双向楼板荷载计算
第十章楼板设计

第十章.楼板计算根据《混凝土结构设计规范》(GB50010—2002),楼板长边l02与短边l01之比小于2时,宜按双向板计算。
楼板长边l02与短边l01之比大于2,但小于3.0时,宜按双向板计算,当按沿短边受力的单向板计算时,应沿长边方向布置足够的构造钢筋。
根据本工程的实际尺寸,楼板全为双向板,楼板按照弹性方法进行计算。
双向板按弹性理论的计算方法:①多跨连续双向板跨中最大正弯矩:为了求得连续双向板跨中最大正弯矩,荷载分布情况可以分解为满布荷载g+q/2及间隔布置 q/2两种情况,前一种情况可近似认为各区格板都固定支承在中间支承上,对于后一种情况可近似认为在中间支承处都是简支的。
沿楼盖周边则根据实际支承情况确定。
分别求得各区格板的弯矩,然后叠加得到各区格板的跨中最大弯矩。
②多跨连续双向板支座最大负弯矩:支座最大负弯矩可按满布活荷载时求得。
连续双向板的计算图示10.1标准层楼板计算:- 72 -- 73 -标准层楼板区格划分:标准层楼板区格图 ① 板A一、 基本资料:1、边界条件(左端/下端/右端/上端):固定/固定/固定/固定/2、荷载:永久荷载标准值:g =3.33 kN/M 2可变荷载标准值:q = 2.00 kN/M 2计算跨度 Lx = 4800 mm ;计算跨度 Ly = 3750 mm板厚 H = 10 0mm ;砼强度等级:C35;钢筋强度等级:HRB2353、计算方法:弹性算法。
4、泊松比:μ=1/5.二、计算结果:平行于Lx 方向的跨中弯矩MxMx=(0.01393+0.02794/6)×(1.20×3.33+1.40×1.0)×3.752= 1.77kN·M考虑活载不利布置跨中X向应增加的弯矩:Mxa =(0.03283+0.05809/6)×(1.4× 1.0)× 3.752 = 1.05kNMMx= 1.77 + 1.05 = 2.82kN·MAsx= 224.78mm2,实配Φ8@180 (As=251mm2)ρmin = 0.215% ,ρ= 0.233%平行于 Ly 方向的跨中弯矩 MyMy =(0.02794+0.01393/6)×(1.20× 3.33+1.40× 1.0)× 3.752= 2.93kN·M 考虑活载不利布置跨中Y向应增加的弯矩:Mya =(0.05809+0.03283/6)×(1.4× 1.0)× 3.752 = 1.58kN·MMy= 2.93 + 1.58 = 4.49kN·MAsy= 248.57mm2,实配Φ8@200 (As = 251mm2)ρmin = 0.215% ,ρ= 0.233%沿 Lx 方向的支座弯矩 Mx'Mx' =0.05610×(1.20× 3.33+1.40× 2.0)×3.752 = 6.69kN·MAsx'= 235.06mm2,实配Φ8@200 (As = 251.mm2)ρmin = 0.215% ,ρ= 0.233%沿 Ly 方向的支座弯矩 My'My' =0.06765×(1.20× 3.33+1.40× 2.0)× 3.752 = 8.07kN·MAsy'= 287.72mm2,实配Φ8@150 (As =335.mm2)ρmin = 0.215% ,ρ= 0.279%- 74 -②板B一、基本资料:1、边界条件(左端/下端/右端/上端):固定/铰支/铰支/固定/2、荷载:永久荷载标准值:g =3.33 kN/M2可变荷载标准值:q =2.00 kN/M2计算跨度Lx = 4800 mm;计算跨度Ly = 3750 mm板厚H = 100 mm;砼强度等级:C35;钢筋强度等级:HRB2353、计算方法:弹性算法。
板上隔墙等效荷载

a b
Max(a,b)MIN(a,b)板的长边尺寸
板的短边尺寸板的长边尺寸板的短边尺寸(mm)
(mm)(mm)(mm)8400840084008400 1.00板初始条件满
足平摊荷载
(kN/m2)隔墙荷载长边平行
板长边时
2.730 1.07隔墙荷载长边垂直
板长边时 2.730 1.07判断
4.本表是按该文章计算方法编制的,不代表本
3.个人认为:对于面积较小的楼板,似乎等效一、双向板上局部荷载(包括集
备注:1. 表中:q2: 当隔墙位置可灵活自由布不小于1.0kN/m2。
λ隔墙荷载作用方向
2.表中:q1=隔墙总荷载/楼板面积。
a/b
λ
q
qe q1q2qe/q1板上作用的隔墙荷载等效均布活荷载平摊荷载
MAX(q/3,1)(kN/m)(kN/m2)(kN/m2)
(kN/m2)隔墙荷载长边垂直
板长边时 2.7309 2.93 1.07 3.00 2.73
等效系数隔墙荷载作用方向
代表本人认可:文章中的计算方法是正确的。
等效荷载/平摊荷载乎等效荷载计算值大的太多,需进一步研究。
包括集中荷载)的等效均布活荷载qe的计算
自由布置时,非固定隔墙的自重可取每延米长墙重(kN/m)的1/3作为楼面活荷载的附加值(kN/m2)计入,附加值。
双向板楼板配筋计算书

双向板楼板配筋计算书双向板楼板配筋计算书一、给定参数:1. 设计荷载:q = 5 kN/m22. 矩形平面图:3m × 3m,板厚200 mm3. 抗剪强度设计值:fcr = 25 MPa4. 混凝土强度设计值:fck = 25 MPa5. 钢筋强度设计值:fyk = 400 MPa6. 控制配筋率:ρmin = 0.16‰,ρmax = 3.2‰7. 负偏差:δs = 0.108. 接头系数:μ = 1.09. 面积转换系数:As/As' = 1.0二、按照《建筑结构设计规范》GB50010-2010的规定进行处理,具体计算如下:1. 根据日常的经验,斜对角方向的板的配筋率更高,次之为水平方向,最低为竖直方向。
为了满足最小配筋率,经验法则是先计算斜对角方向的配筋量。
2. 按照标准的计算步骤,可以首先计算板的弯矩系数,然后计算标准配筋率ρs,进而计算出最小配筋量和最多配筋量。
3. 对板进行合理配筋,需要按照以下步骤:先计算出最小配筋量和最大配筋量,然后计算不同斜率方向的配筋量,最终对所有筋进行布置,每个筋的直径和间距都应该符合标准的规定。
4. 最后,需要根据标准指导的方法进行验算,检查板在工作状态下弯矩和剪力的情况,以确保板的安全性和稳定性。
具体计算过程如下:1. 弯矩系数的计算:αx = 0.116 × 103 (n/mm3)αy = 0.116 × 103 (n/mm3)2. 最小配筋量的计算:Asmin = ρmin × b × h = 0.16 × 3000 × 200 = 96000 mm2/m3. 最多配筋量的计算:Asmax = ρmax × b × h = 3.2 × 3000 × 200 = 1920000 mm2/m 4. 斜对角方向的配筋计算:4.1 计算弯矩的大小:Mx = q × L2 / 8 = 5 × (30003 / 8) = 281250 Nm My = q × L2 / 8 = 5 × (30003 / 8) = 281250 Nm 4.2 计算弯矩对应的最小配筋率和钢筋面积:ρsx = δs × fcr / (αx × fck) = 0.0077Asx = ρsx × b × h = 46200 mm2/mρsy = δs × fcr / (αy × fck) = 0.0077Asy = ρsy × b × h = 46200 mm2/m4.3 计算弯矩对应的最大配筋率和钢筋面积:ρmx = 0.95 × μ × fcr / (αx × fck) = 0.0430 Asmx = ρmx × b × h = 258000 mm2/mρmy = 0.95 × μ × fcr / (αy × fck) = 0.0430 Asmy = ρmy × b × h = 258000 mm2/m5. 水平方向的配筋计算:5.1 计算弯矩的大小:Mx = q × L2 / 8 = 5 × (30003 / 8) = 281250 Nm My = 05.2 计算水平方向的最小配筋率和钢筋面积:ρsx = δs × fcr / (αx × fck) = 0.0077Asx = ρsx × b × h = 46200 mm2/m5.3 计算水平方向的最大配筋率和钢筋面积:ρmx = 0.95 × μ × fcr / (αx × fck) = 0.0430 Asmx = ρmx × b × h = 258000 mm2/m6. 竖直方向的配筋计算:6.1 计算弯矩的大小:Mx = 0My = q × L2 / 8 = 5 × (30003 / 8) = 281250 Nm 6.2 计算竖直方向的最小配筋率和钢筋面积:ρsy = δs × fcr / (αy × fck) = 0.0077Asy = ρsy × b × h = 46200 mm2/m6.3 计算竖直方向的最大配筋率和钢筋面积:ρmy = 0.95 × μ × fcr / (αy × fck) = 0.0430Asmy = ρm y × b × h = 258000 mm2/m7. 布置钢筋:根据上述计算结果,可以得到板的双向配筋情况:7.1 斜对角方向的钢筋:间距:s = 2000 mm / (3 + 1) = 500 mm直径:d = √(As / (0.785 × π)) = √(258000 / (0.785 × π)) = 20 mm 横向主筋:π20/500纵向主筋:π20/5007.2 水平方向的钢筋:间距:s = 2000 mm / (3 + 1) = 500 mm直径:d = √(As / (0.785 × π)) = √(258000 / (0.785 × π)) = 20 mm 横向主筋:π20/500纵向箍筋:π10/1507.3 竖直方向的钢筋:间距:s = 2000 mm / (3 + 1) = 500 mm直径:d = √(As / (0.785 × π)) = √(258000 / (0.785 × π)) = 20 mm 横向箍筋:π10/1508. 验算:8.1 在斜对角方向进行验算:钢筋面积:Asx = Asy = 258000 mm2/m最小钢筋面积:Asmin = 96000 mm2/mAsx / Asmin = Asy / Asmin = 2.69 > 1.258.2 在水平方向进行验算:钢筋面积:Asx = 258000 mm2/mAsy = 0最小钢筋面积:Asmin = 96000 mm2/mAsx / Asmin = 2.69 > 1.258.3 在竖直方向进行验算:钢筋面积:Asx = 0Asy = 258000 mm2/m最小钢筋面积:Asmin = 96000 mm2/mAsy / Asmin = 2.69 > 1.25以上步骤都符合规范的要求,因此整个设计方案得以通过验算。
楼面荷载计算方法

楼面荷载计算方法一、楼面荷载的分类楼面荷载可以分为常驻荷载和活荷载两类。
其中,常驻荷载是始终存在在楼板上的荷载,如自重荷载、建筑结构的常驻荷载等;活荷载是在使用过程中产生的荷载,如人员荷载、设备荷载、储存物品产生的荷载等。
二、楼面荷载的计算方法1.常驻荷载的计算方法常驻荷载是建筑物自身的重量,包括楼板、墙体、屋面等构件的重量。
常驻荷载的计算可以按照混凝土建筑结构设计规范和钢结构设计规范进行。
混凝土结构的常驻荷载计算根据国家规范,以设计活载减去静载为计算基础。
具体计算公式为:Gk=γk×G。
其中,Gk为常驻荷载;γk为活载系数,取0.8;G为建筑物的自重。
钢结构的常驻荷载计算也是根据国家规范进行的,常用的计算方法为:Gk=γm×G。
其中,Gk为常驻荷载;γm为活载系数,按照不同的楼层和用途取不同的值,如工业厂房取1.0,商业建筑取1.2;G为建筑物的自重。
2.活荷载的计算方法活荷载是建筑物使用过程中产生的荷载,包括人员、装置设备、家具、储存物品等。
活荷载的计算必须根据设计规范和实际情况进行。
a.人员活荷载的计算方法人员活荷载是指建筑物上人员产生的荷载。
根据设计规范,人员活荷载的计算可分为两种情况:平面荷载和线形荷载。
平面荷载的计算公式为:Qp=A×q.其中,Qp为平面活荷载;A为荷载作用面积;q为单位面积活荷载。
线形荷载的计算公式为:Ql=l×q.其中,Ql为线形活荷载;l为荷载作用长度;q为单位长度活荷载。
b.装置设备活荷载的计算方法装置设备活荷载的计算需要根据实际情况进行,一般可以采用设备制造商提供的设备重量及相应的荷载分布数据进行计算。
c.家具和储存物品活荷载的计算方法家具和储存物品活荷载的计算同样需要根据实际情况进行,可以参考行业标准或实际测量数据进行计算。
三、楼面荷载的验算。
楼板承重面积计算

简单计算方法供参考,楼板能承受荷载200公斤/平米、按简支计算、3m 开间,如下:
(ql2)注:
式中L2为开间长的平方*[(),即3M开间楼板承担每平米200公斤的均布荷载时的弯矩为225kg.m;换成集中荷载放在最不利位置(板中间)可承受的集中力公式为(PL),即(P*3),解这个方程式的P=300Kg即可承受300Kg的集中力,如果放在不居中位置则;M=p*【(a/2)*(b/2)】/L式中a+b=L,即集中力距梁边端一端为a,一端为b,例如3米长板一端为1m,一端为2米,则:225=P*
【()*()】/3,解这个方程为P=1350公斤。
如果你将鱼缸靠墙放,则鱼缸中距墙才
0.3米,我们考虑距墙空隙和方便草算暂按
0.5米计算,则
225=p*[()解这个方程得P~2161kg的集中力。
当然上述计算是以1米宽的3M长板计算的,而且未考虑其他活荷载(人体、家具等)。
反算因这个鱼缸而造成的其他应减小的荷载(缸、水按1吨草算)
M=1000*[(),得M=
104.2kg.m,折成匀布荷载为(qL2)式中L2为开间长的平方,解之得q~
92.6kg,即板承载其他荷载能力约减小了一半,如果你是宽
1.5米的板则减少每平米
61.7kg的匀布荷载。
这只是按1m或
1.5米宽单向简支板计算的,事实上多数板为双向板或连续板、甚至有固定端,这样就更有利了,即使单向单跨简支板,也不是仅1米宽承重,会有部分荷载分散到1米宽以外的。
总之,不要过分担心,只是其他荷载少放点就是了【特别是鱼缸附近,包括沿鱼缸只对面墙间的位置(通常结构板都是以短边承重,除非个别情况】。
消防车活荷载计算(双向板)

2.70
覆土厚度S(m)=
1.00
1.00
折算覆土厚度Sp=
1.00
1.00
消防车活载覆土折减系数=
0.89
0.88
消防车活载按板跨插值结果=
33.75
35.00
综合考虑覆土后消防车计算活荷载=
30.1
模型中输入的活荷载(加权平均)=
30.4
②、消防车道主梁、墙柱活荷载取值:
消防车主梁、墙柱活载按梁跨插值
主梁跨度(m)=
8.10
6.50
折算覆土厚度Sp=
1.00
1.00
消防车活载覆土折减系数=
1.00
1.00
双向板楼盖主梁折减系数=
0.80
0.80
消防车活荷载插值结果=
20.00
20.00
综合考虑覆土后消防车计算活荷载=
16.0
16.0
模型中输入的活荷载(加权平均)=
16.0
0.81
0.92
2.5
0.57
0.62
0.7
0.81
3.0
0.48
0.54
0.61
0.71
2、根据《建筑结构荷载规范》(GB 50009-2012 )表5.1.1:
表5.1.1(8)双向板消防车活荷载
板跨(m)
消防车活载
3
35
6
20
3、根据《建筑结构荷载规范
》(GB 50009-2012 )附录 板顶折算覆土厚度Sp应按下式
计算:
Sp=1.43s·tanθ
式中:S——覆土厚度
θ——覆土应力扩散角,不大
于45°
注:本工程应力扩散角取35°
双向板楼等效活荷载的计算

浅谈双向板等效均布活荷载的计算摘要:本文根据《建筑结构荷载规范》(GB50009-2001)(2006版)附录B中对双向板等效荷载计算的概述,介绍了工程设计中双向板上等效均布活荷载的计算方法,为后续使用电算软件对结构整体进行受力分析提供了计算数据。
关键词:双向板等效均布活荷载计算0 前言双向楼板由于其经济、美观等优势而被广泛应用于建筑中。
本人在设计某污水处理厂脱水机房时,遇到了设备搁置于二层楼面的情况,由于脱水机房内设备较多以及工艺的要求,无法将所有设备布置于梁上,需要将布置于楼板上的设备重量进行等效均布活荷载的换算。
根据《建筑结构荷载规范》(GB50009-2001)(2006版)第4.1.3条规定,楼面板上的局部线荷载、面荷载等可按附录B的规定,换算为等效均布活荷载。
而附录B中仅对局部荷载作用下,如何计算等效均布荷载做了粗略的规定,所提供的计算公式也仅适用于单向板情况。
对于双向板的等效均布活荷载计算,本文基于对规范的规定理解提出一种计算方法。
《建筑结构荷载规范》(GB50009-2001)(2006版)第B.0.1条指出:楼面(板、次梁及主梁)的等效均布活荷载应在其设计控制部位上,根据需要按内力(如弯矩、剪力等)、变形裂缝的等值要求来确定在一般情况下,可仅按内力的等值来确定;第B.0.6条指出,双向板的等效均布荷载可按与单向板相同的原则,按四边简支板的绝对最大弯矩等值来确定。
这里通过一块楼板及其上部的设备荷载来介绍一下《建筑结构荷载规范》(GB50009-2001)第B.0.6条所述的双向板(这里所指的双向板一般指长边与短边长度之比小于或等于2.0的板,长边与短边长度之比大于2.0的板可按沿短边受力的单向板考虑)如何按四边简支的绝对最大弯矩等值确定其等效均布荷载。
而对于单向板上局部荷载的等效,《建筑结构荷载规范》(GB50009-2001)第B.0.4条、第B.0.5条已有详细说明,这里不再进行讨论。
楼板计算

3.3楼板配筋计算(采用单独一块计算的方式计算)楼板布置见图1.51-3轴线间各板配筋计算B-1区格板配筋计算l x=2.875m , l y=5.6m , l y / l x=5.6/2.875=1.95<2 故按双向板计算(1)荷载计算恒荷载设计值:g=4.4×1.2=5.28(kN/m2)活荷载设计值:q=1.3×6.0=7.8(kN/m2)g+q/2=5.28+7.8/2=9.18 (kN/m2)q/2=7.8/2=3.9 (kN/m2)g+q=5.28+7.8=13.08 (kN/m2)(2)内力计算l x=2.875m , l y=5.6m ,l x / l y=0.51进行查表,周边固支时弯矩系数m1=0.0389,m2=0.0040;m1*=-0.0827,m2*=-0.0570;周边简支时弯矩系数m1=0.0963,m2=0.0176单位板宽跨中弯矩m x=(0.0389+0.2×0.0040)×9.18×2.8752+(0.0963+0.2×0.0176)×3.9×2.8752=6.23(kN·m)m y=(0.0040+0.2×0.0389)×9.18×2.8752+(0.0176+0.2×0.0963)×3.9×2.8752=2.06(kN ·m)单位板宽支座弯矩 )(8.942.87513.088270.02m kN m m y y ⋅-=⨯⨯-=''=')(6.162.87513.085700.02m kN m m x x ⋅-=⨯⨯-=''='(3)截面设计保护层厚度取15mm ,选用B 8钢筋作为受力主筋,则l x 短跨方向跨中截面有效高度为:h 01=h-c-d/2=150-15-4=131,取为130mm ; l y 长跨方向跨中截面有效高度为:h 02=h-c-3d/2=123(mm),取为120mm ; 支座处h 0均为130mm截面弯矩设计值不考虑折算,计算配筋量时,取内力臂系数s γ=0.95,y s f h M A 095.0/=板筋选用HRB335,2/300mm N f y =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
再谈楼面双向板等效均布活荷载的计算
2011年02月25日15:57作者:左权胜249次阅读0次被顶共有评论0条
为什么要再谈,因为这一段时间以来,陆陆续续不断有网上朋友与我讨论这个问题,而且经常是间隔一段时间,这样造成的后果是逼得我不断地温习这个命题。
在这些有益的讨论中,我们也发现了很多有用的东西,所以有必要再进行一次梳理。
在叙述之前,有必要再强调一下命题的意义,那就是我们要找到一个满布的均布荷载值,该值对楼板产生的影响与我们已知的集中荷载(或局部分布荷载)的影响等效,而且我们已认可这里的等效是产生的弯矩值相等。
当已知荷载的位置不确定时,我们处理时很方便,我们会假定它作用在楼板平面的中心位置。
让很多人感到困惑的是已知荷载的位置偏离楼板平面的中心位置很多时的情况。
我们知道等效是指弯矩值相等,但是,什么位置的弯矩是我们这次要讨论的重点,《建筑结构荷载规范GB50009-2001》的附录B 说的是,“按四边简支板的绝对最大弯矩等值来确定”,上一篇文章我们认为取局部荷载作用处的弯矩作为对象比较合适。
也就是说,让满布等效荷载作用下,在已知局部荷载作用的位置处产生的弯矩与已知局部荷载作用下该点的弯矩值相等。
我们不妨称这种等效为“荷载作用处等效”。
另一种理解是“中心位置处等效”,就是说,让满布等效荷载作用下,在楼板平面中心位置处产生的弯矩与已知局部荷载作用下楼板平面的中心位置处的弯矩值相等。
《建筑结构荷载设计手册第二版》的附录四,给出了双向板楼面等效均布荷载计算表(有227页之多,占了该手册近一半,而且因为是表,所以数据覆盖不全面),是按“中心位置处等效”理解来考虑的。
还有一种理解,作者认为与“绝对最大弯矩等效”比较靠,那就是,让满布等效荷载作用下,在楼板平面的中心位置处产生的弯矩,与已知局部荷载作用下局部荷载作用的位置处产生的弯矩值相等。
为了看看这几种不同的理解到底有多大差别,我们举一个例子说明:
如图所示双向板,板两边的边长lx=ly=5m;已知荷载P=10kN;作用的区域边长btx=bty=0.5m;荷载中心位置距板边的距离dx=dy=1.5m。
按“荷载作用处等效”的结果:
计算得出的x向最大弯矩值:Mmaxx=2.291kN.m
计算得出的y向最大弯矩值:Mmaxy=2.291kN.m
由x向最大弯矩等值算出的等效均布荷载为:qe=1.931Kpa
由y向最大弯矩等值算出的等效均布荷载为:qe=1.931Kpa
最后取两者较大值,得:qe=1.931Kpa
按“中心位置处等效”的结果:
计算得出的x向最大弯矩值:Mmaxx= 0.607kN.m
计算得出的y向最大弯矩值:Mmaxy= 0.607kN.m
由x向最大弯矩等值算出的等效均布荷载为:qe= 0.564Kpa
由y向最大弯矩等值算出的等效均布荷载为:qe= 0.564Kpa
最后取两者较大值,得:qe= 0.564Kpa
按“绝对最大弯矩等效”的结果:
计算得出的x向最大弯矩值:Mmaxx= 2.291kN.m
计算得出的y向最大弯矩值:Mmaxy= 2.291kN.m
由x向最大弯矩等值算出的等效均布荷载为:qe= 2.132Kpa
由y向最大弯矩等值算出的等效均布荷载为:qe= 2.132Kpa
最后取两者较大值,得:qe= 2.132Kpa
为了比较得更加彻底,我们也给出考虑荷载最不利位置,也就是当荷载作用在楼板平面中心位置时的结果:
计算得出的x向最大弯矩值:Mmaxx= 2.549kN.m
计算得出的y向最大弯矩值:Mmaxy= 2.549kN.m
由x向最大弯矩等值算出的等效均布荷载为:qe= 2.372Kpa
由y向最大弯矩等值算出的等效均布荷载为:qe= 2.372Kpa
最后取两者较大值,得:qe= 2.372Kpa
从上面的四种结果可以看出,按“荷载作用处等效”的结果、按“绝对最大弯矩等效”的结果以及考虑荷载最不利位置的结果较为相近,而按“中心位置处等效”的等效荷载最小,而且数值上相差得还不小。
这就意味着,如果根据这样的等效荷载来进行构件设计的话,在荷载作用点附近是不安全的。
就是说,它们实际内力是远远大于按等效荷载作用下计算的数值。
这样看来,《建筑结构荷载设计手册第二版》说好听的是有近一半的精力白费了,说不好听的是给出了一个错误不安全的结果。