蚁群算法介绍PPT课件

合集下载

蚂蚁算法PPT课件

蚂蚁算法PPT课件

路由问题 (RP)
其他问题
Bullnheimer,Hartl,Strauss Gambardella ,Taillard,Agazzi Schoonderwoerd, Bonabeau ,van der put et al White,Pagurek,Oppacher Di Caro,Dorigo Subramanian,Druschel,Chen Heusse et al Navarro Varela,Sinclair 李生红,刘泽民,周正 张素兵,刘泽民 丁建立、陈增强、袁著祉
蚂蚁圈模型调整方法相似;ij(t1)•ij(t) iej
(3)为了避免算法过早收敛非全局最优解,将各路经的信息素浓度
限制在于[min,max] 之间,即 minij ma。x 超出这个范围的值
被强制设为 min 或者 max 。
从实验结果看,MMAS算法在防止算法过早停滞及有效性方面对 AS算法有较大的改进。
Colorni, Dorigo,Maniezzo Stizle Bauer et al DenBesten, Dorigo, Maniezzo 陈义宝、周济等
AS-JSP AS-FSP ACS-SMTTP ACS-SMTWTP 工件排序蚁群算法
1994 1997 1999 1999 2002
表2 蚂蚁算法及其应用(续)
MMAS(Max-Min Ant System)模型
为避免停滞和陷入局部,Stutzle和Hoos 提出了MAX-MIN Ant System(简称MMAS)模型,它对AS进行了三点改进:
(1)为了更加充分地寻优,各路径信息素初值设为最大值 max; (2)一圈中只有最短路径的蚂蚁才进行信息素修改增加,这与AS
V
qq0 qq0

蚁群算法整理ppt

蚁群算法整理ppt

TSP问题是经典旳NP完全问题,许多算验证法及算法效率 侧试都以TSP问题为基础。在蚁群算法研究中,第一种蚁群 算法,蚂蚁系统,就是在TSP问题旳基础上提出来旳。而后, 根据TSP问题,又提出了蚁群算法系列中具有代表性旳蚁群 系统,最大一最小蚂蚁系统。
蚁群旳行为是整体协作,相互分工,以一种整体去处理一
蚁群算法求解旅行商问题
蚁群算法最初是经过对蚂蚁群落旳观察,受蚁群行为特征 启发而得出旳。蚂蚁是一种群居昆虫,在觅食、清理巢穴等 活动中,彼此依赖、相互协作共同完毕特定旳任务。就个体 来讲,单个蚂蚁旳智力和体力是极其有限旳,服务于整个群 落旳生存与发展;就群体来讲,蚁群在行为上旳分工协作、 在完毕任务过程中所体现旳自组织特征等反应出蚁群具有较 高旳智能和自我管理能力,具有很高层次组织性,这使得蚁 群能够完毕某些复杂旳任务。
第二、蚂蚁构造途径。蚂蚁按照一定旳概率拟定下一步要 到达旳城市。概率旳计算如(l)式。
(1)式表达蚂蚁在t时刻由城市i选择城市j旳概率。α是信息 素在概率计算中旳权重,它旳值越大,信息素在蚂蚁选择 下一种要到旳城市中起到旳作用越大。β是启发因子(在 TSP问题中常以d旳倒数来表达)在概率计算中所占旳权重, 它旳值越大,启发因子在蚂蚁选择城市旳过程中所起旳作 用越大.allowed是不在蚂蚁禁忌表中旳城市集合。
(4)当全部蚂蚁均完毕了信息素旳更新操作之后,统计目前 旳最短途径,而且对禁忌表以及信息素旳增长值△T(t,t+l) 进行初始化,并转到环节2。依此循环下去,直到满足算法 旳终了条件为止,例如解无法得到进一步旳改善或者到达 了事先要求旳循环次数。
在蚂蚁系统详细涉及了三个方面旳内容。
第一、初始化。对于每条边上旳信息素初始化为一种较小 旳数值r0;对每只蚂蚁,需要一种禁忌表统计自己已经走过 旳结点,初始化其禁忌表为该蚂蚁所在旳结点,禁忌表长 度为l。蚂蚁在各边上释放信息素旳量被初始化为0。

蚁群算法最全集PPT课件

蚁群算法最全集PPT课件
参数优化方法
采用智能优化算法,如遗传算法、粒子群算法等,对算法参数进行 优化,以寻找最优参数组合,提高算法性能。
04
蚁群算法的实现流程
问题定义与参数设定
问题定义
明确待求解的问题,将其抽象为优化 问题,并确定问题的目标函数和约束 条件。
参数设定
根据问题的特性,设定蚁群算法的参 数,如蚂蚁数量、信息素挥发速度、 信息素更新方式等。
动态调整种群规模
根据搜索进程的需要,动态调整参与搜索的蚁群规模,以保持种群 的多样性和搜索的广泛性。
自适应调整参数
参数自适应调整策略
根据搜索进程中的反馈信息,动态调整算法参数,如信息素挥发速 度、蚂蚁数量、移动概率等。
参数动态调整规则
制定参数调整规则,如基于性能指标的增量调整、基于时间序列的 周期性调整等,以保持算法性能的稳定性和持续性。
06
蚁群算法的优缺点分析
优点
高效性
鲁棒性
蚁群算法在解决组合优化问题上表现出高 效性,尤其在处理大规模问题时。
蚁群算法对噪声和异常不敏感,具有较强 的鲁棒性。
并行性
全局搜索
蚁群算法具有天然的并行性,可以充分利 用多核处理器或分布式计算资源来提高求 解速度。
蚁群算法采用正反馈机制,能够实现从局 部最优到全局最优的有效搜索。
强化学习
将蚁群算法与强化学习相结合,利用强化学习中的奖励机制指导 蚁群搜索,提高算法的探索和利用能力。
THANKS
感谢观看
蚂蚁在移动过程中会不断释放新 的信息素,更新路径上的信息素 浓度。
蚂蚁在更新信息素时,会根据路 径上的信息素浓度和自身的状态 来决定释放的信息素增量。
搜索策略与最优解的形成
搜索策略

蚁群算法的最好入门的PPT

蚁群算法的最好入门的PPT
5、避障规则:如果蚂蚁要移动的方向有障碍物挡住,它会 随机的选择另一个方向,并且有信息素指引的话,它会按 照觅食的规则行为。
6、播撒信息素规则:每只蚂蚁在刚找到食物或者窝的时候 撒发的信息素最多,并随着它走远的距离,播撒的信息素 越来越少。根据这几条规则,蚂蚁之间并没有直接的关系, 但是每只蚂蚁都和环境发生交互,而通过信息素这个纽带, 实际上把各个蚂蚁之间关联起来了。比如,当一只蚂蚁找 到了食物,它并没有直接告诉其它蚂蚁这儿有食物,而是 向环境播撒信息素,当其它的蚂蚁经过它附近的时候,就 会感觉到信息素的存在,进而根据信息素的指引找到了食 物。
3、觅食规则:在每只蚂蚁能感知的范围内寻找是否有食物, 如果有就直接过去。否则看是否有信息素,并且比较在能 感知的范围内哪一点的信息素最多,这样,它就朝信息素 多的地方走,并且每只蚂蚁多会以小概率犯错误,从而并 不是往信息素最多的点移动。蚂蚁找窝的规则和上面一样, 只不过它对窝的信息素做出反应,而对食物信息素没反应。
蚁群算法的分析
1、范围:蚂蚁观察到的范围是一个方格世界,蚂蚁有一个 参数为速度半径(一般是3),那么它能观察到的范围就是 3*3个方格世界,并且能移动的距离也在这个范围之内。
2、环境:蚂蚁所在的环境是一个虚拟的世界,其中有障碍 物,有别的蚂蚁,还有信息素,信息素有两种,一种是找 到食物的蚂蚁洒下的食物信息素,一种是找到窝的蚂蚁洒 下的窝的信息素。每个蚂蚁都仅仅能感知它范围内的环境 信息。环境以一定的速率让信息素消失。
蚁群算法的分析
4、移动规则: 每只蚂蚁都朝向信息素最多的方向移,并 且,当周围没有信息素指引的时候,蚂蚁会按照自己原来 运动的方向惯性的运动下去,并且,在运动的方向有Байду номын сангаас个 随机的小的扰动。为了防止蚂蚁原地转圈,它会记住最近 刚走过了哪些点,如果发现要走的下一点已经在最近走过 了,它就会尽量避开。

蚁群算法最全集PPT课件

蚁群算法最全集PPT课件

3.最大-最小蚂蚁系统
蚁群算法将蚂蚁的搜索行为集中到最优解的附近可以提高解的质
量和收敛速度,从而改进算法的性能。但这种搜索方式会使早熟
收敛行为更容易发生。 MMAS能将这种搜索方式和一种能够有效避
免早熟收敛的机制结合在一起,从而使算法获得最优的性能
13
基本蚁群算法
蚂蚁k(k=1,2,…,m)根据各个城市间连接路径上的信息素浓
基本蚁群算法
ij(t1)(1)ij(t)ij
ij n ikj
,01
k1
在算法初始化时,问题空间中所有边上的信息素都被初
信始完息化部更为集新中公0 ,在式如为一果:个 局0 太部小最,优算的法路容径易上早,熟反,之即,蚂如蚁果很 0 快太就大
,信息素对搜索方向的指导作用太低,也会影响算法的
性能。对AS来说,我们使用 0 n/ Cn ,n是蚂蚁的
蚁群算法及其应用
马文强 欢迎下载
1
在非洲的大草原上,如果你发现羚羊在奔逃, 那一定是狮子来了;如果见到狮子在躲避,那 一定是象群在发怒了;如果见到成百上千的狮 子和大象集体逃命的壮观景象,那是什么来了 呢? ——蚂蚁军团来了
2
3

算法的背景与意义

国内外研究现状

研究内容与方法

蚁群算法的应用
从当前可以检索到的文献情况看,研究和应用蚁群优化算法的学者 主要集中在比利时,意大利,英国,法国和德国等欧洲国家。日本和美 国在这两年也开始启动对蚁群算法的研究。目前,蚁群优化算法在启发 式方法范畴内已逐渐成为一个独立的分支。
尽管蚁群优化的严格理论基础尚未奠定,国内外的有关研究仍停留 在实验探索阶段,但从当前的应用效果来看,这种新型的寻优思想无疑 是具有十分光明的前景,更多深入细致的工作还有待于进一步展开。

蚁群优化算法课件

蚁群优化算法课件

05
蚁群优化算法的改进与优 化
信息素更新策略的改进
动态更新策略
根据解的质量实时调整信息素浓度,以提高算法的搜 索效率。
自适应更新策略
根据蚂蚁移动过程中信息素挥发的情况,动态调整信 息素更新规则,以保持信息素浓度的平衡。
局部与全局更新结合
在蚂蚁移动过程中,既进行局部更新又进行全局更新 ,以增强算法的全局搜索能力。
该算法利用了蚂蚁之间信息素传递的 机制,通过不断迭代更新,最终找到 最优路径或解决方案。
蚁群优化算法的起源与发展
蚁群优化算法最初起源于对自然界中蚂蚁觅食行为的研究, 发现蚂蚁能够通过信息素传递找到从巢穴到食物源的最短路 径。
随着研究的深入,蚁群优化算法逐渐发展成为一种通用的优 化算法,广泛应用于各种组合优化问题,如旅行商问题、车 辆路径问题等。
任务调度问题
总结词
蚁群优化算法在任务调度问题中能够实现高效的任务调度,提高系统整体性能。
详细描述
任务调度问题是指在一个多任务环境中,根据任务的优先级、资源需求等因素,合理分配任务到不同 的处理单元,以实现系统整体性能的最优。蚁群优化算法通过模拟蚂蚁的行为,利用信息素传递机制 ,能够实现高效的任务调度,提高系统整体性能。
利用已知领域知识
将领域专家的经验或启发式信息融入算法中,以提高算法的搜索 效率和准确性。
利用问题特性
根据问题的特性,引入与问题相关的启发式信息,以引导蚂蚁的移 动方向和选择行为。
自适应调整启发式信息
根据算法的搜索过程和结果,动态调整启发式信息的权重或规则, 以平衡算法的全局搜索和局部搜索能力。
06
蚂蚁行为规则的改进
引入变异行为
01
在蚂蚁移动过程中,随机选择某些蚂蚁进行变异操作,以增强

蚁群算法PPT课件

蚁群算法PPT课件

Macro Dorigo
2021/7/1
3
基本原理
Nest
Food
Obstacle
图1 蚂蚁正常行进,突然环境改变,增加了障碍物
2021/7/1
4
基本原理
Nest
Food
Obstacle
图2 蚂蚁以等同概率选择各条路径 较短路径信息素浓度高,选择该路径的蚂蚁增多
2021/7/1
5
基本原理
E
t=0
迭代次数 t_max 4784 1999 806 8950 6665 884 3650 2214 948 1802
程序运行时间 time 99.0466 123.0078 458.4601 148.2777 381.1539 499.8319 88.1896 149.1128 495.0127 134.2481
LumerE和FaietaB通过在Denurbourg的基本分 类模型中引入数据对象之间相似度的概念,提出了 LF聚类分析算法,并成功的将其应用到数据分析中。
2021/7/1
11
基于蚂蚁觅食行为和信息素的聚类分析模型
蚂蚁在觅食的过程中,能够分为搜索食物和 搬运食物两个环节。每个蚂蚁在运动过程中 都将会在其所经过的路径上留下信息素,而 且能够感知到信息素的存在及其强度,比较 倾向于向信息素强度高的方向移动,同样信 息素自身也会随着时间的流逝而挥发,显然 某一路径上经过的蚂蚁数目越多,那么其信 息素就越强,以后的蚂蚁选择该路径的可能 性就比较高,整个蚁群的行为表现出了信息 正反馈现象。
2021/7/1
Z
蚁 群 聚 类 结 果 (R=100,t=1000)
3500
3000
2500
2000

蚁群算法PPT课件

蚁群算法PPT课件

1
k 1
基本蚁群算法
针对蚂蚁释放信息是问题,M.Dorigo等人曾给出3中不同的模型, 分别为蚁周系统、蚁量系统和蚁密系统,其计算公式如下:
1.蚁周系统模型
k ii
Q 0,
/ Lk,第k只蚂蚁从城市i访问城市j 其他
2.蚁量系统模型
k ii
Q / dij,第k只蚂蚁从城市i访问城市j
0,
其他
3.蚁密系统模型
max (1 n Pbest )
(avg 1) n Pbest
信息素轨迹的初始化
在第一次循环后所有信息素轨迹与max (1) 相一致 通过选择对这种类型的轨迹初始化来增加在算法的
第一次循环期间对新解的探索
当将信息素轨迹初始化为 max 时,选择概率将增加
得更加缓慢 实验表明,将初始值设为 (1) max可以改善最大-
信息素轨迹的限制
在 决一于个 m选in和择点m上ax 选择相应解元素的概率Pdec直接取
Pdec
max
max (avg 1) min
在每个选择点上蚂蚁需在avg=n/2个解元素中选择
蚂蚁构造最优解,需作n次正确的决策
P P n
dec
best
min
max (1 Pdec )
(avg 1)Pdec
3.最大-最小蚂蚁系统
蚁群算法将蚂蚁的搜索行为集中到最优解的附近可以提高解的质 量和收敛速度,从而改进算法的性能。但这种搜索方式会使早熟 收敛行为更容易发生。 MMAS能将这种搜索方式和一种能够有效避 免早熟收敛的机制结合在一起,从而使算法获得最优的性能
基本蚁群算法
蚂蚁k(k=1,2,…,m)根据各个城市间连接路径上的信息素浓度决
边作为移动方向
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7
4.2 蚁群优化算法
1. 蚁群优化算法 概述
2. 蚁群优化算法 概念
3. 算法模型和收 敛性分析
4. 算法实现的技术问 题
5. 应用
6. 参考资料
8
4.2.1 蚁群优化算法概述
2.1.1 起源 2.1.2 应用领域 2.1.3 研究背景 2.1.4 研究现状 2.1.5 应用现状
9
4.2.1.1 蚁群优化算法起源
B
s.t. xib 1, i 1, 2, , n, b 1 n ai xib 1, b 1, 2, , B, i 1 xib 0,1, i 1, 2, , n; b 1, 2, , B,
其中 B : 装下全部物品需要的箱子, 1, 第i物品装在第b个箱子,
xib 0,第i物品不装在第b个箱子.
11
4.2.1.3 蚁群优化算法研究背景
1/3
群智能理论研究领域有两种主要的算法:蚁 群算法(Ant Colony Optimization, ACO)和微粒 群算法(Particle Swarm Optimization, PSO)。 前者是对蚂蚁群落食物采集过程的模拟,已成 功应用于许多离散优化问题。微粒群算法也是 起源于对简单社会系统的模拟,最初是模拟鸟 群觅食的过程,但后来发现它是一种很好的优 化工具。
13
4.2.1.3 蚁群优化算法研究背景
3/3
群智能方法易于实现,算法中仅涉及各种基本的数学 操作,其数据处理过程对CPU和内存的要求也不高。而 且,这种方法只需目标函数的输出值,而无需其梯度 信息。已完成的群智能理论和应用方法研究证明群智 能方法是一种能够有效解决大多数全局优化问题的新 方法。更为重要是,群智能潜在的并行性和分布式特 点为处理大量的以数据库形式存在的数据提供了技术 保证。无论是从理论研究还是应用研究的角度分析, 群智能理论及其应用研究都是具有重要学术意义和现 实价值的。
4
4.1 组合优化问题 6/8
数学模型:
min dij xij i j
n
s.t. xij 1.i 1, 2, , n, j 1
n
xij 1. j 1, 2, , n,
i 1
xij s 1, 2 s n 1, s 1, 2,
i, js
xij 0,1, i, j 1, 2, , n, i j.
10
4.2.1.2 蚁群优化算法应用领域
这种方法能够被用于解决大多数优化问题或 者能够转化为优化求解的问题。现在其应用领 域已扩展到多目标优化、数据分类、数据聚类、 模式识别、电信QoS管理、生物系统建模、流程 规划、信号处理、机器人控制、决策支持以及 仿真和系统辩识等方面,群智能理论和方法为 解决这类应用问题提供了新的途径。
其中
(1.4) 总路长 (1.5) 只从城市i出来一次 (1.6) 只走入城市j一次
, n, (1.7) 在任意城市子集中不形成回路
(1.8) 决策变量
dij:城市i与城市j之间的距离 , s :集合s中元素的个数,
1, 走城市i和城市j之间的路径,
xij
0,不走城市i和城市j之间的路径.
对称距离TSP : dij d ji , i, j
(1.1)总价值
n
s.t. ai xi b, i 1
xi 0,1, i 1,, n.
(1.2)包容量限制 (1.3)决策变量
其中xi
1,装第i物品 0,不装第i物品
D 0,1n.
3
4.1 组合优化问题 5/8
例2 旅行商问题(TSP,traveling salesman problem) 管梅谷教授1960年首先提出,国际上称 之为中国邮递员问题。 问题描述:一商人去n个城市销货,所有 城市走一遍再回到起点,使所走路程最 短。
非对称距离TSP : dij d ji , i, j
5
4.1 组合优化问题 7/8
例3 装箱问题(bin packing) 尺寸为1的箱子有若干个,怎样用最少的 箱子装下n个尺寸不超过1 的物品,物品 集合为:{a1, a2,...an} 。
6
4.1 组合优化问题 8/8
数学模型: min B
20世纪50年代中期创立了仿生学,人们从生物进化的机理中 受到启发。提出了许多用以解决复杂优化问题的新方法,如进 化规划、进化策略、遗传算法等,这些算法成功地解决了一些 实际问题。
20世纪90年代意大利学者M.Dorigo,V.Maniezzo, A.Colorni等从生物进化的机制中受到启发,通过模拟自然界 蚂蚁搜索路径的行为,提出来一种新型的模拟进化算法—— 蚁 群算法,是群智能理论研究领域的一种主要算法。用该方法求 解TSP问题、分配问题、job-shop调度问题,取得了较好的试验 结果.虽然研究时间不长,但是现在的研究显示出,蚁群算法 在求解复杂优化问题(特别是离散优化问题)方面有一定优势, 表明它是一种有发展前景的算法.
蚁群算法介绍
1
4.1 组合优化问题 3/8
例1 0-1背包问题(0-1 knapsack problem)
b : 背包容积 ai : 第i件物品单位体积,i 1,, n. ci : 第i件物品单位价值,i 1,, n. 问题:如何以最大价值装包?
2
4.1 组合优化问题 4/8
数学模型:
n
max ci xi i 1
12
4.2.1.3 蚁群优化算法研究背景
2/3
与大多数基于梯度的应用优化算法不同,群智能依靠的是 概率搜索算法。虽然概率搜索算法通常要采用较多的评价 函数,但是与梯度方法及传统的演化算法相比,其优点还 是显著的 ,主要表现在以下几个方面: 1 无集中控制约束,不会因个别个体的故障影响整个问题
的求解,确保了系统具备更强的鲁棒性 2 以非直接的信息交流方式确保了系统的扩展性 3 并 算法实现简单
14
4.2.1.4 蚁群优化算法研究现状 1/7
90年代Dorigo最早提出了蚁群优化算法---蚂蚁系统 (Ant System, AS)并将其应用于解决计算机算法学 中经典的旅行商问题(TSP)。从蚂蚁系统开始,基本 的蚁群算法得到了不断的发展和完善,并在TSP以及许 多实际优化问题求解中进一步得到了验证。这些AS改 进版本的一个共同点就是增强了蚂蚁搜索过程中对最 优解的探索能力,它们之间的差异仅在于搜索控制策 略方面。而且,取得了最佳结果的ACO是通过引入局 部搜索算法实现的,这实际上是一些结合了标准局域 搜索算法的混合型概率搜索算法,有利于提高蚁群各 级系统在优化问题中的求解质量。
相关文档
最新文档