杆件的应力及强条件

合集下载

建筑力学 第9章 组合变形杆件的应力分析与强度计算

建筑力学 第9章 组合变形杆件的应力分析与强度计算
建筑力学
§9-1 组合变形的概念
一、组合变形的概念
前面几章研究了构件的基本变形: 轴向拉(压)、扭转、平面弯曲。
由两种或两种以上基本变形组合的情况称为组合变形
组合变形
斜弯曲 拉(压)弯组合变形 偏心拉伸(压缩)变形 弯扭组合变形
§9-1 组合变形的概念
斜弯曲:
压弯组合变形:
F
Fy
z
Fz
x
y
§9-1 组合变形的概念
M z max Wz
z
Fx x
Fy
y
F
设图示简易吊车在当小车运行到梁端D时,吊车横梁处于最 不利位置。已知小车和重物的总重量F=20kN, 钢材的许用应力[]=160MPa,暂不考虑梁的自重。 按强度条件选择横梁工字钢的型号。
C
2m
A
A
FAx FAy
30 3.46m
FBC
30 3.46m
解:1、横梁AD受力分析
z
F2
b
(最大拉应力)
l y
解:
h
z
l
F1
(最大压应力)y
§9-3 拉伸(压缩)与弯曲的组合变形
横向力与轴向力共同作用的组合变形 一、荷载分解
Fx F cos
z
Fx x
Fy
y
F
Fy F sin
§9-3 拉伸(压缩)与弯曲的组合变形
二、内力计算 a
z
Fx F cos
Fx Fy F sin
解:1、荷载分解
q
qy q cos 800 0.894 714 N / m A
B
L
qz q sin 800 0.447 358 N / m

机械基础——第三章第三节 杆件的应力及强度计算

机械基础——第三章第三节 杆件的应力及强度计算

2、挤压强度条件
挤压应力:由挤压力产生的应力。 设挤压力为Fjy,挤压面积为Ajy,则挤压应力为:
式中:σiy——平均挤应力,单位MPa;
Fjy——受压处的挤压力,单位N;
Ajy——挤压面积,单位mm2。 为了保证联接件具有足够的挤压强度而正常工作,其强度条件为 :
例:如图所示,拖车挂钩靠销钉连接。已知挂钩部分的钢板厚度 δ=8 mm,销钉材料的许用剪切应力[τ]=60 MPa,许用挤压 应力[σiy]=100 MPa, 拖力F=15 KN。试设计销钉的直径d。
(2)强度条件校核:
FN 4 A

p( D 2 d 2 )

4 32.7(MPa)
d2
p( D 2 d 2 ) 2 (752 182 ) 2 d 182
32.7MPa
所以,活塞杆的强度足够。
思 考 题 P.76
3
(二)剪切与挤压强度计算 1、剪切强度
2 2 FN pA D d ) 1 p( 4 4
例3-4 某铣床工作台进给油缸如图所示,缸内工作油压p= 2MPa,油缸内径D=75mm,活塞杆直径d=18mm,已知活 塞杆材料的许用应力[σ]=50MPa,试求校核活塞杆的强度。 解:(1)活塞的轴力:
2 2 FN pA D d ) 1 p( 4 4
复习提问
1、轴向拉压时的内力是轴力,轴力的正负是如何规定的?
FN F
轴力离开截面为正,反之为负。计算时先以正向假设。
复习提问
2、轴扭转时的内力是什么?内力的正负号如何确定? 扭转轴的内力称为扭矩,用T表示。 正负用右手螺旋定则确定。
T
_
指向截面
计算时先以正向假设。

工程力学中的杆件受力分析和应力分布

工程力学中的杆件受力分析和应力分布

工程力学中的杆件受力分析和应力分布工程力学是研究物体在受力作用下的力学行为及其工程应用的学科。

在工程力学中,对于杆件的受力分析和应力分布是非常重要的内容。

杆件是指在力的作用下只能沿着轴向伸缩的直细长构件,通常用来承受拉力或压力。

在本文中,我们将探讨杆件受力分析的方法以及应力分布的计算方式。

一、杆件受力分析在杆件受力分析中,主要考虑的是杆件所受的外力作用以及杆件内部所存在的支反力。

首先,我们需要明确杆件所受的外力有哪些类型。

常见的外力包括拉力、压力、剪力和扭矩等。

在分析杆件受力时,我们通常采用自由体图的方法,即将杆件与其它部分分开,将作用在该部分上的所有外力和内力用矢量图表示出来。

对于杆件受力分析,我们需要应用平衡条件,即受力平衡和力矩平衡条件。

受力平衡条件要求受力杆件在平衡状态下,合力为零,合力矩为零。

力矩平衡条件要求受力杆件在平衡状态下,合力矩为零。

通过应用这些平衡条件,我们可以得到杆件内部的支反力以及所受外力的大小和方向。

二、应力分布计算一旦我们确定了杆件所受的外力以及杆件内部的支反力,接下来我们需要计算杆件上的应力分布情况。

应力是指杆件某一截面上内部单位面积上所承受的力的大小。

常见的应力类型有拉应力、压应力和剪应力等。

在杆件内部,由于受力的存在,会导致杆件内部存在正应力和剪应力。

正应力是指作用在截面上的力沿截面法线方向的分量,而剪应力是指作用在截面上的力沿截面切线方向的分量。

根据杆件破坏的准则,我们通过计算截面上的应力分布来评估杆件的强度是否满足要求。

在计算杆件的应力分布时,一种常用的方法是应用梁弯曲理论。

根据梁弯曲理论,我们可以通过计算杆件的弯矩和截面形状来确定截面各点上的应力分布。

杆件的弯矩可以通过受力分析和力矩平衡条件来计算,而截面形状可以通过测量或者根据设计参数确定。

另外,我们还可以利用有限元分析方法来计算杆件的应力分布。

有限元分析是一种数值计算方法,通过将复杂的结构分解为许多小的单元,然后通过数值模拟的方式来计算每个单元上的应力分布。

弯曲杆件应力计算公式

弯曲杆件应力计算公式

M y Iz M 2 ymax max Iz
max
yymax
1 max
σymax M z
y max
σ max 图8-30
例8.12 悬臂梁受力如下图所示,已知 8 4 I z 110 mm 试求梁的最大拉应力。
200 (y2)
22kN A 2m B 1m C 12kN
复习:
弯曲杆件正应力计算公式:
M y I
弯曲切应力计算公式:

FQ S z Iz b

第五节 弯曲杆件的强度计算


一、强度条件 1. 正应力强度条件 (1) 横截面上的最大正应力 对整个等截面杆件来说,最大正应力发生 在弯矩最大的截面上,其值为
max
M max y max Iz
练习:
例2. 一简支梁如下图示。梁由两根工字钢组 成,[σ]=170MPa,选择工字钢的型号。


10KN 50KN A C D 2m B
4m
4m
z
RA 26KN
RB 34KN
M max 136KN m
M max 136106 Wz 400cm3 2 2 170

2.切应力强度条件

对于等截面直梁,全梁的最大切应力发生在FQmax 所在截面的中性轴处。
max
FQ S
* z max
当杆件出现以下情况之一时,必须校核切应 力强度,甚至由切应力强度条件来控制: (1)梁的跨度较小或荷载作用在支座附时。 (2)某些组合截面梁(如焊接的工字形钢板 梁),当腹板厚度与高度之比小于相应型钢的相 应比值时。 (3)木梁或玻璃等复合材料梁。

【土木建筑】04杆件的应力、强度和刚度

【土木建筑】04杆件的应力、强度和刚度

I 2 dA
A
dA 2π d
I dA
2 A
R
0
πR4 πD4 2π d 2 32
2
由于 I I z I y ,圆截面对任意通过圆心的轴对称,所以 I z I y 3.13
iz iy
Iz A
πD 4 64
πD 2 D R 4 4 2
第4章
可得:
杆件的应力、强度和刚度
截面的几何性质
πD4 Iz I y I / 2 64
iz iy Iz A πD 4 64 πD 2 D R 4 4 2
(3) 计算惯性半径
(4) 计算抗弯截面模量:
W
I ymax
πD 4 64 πD3 D2 32
2 A b 2 b 2
图4.6 矩形截面
b3 h z bdx 12
2
(2) 计算矩形截面对z轴和y轴的惯性半径:
iz Iz bh3 /12 h h A bh 12 2 3
iy
Iy
b3 h /12 b b A bh 12 2 3
3.12
第4章
杆件的应力、强度和刚度
图4.8 惯性矩的平行移轴
第4章
杆件的应力、强度和刚度
截面的几何性质
z zc b
y yc a
根据惯性矩定义,图形对z轴的惯性矩为:
I zc yc2 dA ( yc a)2dA yc2dA 2a yc dA a 2 dA
A A A A A
式中:
yc
图4.2 矩形截面
Ay
i 1 i
n
ci

工程力学中的杆件和梁的应力分析

工程力学中的杆件和梁的应力分析

工程力学中的杆件和梁的应力分析工程力学是工程学科的重要分支之一,它研究物体在受力作用下的力学性质。

在工程实践中,杆件和梁是常见的结构构件,其应力分析是工程设计和计算的基础。

本文将从杆件和梁的应力分析角度探讨工程力学中的相关知识。

一、杆件的应力分析杆件是一种细长的结构构件,承受轴向力的作用。

在杆件的静力学中,应力是一个重要参数,用于描述杆件内部受力的强度和稳定性。

杆件的应力可以分为正应力和切应力。

1. 正应力正应力是指垂直于杆件截面的作用力在该截面上的单位面积,通常用σ表示。

正应力的计算可以使用公式:σ = F / A其中,F为作用力的大小,A为截面积。

正应力可以分为拉应力和压应力两种情况。

当作用力沿着杆件的轴向,方向与截面的法线方向一致时,称为拉应力。

拉应力是正值,表示杆件受拉的状态。

当作用力沿着杆件的轴向,方向与截面的法线方向相反时,称为压应力。

压应力是负值,表示杆件受压的状态。

2. 切应力切应力是指杆件截面上作用力的切向力与该截面上的单位面积之比,通常用τ表示。

切应力的计算可以使用公式:τ = F / A其中,F为作用力的大小,A为截面积。

切应力主要存在于杆件的连接部分,例如螺纹连接、焊接连接等。

切应力会引起杆件的剪切变形和破坏,需要在设计过程中加以考虑。

二、梁的应力分析梁是一种用于承受弯曲力的结构构件,具有横截面的特点。

在梁的应力分析中,主要考虑的是弯矩和截面弯曲应力。

1. 弯矩弯矩是指作用在梁上的力对其产生的弯曲效应。

在工程实践中,梁通常是直线形状,因此弯矩在横截面上呈现出分布的特点。

弯矩可以通过力学平衡和弹性力学原理进行计算。

弯矩的大小与力的大小和作用点的位置有关,计算公式为:M = F * d其中,M为弯矩,F为作用力的大小,d为作用点到梁的某一端的距离。

2. 截面弯曲应力截面弯曲应力是指由于弯曲效应,在梁的横截面上产生的应力。

截面弯曲应力的大小与弯矩和横截面的几何形状有关,计算可以使用弯曲应力公式进行。

(正应力强度条件)

(正应力强度条件)

2010-9-18
3
9 - 1 、概
1. 杆件基本变形下的强度条件 (拉压) 拉压)

σmax
FN,max = ≤[σ ] A
Mmax 弯曲) (弯曲) σmax = ≤ [σ ] W
(正应力强度条件) 正应力强度条件)
σmax ≤ [σ ]
Fs S 弯曲) (弯曲) τmax = ≤ [τ ] bIz T 扭转) (扭转)τmax = ≤ [τ ] Wp
2010-9-18
* z
(切应力强度条件) 切应力强度条件)
τmax ≤ [τ ]
1Hale Waihona Puke 9 - 1 、概述
σmax
σmax ≤ [σ ] 满足 τ τ max ≤ [ ]
是否强度就没有问题了? 是否强度就没有问题了?
τmax
2010-9-18
2
9-2、经典强度理论 、
强度理论:人们根据大量的破坏现象, 强度理论:人们根据大量的破坏现象,通过判断推 理、概括,提出了种种关于破坏原因的假说,找出 概括,提出了种种关于破坏原因的假说, 引起破坏的主要因素,经过实践检验,不断完善, 引起破坏的主要因素,经过实践检验,不断完善, 在一定范围与实际相符合,上升为理论。 在一定范围与实际相符合,上升为理论。 为了建立复杂应力状态下的强度条件, 为了建立复杂应力状态下的强度条件,而提出 的关于材料破坏原因的假设及计算方法。 的关于材料破坏原因的假设及计算方法。

杆件应力及强度计算

杆件应力及强度计算
2 2
P
BC
FNAB 30 103 149Mpa 6 AAB 201 10
FNBC 26 103 2.6Mpa 4 ABC 100 10
拉伸、压缩与剪切
•斜截面上的应力
P
拉压的内力和应力
有些材料在破坏时并不总是沿横截面,有的是沿斜截面。因此要进 一步讨论斜截面上的应力。 k 设拉力为P,横截面积 为A, P
材料力学
长沙理工大学
蔡明兮
2018年8月8日星期三
第四章
杆件应力与强度计算
拉伸、压缩与剪切
•横截面上的应力
A、几何方面: 根据实验现象,作如下假设:
拉压的内力和应力
平截面假设:变形前的横截面,变形后仍然保持为横截面, 只是沿杆轴产生了相对的平移。 应变假设:变形时纵向线和横向线都没有角度的改变,说明 只有线应变而无角应变。


o

o

拉伸、压缩与剪切
•高温短期
When t 250o ~ 300o C When t 2时间的影响
以低碳钢为例,当温度升高,E、S降低。
b b
& &
在低温情况下。象低碳钢, p 、S增大,减小。即发生冷脆现象。
max
s
拉伸、压缩与剪切
剪切的实用计算:
剪切和挤压的实用计算
FS A
剪切的强度条件:
P
P
FS [ ] A
Q

) [1 ] (塑性材料) (0.6 ~ 0.8 [] 0.8 ~ 1.0) [1 ] (脆性材料) ( [1 ] 为材料的许用拉应力
拉伸、压缩与剪切
2、选择截面
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

max
在静载作用下:塑性材料
可以不考虑应力集中,脆
塑性材料要考虑应力集中
(铸铁例外);
在动载作用下:都需考虑 应力集中。
9
4、切应力互等定理
§ 8-1 拉压杆的应力、拉压材料的力学性能
在两个相互垂直的截面上,切应力必然成对 出现,其数值相等,方向为同时指向或者背离两 垂直面的交线,此定理称为切应力互等定理。
上屈服点
c b 下屈服点 a
e f
b pe
s
延伸率
断面收缩率
o
弹性阶段 屈服阶段
强化阶段 颈缩阶段
12
§ 8-1 拉压杆的应力、拉压材料的力学性能
塑性材料和脆性材料?
5%
5%
卸载定律 冷作硬化
e
d
上屈服点
f
c
b 下屈服点 a
b pe
s p p1
d1
o
弹性阶段 屈服阶段
强化阶段 颈缩阶段
3)铸铁在拉伸时的力学性能 3、材料在压缩时的力学性能
1)低碳钢在压缩时的力学性能
b
o
衡量脆性材料强度 的唯一指标是材料 的抗拉强度b
o
15
§ 8-1 拉压杆的应力、拉压材料的力学性能
2)铸铁在压缩时的力学性能 小结:塑性材料和脆性材料的 力学性能的主要差异:
压缩
1.塑性材料的塑性指标( , )高,
圣维南(Saint-Venant)原理
力作用于杆端的方式不同,只会使作用点附近不大的
范围内受到影响。
4、杆件必须是等截面直杆。若杆
P
截面变化时,横截面上的应力将 不再是均匀的。如果截面变化比
P / 2 较缓慢时,可以近似应用公式。
P/ 2
P A
(x) FN (x)
A(x)
7
§ 8-1 拉压杆的应力、拉压材料的力学性能
结论:横截面上只有正应力,没有切应力。
a
d
P
a1
d1
P
b1
c1
b
c
4
物 理 方 面
§ 8-1 拉压杆的应力、拉压材料的力学性能
设想杆件是由无数根纵向纤维组成的。由于材料 是均匀的,那么它们的变形和力学性能相同,可以推 想各纵向纤维的受力也应该是一样的。
结论:横截面上各点的正应力相等。
结论:横截面只有正应力且与轴力同向, 并且各点的正应力相等。
a
d
P
P
b
c
5
§ 8-1 拉压杆的应力、拉压材料的力学性能

力 学
FN dA dA A

A
A

方 程
FN
P
A
FN
a
d
P
P
b
c
6
§ 8-1 拉压杆的应力、拉压材料的力学性能
1、公式是在拉伸时导出的,同样可以应用于压缩。
2、外力合力的作用线必须与杆的轴线重合。
3、公式只在杆件距力作用点较远部分才成立。
而脆性材料的塑性指标较低;
2.塑性材料的抗拉压性能相近,
拉伸
而脆性材料的抗压性能比抗拉
o
性能强;
3.二者对应力集中的敏感程度
不相同。特例:灰铸铁可以不 断裂时断口约与轴线成450。 考虑应力集中的影响。
16
§ 8-1 拉压杆的应力、拉压材料的力学性能
3)蠕变、松弛(了解)
高温短期静载
以低碳钢为例,当温度升高,E、S降低。
When t 250o ~ 300oC
t
b
&
When t 250o ~ 300oC
t
b
&
在低温情况下:低碳钢的 p 、S增大,减小,发生冷脆现象。 高温长期静载
当温度高于某一值且应力超过某一值时,变形随时间增大,这 种现象为蠕变;
高温工作的构件在发生了弹性变形后,若变形量不变,则构件 将保持一定的预紧力,因蠕变产生的塑性变形将逐步代替原有 的弹性变形,从而使预紧力逐渐下降,这种现象为松弛。
900 : 0 即纵截面没有任何应力(自由表面)。
8
3. 应力集中的概念
§ 8-1 拉压杆的应力、拉压材料的力学性能
由于杆件局部截面发生突变,在突变的局部区域内,应力急剧 增加,而离开该区域应力又趋于缓和。这种现象称为应力集中。
Kt
max m
最大应力与平均应力之比称为 理论应力集中系数。
o
残余变形
13
§ 8-1 拉压杆的应力、拉压材料的力学性能
2)其它塑性材料在拉伸时的力学性能
中碳钢、某些高碳钢以及合金钢、铝合金、青铜 等,除16Mn钢之外,几乎都没有明显屈服极限。
名义屈服极限: 0.2 0.2 : 塑性应变等于0.2%时的应力值
0.2
o
0.2%
14
§ 8-1 拉压杆的应力、拉压材料的力学性能
l 为标距即工作段的长度
11
§ 8-1 拉压杆的应力、拉压材料的力学性能
2、材料在拉伸时的力学性能
加载方式: 常温静载试验
1)低碳钢(A3钢) (含碳量 <0.3%)拉伸时的力学性能
l1 l 100% , A A1 100%
l
A
四个阶段 弹性阶段: p(e) 屈服阶段: s 强化阶段: b 颈缩阶段:
3
§ 8-1 拉压杆的应力、拉压材料的力学性能
§8-1 拉压杆的应力、拉压材料的力学性能
一、拉压杆的应力
1、横截面上的正应力
根据实验现象,作如下假设:

平截面假设:变形前的横截面,变形后仍然保持
何 为横截面,只是沿杆轴线产生了相对的平移。
方 面
应变假设:变形时纵向线和横向线都没有角度的 改变,说明只有线应变而无角应变。
纯剪切应力状态
前后两个面称为自由表面。
10
§ 8-1 拉压杆的应力、拉压材料的力学性能
二、材料在拉压时的力学性能
力学性能:材料受力时在强度和变形方面所表现出来的性能。
1、试验设备和试件 1.万能试验机:加力部分、测力部分、自动测绘装置 2.标准试件:圆截面标准试件、矩形截面标准试件 圆截面标准试件: l 10d或l 5d 矩形截面标准试件:l 11.3 A或l 5.65 A
2.斜截面上的应力
设拉力为P,横截面积为A,取k-k斜截面,夹角为,求 ,
显然:A
A
cos
,F
P
p
Fos2
p
sin
2
sin 2
P P P
讨论:
k
k
k
p
k k
p
k
P
F
0 : max ;
450
: max
2
;
从轴向往截面的外法线方向 为逆时针转时, 取正值。
17
§ 8-2 拉压杆的强度条件、连接件的适用计算
1
工程力学
Mechanics of Engineering
长沙理工大学土建学院
文海霞
2020年6月11日星期四
2
第八章 杆件的应力及强度计算★
§8-1 拉压杆的应力、拉压材料的力学性能 §8-2 拉压杆的强度计算、连接件的适用计算 §8-3 圆轴扭转切应力及强度计算 §8-4 梁的弯曲正应力及强度计算 §8-5 梁的弯曲切应力及强度计算 §8-6 提高梁的弯曲强度的措施
相关文档
最新文档