,其中两条线段之和必须大于第三条线段。

直角三角形则是其中一条线段和另外一条线段之间形成的直角。

等边三角形的三条边长度都相等,等腰三角形的两条边长度相等。

3. 矩形、正方形、菱形、平行四边形矩形是一个有四个直角的四边形,它的相邻两条边长度相等,其对角线长度相等。

正方形是一种特殊的矩形,它的四条边长度都相等。

菱形也是一个四边形,相邻两条边长度相等,对角线长度相等。

平行四边形则是一种有两对平行线段的四边形。

4. 圆、圆心、半径、弦、切线圆是一个平面上所有点到圆心距离相等的图形。

圆心是圆的中心点,圆的直径是通过圆心的两点之间的线段。

弦则是圆上任意两个点之间的线段,它的长度可以小于、等于或大于圆的直径。

切线是与圆相切于一个点的直线。

5. 梯形、等腰梯形梯形是一个有两条平行边和另外两条不平行边的四边形。

等腰梯形是其中两条边长度相等的梯形。

以上就是几种比较常见的几何模型的简介,在解决几何题目时,可以根据题目中给出的几何模型进行分析,找到正确的解题方法。

中考数学几何模型大汇总

中考数学几何模型大汇总

中考数学几何模型大汇总
当涉及到中考数学几何模型时,以下是一些常见的模型大汇总:
1. 三角形模型:
-等边三角形:三边长度相等的三角形。

-等腰三角形:两边长度相等的三角形。

-直角三角形:一个角度为90度的三角形。

-平面内角和为180度。

2. 四边形模型:
-正方形:四边相等且角度为90度的四边形。

-长方形:相对边相等且角度为90度的四边形。

-平行四边形:对边平行的四边形。

-梯形:有一对平行边的四边形。

-菱形:四边相等的四边形。

3. 圆模型:
-圆的面积和周长计算。

-弧长和扇形面积计算。

4. 空间几何模型:
-立体图形的表面积和体积计算:
-立方体:六个面都是正方形。

-直方体:六个面都是矩形。

-圆柱体:底面是圆形,侧面是矩形。

-圆锥体:底面是圆形,侧面是三角形。

-球体:所有点到球心的距离相等。

5. 相似模型:
-相似三角形:具有相同形状但不同大小的三角形。

-相似多边形:具有相同形状但不同大小的多边形。

6. 坐标几何模型:
-直角坐标系:平面上的点通过x轴和y轴的坐标进行定位。

-坐标点之间的距离和斜率计算。

这只是一些中考数学几何模型的大致汇总,其中还有很多其他模型和概念。

掌握这些模型和概念将有助于解决与几何相关的中考数学问题。

中考数学几何模型大汇总

中考数学几何模型大汇总

中考数学几何模型大汇总下面是中考几何模型的大汇总:1、平面直角坐标系模型平面直角坐标系模型中,我们可以使用坐标系来描述平面上图形和点的位置关系。

这个模型常用于图形的平移、旋转、对称等问题。

2、矩形模型矩形模型用于讨论四边形的性质、面积、周长等问题。

在这个模型中,我们将四边形近似为一个矩形,从而使问题更易解决。

3、三角形模型三角形模型是中考中最常见的模型之一、它可以用于计算三角形的面积、周长,讨论三角形的性质。

在这个模型中,我们通常使用海伦公式、正弦定理、余弦定理等方法来求解。

4、圆形模型圆形模型用于讨论圆、弧、扇形等问题。

在这个模型中,我们通常使用圆的周长、面积公式,以及角度与弧长的关系来进行计算。

5、球体模型球体模型用于讨论球体的体积、表面积以及球冠、球缺等问题。

在这个模型中,我们通常使用球的体积、表面积公式,以及球冠、球缺的体积和表面积公式来求解。

6、棱锥模型棱锥模型用于讨论棱锥的体积、表面积、正棱锥、锥台等问题。

在这个模型中,我们通常使用棱锥的体积、表面积公式,以及正棱锥、锥台的体积和表面积公式来求解。

7、棱柱模型棱柱模型用于讨论棱柱的体积、表面积、正棱柱、柱台等问题。

在这个模型中,我们通常使用棱柱的体积、表面积公式,以及正棱柱、柱台的体积和表面积公式来求解。

8、立体几何模型立体几何模型用于讨论正方体、长方体、正六面体等立体图形的体积、表面积、对角线等问题。

在这个模型中,我们通常使用立体图形的体积、表面积公式,以及对角线长的求法来计算。

总之,几何模型是中考数学中重要的一环,通过利用这些模型,我们可以更好地理解几何知识,更好地应对考试。

初中数学几何模型大全

初中数学几何模型大全

初中数学几何模型大全初中数学几何模型大全全等变换:平移:平移是指将平行等线段(平行四边形)沿着相同的方向平移相同的距离。

这种变换可以用来构造平行四边形。

对称:对称变换可以通过角平分线、垂直线或半角来进行。

这种变换可以用来构造对称全等的图形。

旋转:旋转变换是指将相邻等线段绕公共顶点进行旋转。

这种变换可以用来构造旋转全等的图形。

对称全等模型:这种模型是以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。

两边进行边或者角的等量代换,产生联系。

垂直也可以做为轴进行对称全等。

对称半角模型:这种模型是通过翻折构造对称全等的图形。

可以通过上图中的45°、30°、22.5°、15°及有一个角是30°直角三角形的对称来实现。

翻折后可以得到正方形或者等腰直角三角形、等边三角形、对称全等的图形。

旋转全等模型:半角:这种模型是指相邻等线段所成角含1/2角及相邻线段。

通过旋转将另外两个和为二分之一的角拼接在一起,形成对称全等的图形。

自旋转:这种模型是指有一对相邻等线段,需要构造旋转全等。

可以通过遇到60度旋60度,造等边三角形;遇到90度旋90度,造等腰直角;遇到等腰旋顶点,造旋转全等;遇中点旋180度,造中心对称的方法来实现。

共旋转:这种模型是指有两对相邻等线段,直接寻找旋转全等中点。

通过旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。

可以通过“8”字模型来证明。

模型变形:这种变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形的混用。

当遇到复杂图形找不到旋转全等时,可以先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。

中点旋转:这种模型是指通过两个正方形、两个等腰直角三角形或者一个正方形一个等腰直角三角形及两个图形顶点连线的中点,证明另外两个顶点与中点所成图形为等腰直角三角形。

初中数学八大几何模型归纳

初中数学八大几何模型归纳

初中数学八大几何模型归纳
初中数学中的八大几何模型包括:
1. 三角形相关模型:三角形的各种性质、三角形的面积计算、三角形的周长计算等;
2. 四边形相关模型:四边形的各种性质、四边形的面积计算、四边形的周长计算等;
3. 圆相关模型:圆的各种性质、圆的面积计算、圆的周长计算、圆的弧长计算等;
4. 相似三角形相关模型:相似三角形的定义、相似三角形的判定、相似三角形的面积计算等;
5. 直角三角形相关模型:直角三角形的定义、直角三角形的判定、直角三角形的面积计算等;
6. 二次函数相关模型:二次函数的定义、二次函数的图像、二次函数的值域、二次函数的对称轴等;
7. 轴对称相关模型:轴对称的定义、轴对称的图像、轴对称的性质、轴对称的图形设计等;
8. 平移相关模型:平移的定义、平移的性质、平移的图像等。

这些几何模型是初中数学中非常重要的知识点,学生在学习过程中需要熟练掌握。

此外,这些模型也是中考数学考试中经常出现的知识点,学生需要在平时的学习中多加练习,熟练掌握各种计算方法和技巧。

初中几何46种模型大全

初中几何46种模型大全篇一:初中几何46种模型大全引言几何是初中数学的重要分支,其知识点涵盖了平面几何、立体几何、向量等多个方面。

在学习几何时,掌握各种几何模型是非常重要的,这些模型可以帮助我们理解和解决几何问题,提高解题能力。

本文将介绍初中几何中的46种常见的模型,包括它们的名称、定义、性质和应用。

正文1. 正方形模型正方形模型是几何中最基本的模型之一,它是一种边长相等的矩形。

正方形模型的定义如下:在一个平面直角坐标系中,任意两条直角边的平方和等于斜边的平方。

正方形模型的性质有:- 正方形的四条边相等;- 正方形的对角线相等;- 正方形的面积等于其边长的平方。

2. 长方形模型长方形模型是有两个相等的长和两个不相等的宽的英雄。

长方形模型的定义如下:在一个平面直角坐标系中,任意两条直角边的平方和小于斜边的平方。

长方形模型的性质有:- 长方形的两条对角线相等;- 长方形的宽比长大,长比宽大;- 长方形的长和宽相等。

3. 平行线模型平行线模型是相互平行的直线。

平行线模型的定义如下:- 两直线平行,当且仅当它们的对应角相等且且它们的方向相同。

平行线模型的性质有:- 平行线之间有且仅有一个交点;- 平行线上的点的横坐标相等;- 平行线的方向相同。

4. 菱形模型菱形模型是具有四个相等的直角边的矩形。

菱形模型的定义如下:在一个平面直角坐标系中,任意两条直角边的平方和等于斜边的平方,且任意两条边的长度小于第三条边的长度。

菱形模型的性质有:- 菱形的四条边相等;- 菱形的对角线相等;- 菱形的面积等于其四条边长度的平方和。

5. 等腰三角形模型等腰三角形模型是有一个相等的腰部的两个三角形。

等腰三角形模型的定义如下:- 在一个平面直角坐标系中,任意两条直角边的平方和等于斜边的平方。

等腰三角形模型的性质有:- 等腰三角形的两条直角边相等;- 等腰三角形的底角相等;- 等腰三角形的顶角平分线相等。

6. 等边三角形模型等边三角形模型是具有三个相等的边长的三角形。

初中数学|23种模型汇总

初中数学|23种模型汇总初中数学中,有许多不同的模型方法可以帮助学生理解和解决问题。

这些模型方法以图形、物体和实际情境等形式呈现,通过具象化和抽象化的方式引导学生建立数学概念和解题能力。

以下是初中数学中常用的23种模型汇总:1.长方形模型:将实际问题或数学关系转化为长方形的长度和宽度,以便解决各种问题。

2.正方形模型:通过将关系表达为正方形的边长和面积来解决问题。

3.圆形模型:将实际问题或数学关系转换为圆的直径、半径、周长和面积,以解决相应的问题。

4.三角形模型:通过将问题转化为三角形的底边、高和面积来解决问题。

5.平行四边形模型:通过将问题转化为平行四边形的底边、高和面积来解决问题。

6.梯形模型:将问题转化为梯形的上底、下底、高和面积,以解决相应的问题。

7.直角三角形模型:通过将问题转化为直角三角形的直角边、斜边和面积来解决问题。

8.立体模型:通过制作模型或利用图形来解决与立体图形相关的问题,如长方体、正方体、圆柱体、圆锥体、球体等。

9.比例模型:通过将问题转化为比例关系来解决问题,如平均速度、单位价格等。

10.百分比模型:将问题转化为百分比的概念和计算来解决问题,如打折、涨价等。

11.质量守恒模型:通过将问题转化为质量守恒的原理来解决问题。

12.可视化模型:通过绘制图形、示意图或使用图表来解决问题,以帮助学生更好地理解和分析问题。

13.数轴模型:通过在数轴上表示数值和位置来解决问题,如正数、负数、小数、分数等。

14.曲线图模型:通过绘制曲线图或利用曲线图来解决问题,如成长曲线、销售曲线等。

15.关系图模型:通过绘制关系图或利用关系图来解决问题,如家族关系、人际关系等。

16.流程图模型:通过绘制流程图或利用流程图来解决问题,如计算、制作工艺等。

17.条形图模型:通过绘制条形图或利用条形图来解决问题,如统计数据、比较等。

18.平面几何模型:通过绘制图形和利用几何关系来解决问题,如平行线、垂直线、对称等。

初三数学几何模型

初三数学几何模型
初三数学几何模型是指在初三数学课程中使用的用来展示和解决
几何问题的模型。

这些模型可以帮助学生理解和掌握几何概念和定理,提高他们的几何思维能力和问题解决能力。

常见的初三数学几何模型包括平面图形模型、立体几何模型和投
影模型等。

平面图形模型可以使用纸板、剪纸和绳子等材料制作,用
来展示和研究平行线、垂直线、相交线、三角形、四边形、圆等几何
图形的性质和相关定理。

立体几何模型可以通过拼装和折纸的方式制作,用来研究平行四边形、正方体、棱柱、棱锥、圆锥、圆柱等立体
图形的性质和相关定理。

投影模型则可以使用灯光和投影仪等设备进
行展示,用来研究平行投影、垂直投影、中心投影等几何问题。

在初三数学课堂上,老师可以使用这些模型进行教学和演示,引
导学生观察、推理和实证,培养他们的几何思维和几何直觉。

通过实
际操作和观察,学生能够更加深入地理解几何概念和定理,提升解决
几何问题的能力。

同时,这些几何模型也可以激发学生的兴趣,使数
学学习更加生动有趣。

因此,初三数学几何模型在教学中起着重要的作用,它们能够帮
助学生更好地理解和应用几何知识,提高他们的数学水平和学习成绩。

初中所有几何模型

初中所有几何模型
初中几何中常见的模型包括但不限于以下几种:
1. 手拉手模型:这种模型通常涉及到两个三角形,其中一个三角形的顶点与另一个三角形的对应顶点相连。

根据角度和边的关系,可以证明这两个三角形是相似的或全等的。

2. 倍长中线模型:如果一个中线长度超过另一边的一半,则可以通过倍长中线来构造新的三角形,从而利用中线性质进行证明。

3. 平行线模型:通过平行线的性质,可以证明一些角的关系,或者利用平行线的传递性来证明一些线段的比例关系。

4. 角平分线模型:利用角平分线的性质,可以证明一些角或者线段的比例关系。

5. 直角三角形模型:通过直角三角形的性质,可以证明一些角或者线段的关系。

6. 对角线模型:利用对角线的性质,可以证明一些线段的比例关系,或者通过构造新的三角形来证明一些结论。

7. 旋转模型:通过旋转图形,可以证明一些结论或者找到一些新的等量关系。

8. 相似三角形模型:通过相似三角形的性质,可以证明一些角或者线段的比例关系。

9. 特殊四边形模型:对于一些特殊的四边形,如平行四边形、矩形、菱形等,可以利用它们的性质来证明一些结论。

以上是一些常见的初中几何模型,它们都是基于几何的基本性质和定理构建的。

掌握这些模型可以帮助学生在解决几何问题时更加高效和准确。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何问题
初中几何常见模型解析
(1)等边三角形
➢条件:均为等边三角形
➢结论:①;②;③平分。

(2)等腰
➢条件:均为等腰直角三角形
➢结论:①;②;③平分。

(3)任意等腰三角形
➢条件:均为等腰三角形
➢结论:①;②;③平分。


(1)一般情况
➢条件:,将旋转至右图位置
➢结论:右图中①;②延长AC交BD于点E,必有
(2)特殊情况
➢条件:,,将旋转至右图位置
➢结论:右图中①;②延长AC交BD于点E,必有;
③;④;⑤连接AD、BC,必有

⑥(对角线互相垂直的四边形)

(1)全等型-90°
➢条件:①;②OC平分
➢结论:①CD=CE; ②;③
➢证明提示:
①作垂直,如图,证明;
②过点C作,如上图(右),证明;➢当的一边交AO的延长线于点D时:
以上三个结论:①CD=CE(不变);②;③此结论证明方法与前一种情况一致,可自行尝试。

(2)全等型-120°
➢条件:①;②平分;
➢结论:①;②;③
➢证明提示:①可参考“全等型-90°”证法一;
②如图:在OB上取一点F,使OF=OC,证明为等边三角形。

➢当的一边交AO的延长线于点D时(如上图右):
原结论变成:①;
②;
③;
可参考上述第②种方法进行证明。

(3)全等型-任意角
➢条件:①;②;
➢结论:①平分;②;③
.
➢当的一边交AO的延长线于点D时(如右上图):
原结论变成:①;
②;
③;
可参考上述第②种方法进行证明。

◇请思考初始条件的变化对模型的影响。


如图所示,若将条件“平分”去掉,条件①不变,平分,结论变化如下:
结论:①;②;③.
➢对角互补模型总结:
①常见初始条件:四边形对角互补;
注意两点:四点共圆及直角三角形斜边中线;
②初始条件“角平分线”与“两边相等”的区别;
③两种常见的辅助线作法;
④注意下图中平分时,相等是如何推导的?
(1)角含半角模型90°-1
➢条件:①正方形;②;
➢结论:①;②的周长为正方形周长的一半;
也可以这样:
➢条件:①正方形;②
➢结论:
(2)角含半角模型90°-2
➢条件:①正方形;②;
➢结论:
➢辅助线如下图所示:
(3)角含半角模型90°-3
➢条件:①;②;
➢结论:
若旋转到外部时,结论仍然成立。

(4)角含半角模型90°变形
➢条件:①正方形;②;
➢结论:为等腰直角三角形。


(1)倍长中线类模型-1
➢条件:①矩形;②;③;
➢结论:
模型提取:①有平行线;②平行线间线段有中点;
可以构造“8”字全等。

(2)倍长中线类模型-2
➢条件:①平行四边形;②;③;④.➢结论:

(1)相似三角形(等腰直角)360°旋转模型-倍长中线法
➢条件:①、均为等腰直角三角形;②
➢结论:①;②
(1)相似三角形(等腰直角)360°旋转模型-补全法
➢条件:①、均为等腰直角三角形;②;
➢结论:①;②
(2)任意相似直角三角形360°旋转模型-补全法
➢条件:①;②;③。

➢结论:①;②
(2)任意相似直角三角形360°旋转模型-倍长法
➢条件:①;②;③。

➢结论:①;②

➢模型七:最短路程模型
(2)最短路程模型二(点到直线类1)
➢条件:①平分;②为上一定点;③为上一动点;④为上一动点;➢求:最小时,的位置?
(3)最短路程模型二(点到直线类2)
➢条件:
➢问题:为何值时,最小
➢求解方法:①轴上取,使;②过作,交轴于点,即为所求;
③,即.
(5)最短路程模型三(旋转类最值模型)
(6)最短路程模型三(动点在圆上)


(1)相似三角形模型-基本型(2)相似三角形模型-斜交型
(3)相似三角形模型-一线三角型(4)相似三角形模型-圆幂定理型➢。

相关文档
最新文档