福建省宁德市九年级下学期数学开学考试试卷

合集下载

福建省九年级下学期开学数学试卷新版

福建省九年级下学期开学数学试卷新版

福建省九年级下学期开学数学试卷新版一、选择题 (共10题;共20分)1. (2分)已知二次函数的解析式为,则该二次函数图象的顶点坐标是()A . (-2,1)B . (2,1)C . (2,-1)D . (1,2)2. (2分)如果⊙O的半径为6 cm,OP=7cm,那么点P与⊙O的位置关系是()A . 点P在⊙O内B . 点P在⊙O上C . 点P在⊙O外D . 不能确定3. (2分)下列几何体中,主视图和左视图都为矩形的是()A .B .C .D .4. (2分)如图,在△ABC中,∠C=90°,AB=3,BC=2,则cosB的值是().A .B .C .D .5. (2分)如图,点C是线段AB的黄金分割点(AC>BC),下列结论错误的是()A .B . BC2=AB•BCC .D .6. (2分)如图,已知抛物线y=ax2+bx+c(a<0)的对称轴为x=1,交x轴的一个交点为(x1 , 0),且﹣1<x1<0,有下列5个结论:①abc>0;②9a﹣3b+c<0;③2c<3b;④(a+c)2<b2;⑤a+b>m(am+b)(m≠1的实数)其中正确的结论有()A . 1个B . 2个C . 3个D . 4个7. (2分)若扇形的弧长是16cm,面积是56cm2 ,则它的半径是()A . 2.8cmB . 3.5cmC . 7cmD . 14cm8. (2分)如图:把△ABC沿AB边平移到△A′B′C′的位置,它们的重叠部分(即图中阴影部分)的面积是△ABC面积的一半,若AB=,则此三角形移动的距离AA′是()A .B .C . 1D .9. (2分)如图,每个图形都由同样大小的矩形按照一定的规律组成,其中第①个图形的面积为6cm2 ,第②个图形的面积为18cm2 ,第③个图形的面积为36cm2 ,…,那么第⑥个图形的面积为()A . 84cm2B . 90cm2C . 126cm2D . 168cm210. (2分)线段AB=10cm,点C是线段AB的黄金分割点,且AC>BC,则AC与AB的关系是()A . AC=ABB . AC=ABC . AC=ABD . AC=AB二、填空题 (共6题;共7分)11. (1分)若,则=________.12. (1分)半径为2的圆中,60°的圆心角所对的弧的弧长为________.13. (1分)如图,AB为⊙O的直径,CD为⊙O的一条弦,CD⊥AB,垂足为E,已知CD=6,AE=1,则⊙0的半径为________.14. (1分)已知一个二次函数具有性质(1)图象不经过三、四象限;(2)点(2,1)在函数的图象上;(3)当x>0时,函数值y随自变量x的增大而增大.试写出一个满足以上性质的二次函数解析式:________ .15. (1分)如图,在菱形中,,分别在边上,将四边形沿翻折,使的对应线段经过顶点,当时,的值为________.16. (2分)定义;在平面直角坐标系中,一个图形先向右平移a个单位,再绕原点按顺时针方向旋转θ角度,这样的图形运动叫做图形的γ(a,θ)变换。

福建省九年级下学期开学数学试卷A卷

福建省九年级下学期开学数学试卷A卷

福建省九年级下学期开学数学试卷A卷一、填空题 (共20题;共30分)1. (2分)将抛物线y=﹣2(x+1)2﹣2向左平移2个单位,向下平移3个单位后的新抛物线解析式为()A . y=﹣2(x﹣1)2+1B . y=﹣2(x+3)2﹣5C . y=﹣2(x﹣1)2﹣5D . y=﹣2(x+3)2+12. (2分)如图,点D,E分别是⊙O的内接正三角形ABC的AB,AC边上的中点,若⊙O 的半径为2,则DE的长等于()A .B .C . 1D .3. (2分)计算的结果是()A . ﹣B .C . ﹣D .4. (2分)某校九年级数学兴趣小组的同学调查了若干名家长对“初中学生带手机上学”现象的看法,统计整理并制作了如下的条形与扇形统计图.依据图中信息,得出下列结论:(1 )接受这次调查的家长人数为200人(2 )在扇形统计图中,“不赞同”的家长部分所对应的扇形圆心角大小为162°(3 )表示“无所谓”的家长人数为40人(4 )随机抽查一名接受调查的家长,恰好抽到“很赞同”的家长的概率是.其中正确的结论个数为()A . 4B . 3C . 2D . 15. (2分)如图,四边形ABCD是⊙O的内接四边形,∠B=135°,则∠AOC的度数为()A . 45°B . 90°C . 100°D . 135°6. (2分)下列关于二次函数y=-x2-2x+3说法正确的是()A . 当时,函数最大值4B . 当时,函数最大值2C . 将其图象向上平移3个单位后,图象经过原点D . 将其图象向左平移3个单位后,图象经过原点7. (2分)如图,已知∠C=∠E,则不一定能使△ABC∽△ADE的条件是A . ∠BAD=∠CAEB . ∠B=∠DC .D .8. (2分)若分式的值为0,则x的值为()A . 0B . 1C . -1D .9. (2分)已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:则下列判断中正确的是()x…﹣2012…y…7﹣1﹣2﹣1…A . 抛物线开口向下B . 抛物线的对称轴是y轴C . 当x<2时,y随x的增大而减小D . 抛物线与y轴交于正半轴10. (2分)若一个三角形三边之比为3:5:7,与它相似的三角形的最长边的长为21,则最短边的长为A . 15B . 10C . 9D . 311. (1分)实数﹣27的立方根是________12. (1分)分解因式:a2b-b3=________.13. (1分)如果代数式有意义,那么实数x的取值范围为________14. (1分)已知二次函数y=ax2+bx+c(a≠0),其中自变量x与函数值y之间满足下面的对应关系:x……357……y……3.53.5-2……则a+b+c=________.15. (1分)如表给出的是关于一次函数y=kx+b的自变量x及其对应的函数值y的若干信息:x…﹣101…y…01m…则根据表格中的相关数据可以计算得到m的值是________.16. (1分)某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合).现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图).若有43枚图钉可供选用,则最多可以按照要求展示绘画作品 ________张.17. (1分)计算:4cos60°﹣ +(3﹣π)0=________.18. (1分)如图,正方形ABCD的边长为6,分别以A、B为圆心,6为半径画、,则图中阴影部分的面积为________.19. (1分)点P(5,﹣3)关于原点的对称点的坐标为________.20. (1分)如图,△ABC是一张直角三角形纸片,∠C=90°,两直角边AC=6cm、BC=8cm,现将△ABC折叠,使点B与点A重合,折痕为EF,则tan∠CAE=________二、解答题 (共6题;共66分)21. (5分)计算:(﹣1)0+2﹣1﹣ +|1﹣ |22. (15分)网上购物已经成为人们常用的一种购物方式,售后评价特别引人关注,消费者在网店购买某种商品后,对其有“好评”“中评”“差评”的三种评价.小明对一家网店销售某种商品显示的评价信息进行了统计,并列出了两幅不完整的统计图.利用图中所提供的信息解决以下问题:(1)小明一共统计了多少个评价?(2)请将条形统计图补充完整;(3)计算扇形统计图中“差评”所在扇形的圆心角度数.23. (15分)已知在梯形ABCD中,AD∥BC , AC=BC=10,cos∠ACB=,点E在对角线AC上(不与点A、C重合),∠EDC=∠ACB , DE的延长线与射线CB交于点F ,设AD的长为x .(1)如图1,当DF⊥BC时,求AD的长;(2)设EC=y ,求y关于x的函数解析式,并直接写出定义域;(3)当△DFC是等腰三角形时,求AD的长.24. (10分)已知抛物线y=﹣x2+bx+c经过点A(3,0),B(﹣1,0).(1)求抛物线的解析式;(2)求抛物线的顶点坐标.25. (11分)如图,等腰直角△OAB的斜边OA在坐标轴上,顶点B的坐标为(﹣2,2).点P从点A出发,以每秒1个单位的速度沿x轴向点O运动,点Q从点O同时出发,以相同的速度沿x轴的正方向运动,当点P到达点O时,点P、点Q同时停止运动.连接BP ,过P 点作∠BPC=45°,射线PC与y轴相交于点C ,过点Q作平行于y轴的直线l ,连接BC 并延长与直线l相交于点D ,设点P运动的时间为t(s).(1)点P的坐标为________(用t表示);(2)当t为何值,△PBE为等腰三角形?(3)在点P运动过程中,判断的值是否发生变化?请说明理由.26. (10分)在△ABC中,BE是AC上的高,CF是AB上的高,H是BE和CF的交点,(1)若∠ABC=62°,∠ACB=50°,求∠ABE和∠BHC的度数.(2)若AB=10,AC=8,CF=4,求BE的长.参考答案一、填空题 (共20题;共30分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、二、解答题 (共6题;共66分)21-1、22-1、22-2、22-3、23-1、答案:略23-2、答案:略23-3、答案:略24-1、24-2、25-1、答案:略25-2、答案:略25-3、答案:略26-1、26-2、第11 页共11 页。

福建省九年级下学期开学数学试卷I卷

福建省九年级下学期开学数学试卷I卷

福建省九年级下学期开学数学试卷I卷一、选择题 (共10题;共20分)1. (2分)抛物线y=(x+1)2+2的对称轴为()A . 直线x=1B . 直线x=-1C . 直线x=2D . 直线x=-22. (2分)圆的直径为10cm,如果点P到圆心O的距离是d,则()A . 当d=8cm时,点P在⊙O内B . 当d=10cm时,点P在⊙O上C . 当d=5cm时,点P在⊙O上D . 当d=6cm时,点P在⊙O内3. (2分)下列几何体中,主视图是三角形的为()A .B .C .D .4. (2分)如图,△ABC中,∠B=90°,BC=2AB,则cosA=()A .B .C .D .5. (2分)如图,矩形ABCD中,已知点M是线段AB的黄金分割点,且AM>BM,AD=AM,FB=BM,EF和GM把矩形ABCD分成四个小矩形,其面积分别用S1 , S2 , S3 , S4表示,EF与MG相交与点N,则以下结论正确的有()①N是GM的黄金分割点②S1=S4③ .A . ①②B . ①③C . ③D . ①②③6. (2分)已知点(﹣3,y3),(﹣2,y1),(﹣1,y2)在函数y=x2+1的图象上,则y1 , y2 , y3的大小关系是()A . y1>y2>y3B . y3>y1>y2C . y3>y2>y1D . y2>y1>y37. (2分)如图,在平面直角坐标系xOy中,⊙A切y轴于点B,且点A在反比例函数y= (x>0)的图象上,连接OA交⊙A于点C,且点C为OA中点,则图中阴影部分的面积为()A . 4 ﹣B . 4C . 2D . 28. (2分)如图,在反比例函数y=- 的图象上有一动点A,连结AO并延长交图象的另一支于点B,在第一象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数y =的图象上运动,若tan∠CAB=3,则k的值为()A .B . 6C . 8D . 189. (2分)下列图案是用四种基本图形按照一定规律拼成的,第10个图案中的最下面一行从左至右的第2个基本图形应是()A .B .C .D .10. (2分)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D,下列结论正确的有()①AD=BD=BC;②△BCD∽△ABC;③AD2=AC•DC;④点D是AC的黄金分割点.A . 1个B . 2个C . 3个D . 4个二、填空题 (共6题;共7分)11. (1分)若a=2,b=8,那么a和b的比例中项为________。

福建省九年级下学期开学数学试卷(I)卷

福建省九年级下学期开学数学试卷(I)卷

福建省九年级下学期开学数学试卷(I)卷一、选择题 (共10题;共20分)1. (2分)抛物线y=2x2-1的顶点坐标是()A . (0,-1)B . (0,1)C . (-1,0)D . (1,0)2. (2分)若⊙O的半径为5cm,点A到圆心O的距离为6cm,那么点A与⊙O的位置关系是()A . 点A在圆外B . 点A在圆上C . 点A在圆内D . 不能确定3. (2分)观察图,下面所给几何体的俯视图是()A .B .C .D .4. (2分)如图,已知Rt△ABC中,∠C=90°,BC=3,AC=4,则sinA的值为()A .B .C .D .5. (2分)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D,下列结论正确的有()①AD=BD=BC;②△BCD≌△ABC;③AD2=AC•DC;④点D是AC的黄金分割点.A . 1个B . 2个C . 3个D . 4个6. (2分)在平面直角坐标系中,下列函数的图象经过原点的是()A . y=B . y=﹣2x﹣3C . y=2x2+1D . y=5x7. (2分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为弧BD,则图中阴影部分的面积是()A .B .C . -D .8. (2分)如图,在矩形ABCD中,DE⊥AC于E,∠EDC∶∠EDA=1∶3,且AC=10,则DE的长度是()A . 3B . 5C .D .9. (2分)用“O”摆出如图所示的图案,若按照同样的方式构造图案,则第11个图案需要()个“O”。

A . 100B . 145C . 181D . 22110. (2分)如图,已知点C是线段AB的黄金分割点,且BC>AC.若S1表示以BC为边的正方形面积,S2表示长为AB、宽为AC的矩形面积,则S1与S2的大小关系为()A . S1>S2B . S1=S2C . S1<S2D . 不能确定二、填空题 (共6题;共6分)11. (1分)已知线段x是线段a、b的比例中项,且a=4,b=9,则x=________.12. (1分)已知扇形的半径为3cm,圆心角为120°,用它做成一个圆锥的侧面,则该圆锥的底面圆的半径是________cm.13. (1分)如图,已知AB是⊙O的弦,半径OC垂直AB,点D是⊙O上一点,且点D 与点C位于弦AB两侧,连接AD、CD、OB,若∠BOC=70°,则∠ADC=________度.14. (1分)抛物线y=x2+bx+c经过点A(0,3),B(2,3),抛物线所对应的函数表达式为________.15. (1分)如图,AD为△ABC中线,点G为重心,若AD=6,则AG=________ .16. (1分)某水库水坝的坝高为10米,迎水坡的坡度为1:2.4,则该水库迎水坡的长度为________ 米.三、解答题 (共7题;共80分)17. (10分)有红、黄两个盒子,红盒子中装有编号分别为1、2、3、4的四个红球,黄盒子中装有编号为1、2、3的三个黄球.甲、乙两人玩摸球游戏,游戏规则为:甲从红盒子中每次摸出一个小球,乙从黄盒子中每次摸出一个小球,若两球编号之和为奇数,则甲胜,否则乙胜.(1)试用列表或画树形图的方法,求甲获胜的概率;(2)请问这个游戏规则对甲、乙双方公平吗?请说明理由.18. (5分)风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图1),图2是从图1引出的平面图.假设你站在A处测得塔杆顶端C的仰角是55°,沿HA方向水平前进43米到达山底G处,在山顶B处发现正好一叶片到达最高位置,此时测得叶片的顶端D(D、C、H在同一直线上)的仰角是45°.已知叶片的长度为35米(塔杆与叶片连接处的长度忽略不计),山高BG为10米,BG⊥HG,CH⊥AH,求塔杆CH 的高.(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)19. (15分)几何体的三视图相互关联.已知直三棱柱的三视图如图,在△PMN中,∠MPN=90°,PN=4,sin∠PMN= .(1)求BC及FG的长;(2)若主视图与左视图两矩形相似,求AB的长;(3)在(2)的情况下,求直三棱柱的表面积.20. (15分)如图,已知二次函数y=ax2+bx+c的象经过A(﹣1,0)、B(3,0)、N(2,3)三点,且与y轴交于点C.(1)求这个二次函数的解析式,并写出顶点M及点C的坐标;(2)若直线y=kx+d经过C、M两点,且与x轴交于点D,试证明四边形CDAN是平行四边形;(3)点P是这个二次函数的对称轴上一动点,请探索:是否存在这样的点P,使以点P 为圆心的圆经过A、B两点,并且与直线CD相切?如果存在,请求出点P的坐标;如果不存在,请说明理由.21. (10分)某玩具经销商用32000元购进了一批玩具,上市后恰好全部售完;该经销商又用68000元购进第二批这种玩具,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该经销商第二次购进这种玩具多少套?(2)由于第二批玩具进价上涨,经销商按第一批玩具售价销售200套后,准备调整售价,发现若每套涨价1元,则会少卖5套,已知第一批玩具售价为200元.设第二批玩具销售200套后每套涨价a元,第二批卖出的玩具总利润w元,问当a取多少时,才能使售出的玩具利润w最大?22. (10分)如图,在Rt△ABC中,∠ABC=90°,AC的垂直平分线分别与AC、BC及AB的延长线交于点D、E、F,且BF=BC,⊙O是△BEF的外接圆,连接BD.(1)求证:BD是⊙O的切线;(2)求证:DE•AC=BE•CE.23. (15分)如图,二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,交y 轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.(1)求二次函数的解析式.(2)请直接写出D点的坐标.(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共7题;共80分)17-1、17-2、18-1、19-1、19-2、19-3、20-1、20-2、20-3、21-1、21-2、22-1、22-2、23-1、23-2、23-3、。

福建省九年级下学期开学数学试卷(II )卷

福建省九年级下学期开学数学试卷(II )卷

福建省九年级下学期开学数学试卷(II )卷一、选择题 (共10题;共20分)1. (2分)抛物线y=x2+1的对称轴是()A . 直线B . 直线C . 直线D . 直线2. (2分)已知⊙O的半径为5.若OP=6,则点P与⊙O的位置关系是()A . 点P在⊙O内B . 点P在⊙O上C . 点P在⊙O外D . 无法判断3. (2分)下面四个几何体中,主视图是四边形的几何体共有()A . 1个B . 2个C . 3个D . 4个4. (2分)如图,△ABC的各个顶点都在正方形的格点上,则sinA的值为()A .B .C .D .5. (2分)已知点P是线段MN的黄金分割点,MP>NP,且MP=(﹣1)cm,则NP等于()A . 2cmB . (3﹣)cmC . (﹣1)cmD . (+1)cm6. (2分)小轩从如图所示的二次函数y=ax2+bx+c(a≠0)的图象中,观察得出了下面五条信息:①ab>0;②a+b+c<0;③b+2c>0;④a﹣2b+4c>0;⑤a=b.你认为其中正确信息的个数有()A . 2个B . 3个C . 4个D . 5个7. (2分)一个扇形的弧长是20πcm,面积是240πcm2 ,则扇形的半径是()A . 12cmB . 24cmC . 12πcmD . 150cm8. (2分)如图,在平面直角坐标系中,点A(1,),点B(2,0),P为线段OB 上一点,过点P作PQ∥OA,交AB于点Q,连接AP,则△APQ面积最大值为()A .B .C .D .9. (2分)如图,在矩形ABCD中,已知AB=4,BC=3,矩形在直线l上绕其右下角的顶点B向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2016次后,顶点A在整个旋转过程中所经过的路程之和是()A . 2015πB . 3019.5πC . 3018πD . 3024π10. (2分)根据有关测定,当外界气温处于人体正常体温的黄金比值时,人体感到最舒适(人体正常体温约为37℃),这个气温大约为()A . 23℃B . 28℃C . 30℃D . 37℃二、填空题 (共6题;共6分)11. (1分)已知4x=5y,则 =________.12. (1分)三翼式旋转门在圆柱形的空间内旋转,旋转内的三片旋转翼把空间等分成三个部分,如图1,旋转门的俯视图是直径的2米的圆,图2显示了某一时刻旋转翼的位置,则弧AB的长是________米.(结果保留π)13. (1分)如图,⊙O的半径为5,AB为⊙O的弦,OC⊥AB于点C,若OC=3,则AB 的长为________14. (1分)已知抛物线p:y=ax2+bx+c的顶点为C,与x轴相交于A、B两点(点A 在点B左侧),点C关于x轴的对称点为C′,我们称以A为顶点且过点C′,对称轴与y 轴平行的抛物线为抛物线p的“梦之星”抛物线,直线AC′为抛物线p的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y=x2+2x+1和y=2x+2,则这条抛物线的解析式为________15. (1分)如图,在矩形ABCD中,∠B的平分线BE与AD交于点E,∠BED的平分线EF与DC交于点F,若AB=9,DF=2FC,则BC=________.(结果保留根号)16. (1分)在△ABC中,∠A=120°,AB=4,AC=2,则sinB的值是________三、解答题 (共7题;共70分)17. (5分)你喜欢玩游戏吗?小明和小华在如图所示的两个转盘上玩一个游戏.两个转盘中指针落在每一个数字上的机会都均等,现同时自由转动甲、乙两个转盘,转盘停止后,指针各指向一个数字,若指针停在等分线上,则重转一次,直至指针指向某一数字为止.用所指的两个数字作乘积.如果积为奇数,则小明赢;如果积为偶数,则小华赢,这个游戏公平吗?请说明理由.18. (5分)如图,小俊在A处利用高为1.5米的测角仪AB测得楼EF顶部E的仰角为30°,然后前进12米到达C处,又测得楼顶E的仰角为60°,求楼EF的高度.(结果精确到0.1米)19. (10分)如图是一个几何体的三视图.(1)写出这个几何体的名称;(2)求此几何体表面展开图的面积.20. (10分)如图,AB为的直径,C为上一点,D为BA延长线上一点,.(1)求证:DC为的切线;(2)线段DF分别交AC,BC于点E,F且,的半径为5,,求CF的长.21. (10分)有一种可食用的野生菌,刚上市时,外商李经理以每千克30元的市场价格收购了这种野生菌1000千克存放入冷库中,据预测,该野生菌的市场价格将每天每千克上涨1元;但冷冻存放这批野生菌时每天需要支出各种费用合计310元,而且这种野生菌在冷库中最多保存140天,同时,平均每天有3千克的野生菌损坏导致不能出售.(1)若存放天后,将这批野生菌一次性出售,设这批野生菌的销售总额为元,试求出与之间的函数关系式;(2)李经理将这批野生菌存放多少天后一次性全部出售可以获得22500元的利润?22. (20分)如图,△OAC中,以O为圆心,OA为半径作⊙O,作OB⊥OC交⊙O于B,垂足为O,连接AB交OC于点D,∠CAD=∠CDA.(1)判断AC与⊙O的位置关系,并证明你的结论;(2)若OA=5,OD=1,求线段AC的长.(3)判断AC与⊙O的位置关系,并证明你的结论;(4)若OA=5,OD=1,求线段AC的长.23. (10分)已知二次函数y=ax2+bx+c,当x取1时,函数有最大值为3,且函数的图象经过点(-2,0)。

福建省九年级下学期开学数学试卷F卷

福建省九年级下学期开学数学试卷F卷

福建省九年级下学期开学数学试卷F卷一、选择题 (共10题;共20分)1. (2分)二次函数的顶点坐标是()A . (3,2)B . (3,﹣2)C . (﹣3,﹣2)D . (﹣3,2)2. (2分)已知点P在半径为5cm的圆内,则点P到圆心的距离可以是A . 4cmB . 5cmC . 6cmD . 7cm3. (2分)如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是()A . ①②B . ②③C . ②④D . ③④4. (2分)在△ABC中,∠C=90°,∠B=50°,AB=10,则BC的长为()A . 10tan50°B . 10sin40°C . 10sin50°D .5. (2分)已知,C是线段AB的黄金分割点,AC<BC,若AB=2,则BC=()A . ﹣1B . ( +1)C . 3﹣D . (﹣1)6. (2分)已知二次函数y=ax2+bx的图象经过点A(-1,1),则ab有()A . 最小值0B . 最大值 1C . 最大值2D . 有最小值-7. (2分)如图,在Rt△ABC中,∠BCA=90°,∠BAC=30°,BC=2,将Rt△ABC绕A 点顺时针旋转90°得到Rt△ADE,则BC扫过的面积为()A .B . (2﹣)πC . πD . π8. (2分)如图,,,,,,,,则的度数为()A .B .C .D . 无法确定9. (2分)如图1点M是数轴上表示-4的点,点P从点M处向原点跳动,第一次跳到OM的中点M1处,第二次从M1跳到OM1的中点M2处,第三次从M2跳到OM2的中点M3处,如此跳动下去,则第2017次跳动后,该点所在位置表示的数为()A . -2-2017B . -2-2016C . -2-2015D . 2201510. (2分)点是线段的黄金分割点,且,则的长为()A .B .C . 或D . 或二、填空题 (共6题;共6分)11. (1分)已知 = = ,且a+b﹣2c=6,则a的值为________.12. (1分)如图,公园内有一个半径为20米的圆形草坪,A,B是圆上的点,O为圆心,∠AOB=120°,从A到B只有路弧AB,一部分市民走“捷径”,踩坏了花草,走出了一条小路AB。

福建省九年级下学期开学数学试卷E卷

福建省九年级下学期开学数学试卷E卷

福建省九年级下学期开学数学试卷E卷一、选择题 (共10题;共20分)1. (2分)抛物线的顶点坐标是()A . (3, -5)B . (-3, 5)C . (3, 5)D . (-3, -5)2. (2分)ʘO的半径为5cm,点A到圆心O的距离OA=4cm,则点A与圆O的位置关系为()A . 点A在圆上B . 点A在圆内C . 点A在圆外D . 无法确定3. (2分)下列哪个几何体,它的主视图、左视图、俯视图都相同()A .B .C .D .4. (2分)“赵爽弦图”是由四个全等的直角三角形与一个小正方形拼成的一个大正方形。

如果小正方形的面积为4,大正方形的面积为100,直角三角形中较大的锐角为,则的值等于()A .B .C .D .5. (2分)如图,在△ABC中,∠A=36°,AB=AC=2,BD平分∠ABC交AC于点D,则AD 等于()A . ﹣1B .C . 1D .6. (2分)如图,在平面直角坐标系中,有两条位置确定的抛物线,它们的对称轴相同,则下列关系不正确的是()A . k=nB . h=mC . k<D . h<0,k<07. (2分)如图,中,,,,分别为边的中点,将绕点顺时针旋转到的位置,则整个旋转过程中线段所扫过部分的面积(即阴影部分面积)为()A .B .C .D .8. (2分)在△ABC中,边BC=6,高AD=4,正方形EFGH的顶点E、F在边BC上,顶点H、G分别在边AB和AC上,那么这个正方形的边长等于()A . 3B . 2.5C . 2.4D . 29. (2分)一个由小菱形组成的装饰链,断去了一部分,剩下部分如图所示,则断去部分的小菱形的个数可能是()A . 3B . 4C . 5D . 610. (2分)已知点P是线段AB的黄金分割点(AP>PB),AB=4,那么AP的长是()A . 2-2B . 2-C . 2-1D . -2二、填空题 (共6题;共6分)11. (1分)已知 = ,则 =________.12. (1分)用如图所示的扇形纸片制作一个圆锥的侧面,要求圆锥的高是4cm,底面周长是6πcm,则扇形的半径为________.13. (1分)如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2 cm,∠BCD=22°30′,则⊙O的半径为________cm.14. (1分)若抛物线y=x2+bx+c经过A(﹣2,0),B(4,0)两点,则这条抛物线的解析式为________.15. (1分)如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=(x-1)2-4,AB为半圆的直径,求这个“果圆”被y轴截得的弦CD的长________.16. (1分)在△ABC中,AB=AC=5,sin∠ABC=0.8,则BC=________.三、解答题 (共7题;共69分)17. (6分)如图可以自由转动的转盘被3等分,指针落在每个扇形内的机会均等.(1)现随机转动转盘一次,停止后,指针指向数字1的概率为________;(2)小明和小华利用这个转盘做游戏,若采用下列游戏规则,你认为对双方公平吗?请用列表或画树状图的方法说明理由.18. (5分)如图,为探测某座山的高度AB,某飞机在空中C处测得山顶A处的俯角为31°,此时飞机的飞行高度为CH=4千米;保持飞行高度与方向不变,继续向前飞行2千米到达D处,测得山顶A处的俯角为50°,求此山的高度AB.(参考数据:tan31°≈0.6,tan50°≈1.2)19. (15分)用小立方块搭一个几何体,使它从正面、上面看到的形状图如图所示,从上面看到的形状图的小正方形中的字母表示在该位置小立方块的个数.试回答下列问题:(1)a,b,c各表示几?(2)这个几何体最少有几个小立方块搭成?最多呢?(3)当d=e=1,f=2时,画出这个几何体从左面看到的形状图.20. (11分)定义:圆心在三角形的一边上,与另一边相切,且经过三角形一个顶点(非切点)的圆,称为这个三角形圆心所在边上的“伴随圆”.(1)如图1,△ABC中,∠C=90°,AB=5,BC=3,则AC边上的伴随圆的半径为________.(2)如图2,已知等腰△ABC,AB=AC=5,BC=6,画草图并直接写出它的所有伴随圆的半径.(3)如图3,△ABC中,∠ACB=90°,点P在边AB上,AP=2BP,D为AC中点,且∠CPD=90°.①求证:△CPD的外接圆是△ABC某一条边上的伴随圆;②求cos∠PDC的值.21. (10分)商贸公司购进某种水果的成本为20元/kg,经过市场调研发现,这种水果在未来48天的销售单价p(元/kg)与时间t(天)之间的函数关系式为p=,且其日销售量y(kg)与时间t(天)的关系如表:时间t(天)136102040…日销售量y(kg)1181141081008040…(1)已知y与t之间的变化规律符合一次函数关系,试求在第30天的日销售量是多少?(2)问哪一天的销售利润最大?最大日销售利润为多少?22. (7分)如图,在正方形ABCD中,E,G分别在边DA,DC上(不与端点重合),且DE=DG,过D点作DF⊥CE,垂足为F.(1)①∠BCE与∠CDF的大小关系是________;②证明:GF⊥BF;________(2)探究G落在边DC的什么位置时,BF=BC,请说明理由.23. (15分)如图,抛物线y=ax2+bx(a≠0)的图象过原点O和点A(1, ),且与x 轴交于点B,△AOB的面积为。

福建省宁德市九年级下学期数学测试试卷

福建省宁德市九年级下学期数学测试试卷

福建省宁德市九年级下学期数学测试试卷姓名:________ 班级:________ 成绩:________一、单选题、 (共6题;共12分)1. (2分)(2018·苏州模拟) ﹣的相反数是 =()A . 3B . ﹣3C .D . ﹣2. (2分)计算的结果是()A .B .C .D .3. (2分) (2016八上·宁海月考) 下图中几何体的左视图是()A .B .C .D .4. (2分) (2020七下·肇庆月考) 如图,Rt△ABC中,∠ACB=90°,DE过点C,且DE∥AB,若∠ACD=55°,则∠B的度数是()A . 65°B . 45°C . 55°D . 35°5. (2分) (2018九上·抚顺期末) 抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②当x>﹣1时,y随x增大而减小;③a+b+c <0;④若方程ax2+bx+c﹣m=0没有实数根,则m>2;⑤3a+c<0.其中正确结论的个数是()A . 2个B . 3个C . 4个D . 5个6. (2分)已知反比例函数,有下列四个结论:① 图象必经过点(-1,2);② 图像经过(),()两点,若,则;③ 图象分布在第二、四象限内;④ 若x>1,则y>-2.其中正确的有()A . 1个B . 2个C . 3个D . 4个二、填空题 (共10题;共10分)7. (1分)已知一组数据:78,79,76,81,75,78,74,72,79,80,76,77,75,75,73,74,72,75,76,77,这组数据的极差是________.8. (1分) (2020八下·偃师期中) 当x________时,分式有意义.9. (1分) (2020七上·合川期末) 每年的5月31日为世界无烟日,开展无烟日活动旨在提醒世人吸烟有害健康,呼吁全世界吸烟者主动放弃吸烟,全世界每年因吸烟而引发疾病死亡的人数大约为5400000人,数据5400000人用科学记数法表示为________.10. (1分)(2016·黄冈) 分解因式:4ax2﹣ay2=________.11. (1分) (2019九上·蓬溪期中) 如果关于x的方程x2﹣4x+m2=0有两个相等的实数根,那么m=________.12. (1分)如图所示,在△ABC中,AB=AC=20cm,∠BAC=150°,则S△ABC=________cm2 .13. (1分)(2018·江苏模拟) 若一个圆锥的底面半径为2,母线长为6,则该圆锥侧面展开图的圆心角是________°14. (1分) (2019八上·博白期中) 如图,在中,,,AD是的中线,AE是的角平分线,交AE的延长线于点F,则DF的长为________.15. (1分)(2017·无棣模拟) 目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现:小琼步行13500步与小刚步行9000步消耗的能量相同,若每消耗1千卡能量小琼行走的步数比小刚多15步,求小刚每消耗1千卡能量需要行走________步.16. (1分)(2019·哈尔滨模拟) 如图,等腰直角三角形中,,D是上一点,连接,过点作于交于在是上一点,过点作于,延长到连接,使,若,则线段的长度为________.三、解答题 (共10题;共87分)17. (5分) (2020七下·黄陵期末) 计算: + +|1﹣ |﹣ .18. (5分) (2016八上·道真期末) 先化简,再求值:,其中x=﹣3.19. (10分) (2020七下·济南期末) 如图,点A、D、C、F在同一条直线上,AD=CF , AB=DE , BC= EF .(1)求证:△ABC≌△DEF;(2)若∠A=60°,∠B=80°,求∠F的度数.20. (15分)滴滴打车为市民的出行带来了很大的方便,小亮调查了若干市民一周内使用滴滴打车的时间t (单位:分),将获得的数据分成四组,绘制了如下统计图,请根据图中信息,解答下列问题:(1)这次被调查的总人数是多少?(2)试求表示C组的扇形圆心角的度数,并补全条形统计图;(3)若全市的总人数为666万,试求全市一周内使用滴滴打车超过20分钟的人数大约有多少?21. (6分)(2019·山西模拟) 某超市开展早市促销活动,为早到的顾客准备一份简易早餐,餐品为四样A:菜包、B:面包、C:鸡蛋、D:油条.超市约定:随机发放,早餐一人一份,一份两样,一样一个.(1)按约定,“某顾客在该天早餐得到两个鸡蛋”是________事件(填“随机”、“必然”或“不可能”);(2)请用列表或画树状图的方法,求出某顾客该天早餐刚好得到菜包和油条的概率.22. (5分)如图,在平行四边形ABCD中,E为边AD延长线上的一点,且D为AE的黄金分割点,即,BE交DC于点F,已知,求CF的长 .23. (11分) (2019九上·西城期中) 在平面直角坐标系xOy中,对于点P(x , y)和Q(x ,y′),给出如下定义:若,则称点Q为点P的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).(1)点(﹣5,﹣2)的“可控变点”坐标为________;(2)若点P在函数的图象上,其“可控变点”Q的纵坐标y′是7,求“可控变点”Q的横坐标;(3)若点P在函数()的图象上,其“可控变点”Q的纵坐标y′ 的取值范围是,求实数a的取值范围.24. (5分)如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C 的仰角为45°,已知OA=100米,山坡坡度(竖直高度与水平宽度的比)i=1:2,且O、A、B在同一条直线上.求电视塔OC的高度以及此人所在位置点P的铅直高度.(测倾器高度忽略不计,结果保留根号形式)25. (10分)(2018·扬州模拟) 如图,△ABC中,AB=AC,点D为BC上一点,且AD=DC,过A,B,D三点作⊙O,AE是⊙O的直径,连结DE.(1)求证:AC是⊙O的切线;(2)若sinC= ,AC=6,求⊙O的直径.26. (15分)(2019·宁波模拟) 城隍庙是宁波市的老牌商业中心,城隍庙商业步行街某商场购进一批品牌女装,购进时的单价是600元,根据市场调查,在一段时间内,销售单价是800元时,销售量是200件,销售单价每降低10元,就可多售出20件.(1)求出销售量y(件)与销售单价x(元)之间的函数关系式;(2)求出销售该品牌女装获得的利润W(元)与销售单价x(元)之间的函数关系式;(3)若服装厂规定该品牌女装的销售单价不低于760元且不高于800元,则商场销售该品牌女装获得的最大利润是多少?参考答案一、单选题、 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共10题;共10分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共10题;共87分)17-1、18-1、19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、23-1、23-2、23-3、24-1、25-1、25-2、26-1、26-2、26-3、第11 页共11 页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

福建省宁德市九年级下学期数学开学考试试卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共12题;共24分)
1. (2分) (2017七下·民勤期末) 在下列各数:0.51525354…,,0.2,,,,,中,无理数的个数()
A . 2个
B . 3个
C . 4个
D . 5个
2. (2分)(2017·深圳模拟) 下列运算中,正确的是()
A . 4x-x=2x
B . 2x·x4=x5
C . x2y÷y=x2
D . (-3x)3=-9x3
3. (2分)(2013·湛江) 国家提倡“低碳减排”,湛江某公司计划在海边建风能发电站,电站年均发电量约为213000000度,若将数据213000000用科学记数法表示为()
A . 213×106
B . 21.3×107
C . 2.13×108
D . 2.13×109
4. (2分) (2017八下·石景山期末) 剪纸是中国古老的汉族传统民间艺术之一.下面
是制作剪纸的简单流程,展开后的剪纸图案从对称性来判断()
A . 是轴对称图形但不是中心对称图形
B . 是中心对称图形但不是轴对称图形
C . 既是轴对称图形也是中心对称图形
D . 既不是轴对称图形也不是中心对称图形
5. (2分)在中,,若的周长为24,则的取值范围是()
A .
B .
C .
D .
6. (2分)甲、乙两人分别从两地同时出发,若相向而行,则a小时相遇;若同向而行,则b小时甲追上乙,那么甲的速度是乙的速度的()倍.
A .
B .
C .
D .
7. (2分) (2020七下·湛江期中) 若 m 是任意实数,则点 M(1+m²,-1)在第()象限
A . 一
B . 二
C . 三
D . 四
8. (2分) (2019九上·牡丹江期中) 设m,n分别为一元二次方程x2+2x-1=0的两个实数根,则m +n+mn的值为()
A . -3
B . 3
C . -2
D . 2
9. (2分) (2019八上·阳泉期中) 已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长为()
A . 3
B . 4
C . 5
D . 4或5
10. (2分)如图,△ABC中,∠A=30°,∠C=90°,AB的垂直平分线交AC于D点,交AB于E点,则下列结论错误的是()
A . AD=DB
B . DE=DC
C . BC=AE
D . AD=BC
11. (2分)如图,在平行四边形ABCD中,AD=7,CE平分∠BCD交AD边于点E,且AE=4,则AB的长为()
A . 4
B . 3
C .
D . 2
12. (2分)(2017·合肥模拟) 已知反比例函数y= 的图象如图,则二次函数y=2kx2﹣4x+k2的图象大致为()
A .
B .
C .
D .
二、填空题 (共6题;共6分)
13. (1分)(2018·驻马店模拟) 将多项式x2y-2xy2+y3分解因式的结果是________.
14. (1分) (2019八下·郑州月考) 若不等式无解,则实数a的取值范围是________.
15. (1分) (2016八下·罗平期末) 直线y=﹣2x+m﹣3的图象经过x轴的正半轴,则m的取值范围为________.
16. (1分) (2020九上·泰兴期末) 若x=0是关于x的方程x2﹣x﹣a2+9=0的一个根,则a的值为________.
17. (1分)(2017·姑苏模拟) 超市决定招聘广告策划人员一名,某应聘者三项素质测试的成绩如表:
测试项目创新能力综合知识语言表达
测试成绩(分数)708090
将创新能力、综合知识和语言表达三项测试成绩按5:3:2的比例计入总成绩,则该应聘者的总成绩是________分.
18. (1分)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=5,CD是AB边上的中线,则CD的长是________
三、解答题 (共8题;共86分)
19. (5分) (2019七上·柯桥期中) 计算下列各式:
(1)
(2)
(3)
20. (5分)(2017·虎丘模拟) 先化简,再求值:(1+ )÷ ,其中x= +1.
21. (11分) (2019七下·江门期末) 七年级同学最喜欢看哪一类课外书?某校随机抽取七年级部分同学对此进行问卷调査(每人只选择一种最喜欢的书籍类型).如图是根据调查结果绘制的两幅统计图(不完整).
请根据统计图信息,解答下列问题:
(1)一共有多少名学生参与了本次问卷调查;
(2)补全条形统计图,并求出扇形统计图中“其他”所在扇形的圆心角度数;
(3)若该年级有400名学生,请你估计该年级喜欢“科普常识”的学生人数.
22. (10分)(2016·张家界模拟) 如图,四边形ABCD是矩形,点E在BC边上,点F在BC延长线上,且∠CDF=∠BAE.
(1)求证:四边形AEFD是平行四边形;
(2)若DF=3,DE=4,AD=5,求CD的长度.
23. (15分)某蔬菜经销商去蔬菜生产基地批发某种蔬菜,已知这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元;若超过60千克时,批发的这种蔬菜全部打八折,但批发总金额不得少于300元.
(1)根据题意,填写下表:
蔬菜的批发量(千
…25607590…
克)
所付的金额(元)…125300…
(2)经调查,该蔬菜经销商销售该种蔬菜的日销售量y(千克)与零售价x(元/千克)是一次函数关系,其图象如图,求出y与x之间的函数关系式;
(3)若该蔬菜经销商每日销售此种蔬菜不低于75千克,且当日零售价不变,那么零售价定为多少时,该经
销商销售此种蔬菜的当日利润最大?最大利润为多少元?
24. (15分) (2019九上·龙岗期中) 如图1,一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD 折叠,点C落在点C′的位置,BC′交AD于点G.
(1)求证:BG=DG;
(2)求C′G的长;
(3)如图2,再折叠一次,使点D与A重合,折痕EN交AD于M,求EM的长.
25. (15分) (2019八下·未央期末) 问题探究
(1)请在图①中作出两条直线,使它们将圆面四等分;
(2)如图②,M是正方形内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M),使它们将正方形的面积四等分:
(3)如图③,在四边形中,,点是的中点如果,且,那么在边上足否存在一点,使所在直线将四边形的面积分成相等的两部分?若存在,求出的长:若不存在,说明理由.
26. (10分) (2020九下·吉林月考) 函数(a为常数).
(1)若点在函数图象上,求a的值;
(2)当时,若直线(m为常数)与函数恰好有三个交点时,设三个交点的横坐标从左至右依次为x1、x2、x3 ,求的取值范围;
(3)已知、.若函数图象与线段有两个交点时,求a的取值范围;
(4)当时,函数值满足,直接写出的取值范围.
参考答案一、单选题 (共12题;共24分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
二、填空题 (共6题;共6分)
13-1、
14-1、
15-1、
16-1、
17-1、
18-1、
三、解答题 (共8题;共86分)
19-1、
19-2、
19-3、
20-1、21-1、
21-2、21-3、
22-1、22-2、23-1、23-2、
23-3、24-1、24-2、
24-3、25-1、
25-2、
25-3、
26-1、26-2、
26-3、26-4、。

相关文档
最新文档