高考物理电学十大方法精讲 方法02镜像法(1)

合集下载

电磁场课件 Part8--镜像法(1)

电磁场课件 Part8--镜像法(1)

Topic # 8—镜像法(method ofimages)­Part1n镜像法n点电荷~无限大的接地导板系统n电轴~无限大接地导电平面系统的电场n电轴法 (广义镜像法)1n镜像法n定义The method of images is an analytical technique that involves replacing constant­potential surfaces with equivalent sources called image sources that generate the same fields.镜像法——用场域闭合边界外虚设的较简单的电荷分布来等效替代该边界上未知的较为复杂的电荷分布以简化原问题的分析和计算。

场域闭合边界—一般为导体组成等位面2n镜像法n适用场合The conducting boundaries that can be modeled inthis way include infinite planes, spheres, infinitecylinders, and wedges.34n 点电荷~无限大的接地导板系统 n Background对于大地上方输电线、雷电形成的电场,可以典型化为最 基本的问题:无限大接地导体上方点电荷激发的电场问题+q2s DP (x,y,z )1s he 导板¥r 2 0j Ñ=5n 点电荷~无限大的接地导板系统 n 分析—直接求解是否可能1. ? 不行,2. 已知场源分布,求3. 高斯定理?0 4 P qrj e = p E vd SE S · ò vv Ñ0 E S × 或 非单一媒质需要探索新的求解方法不通6n 点电荷~无限大的接地导板系统n 换一个角度考虑:考虑其边值问题20 in Dj Ñ= 1||0S j j == 导板表面 |0t E = 导板表面 211221 10 00 d d s C s s S S q n j j s e = ®® ¶ ====-= ¶ òò ÑÑ7n 点电荷~无限大的接地导板系统 n 能否找到较简单的等效模型?一对相距2h 位于e 0 单一媒质的上半空间的电场—仅考虑上半空间 q+ 2s 1s h0 e ¥e hq- 2 2 0j Ñ= xy o Er边值问题22 0 ()j Ñ= 在上半空间 12 |0S j = 0 | y n n E E e= = r r8n 点电荷~无限大的接地导板系统 n 能否找到较简单的等效模型?一对相距2h 位于e 0 单一媒质的上半空间的电场—仅考虑上半空间 边值问题22 0 ()j Ñ= 在上半空间 1 2 |0 S j = 0 | y n nE E e = = r r y =0的平面为等位面,且其电位为零9n 点电荷~无限大的接地导板系统 n 能否找到较简单的等效模型?一对相距2h 位于e 0 单一媒质的上半空间的电场—仅考虑上半空间 22122210 00 d d s C s s S S q n j j s e = ®® ¶ ====-= ¶ òò ÑÑ 在正点电荷处取同样“大小”的面元S 2,可近似认为该 面元为等位面,于是:q+ 2s 1s h0 e ¥e hq- 2 2 0j Ñ= xy o Er10n 点电荷~无限大的接地导板系统 n 比较边值问题一对相距2h 位于e 0 单一媒质的上半空间的电场原问题22 0 () j Ñ= 在上半空间 1 220 ||=0S y j j = =0 |0t y E = = 22122 210 00 d d s C s s S S q n j j s e = ®®¶ ====-= ¶ òò ÑÑ 20 in Dj Ñ= 1||0S j j == 导板表面 |0t E = 导板表面 21122110 00 d d s C s s S S q n j j s e = ®® ¶ ====-= ¶ òò ÑÑ 二者完全一样(y =0平面对应导板表面)11n 点电荷~无限大的接地导板系统 n 结论由唯一性定理可知,两者的解答 j =j 2注意适用区域:仅上半平面?为什么?计算导板上方的电场时,可以把导板上的感应电荷的影响 用一置于对称位置上的集中电荷等效由于引入的电荷位于原电荷对导板的镜像处—镜像法n点电荷~无限大的接地导板系统 n计算模型—原问题De导体j = x1ryo(,,0)P x yq+h1213n 点电荷~无限大的接地导板系统 n 计算模型—镜像法模型场中电场分布,等效于引入镜 像电荷q ,撤去 导板,整个空 间充满同一种 电介质的电场。

电动力学镜像法课件

电动力学镜像法课件

03
理论框架完善
未来研究将进一步完善镜像法的理论框架,建立更严谨的数学和物理基
础,为解决复杂问题提供更有力的工具。
镜像法在其他领域的应用前景
光学领域
镜像法在光学领域有广泛的应用前景,如光子晶体、光子器件的 设计与模拟等。
生物医学工程
镜像法可用于模拟生物组织的电磁特性,为医学成像和诊断提供技 术支持。
镜像法在静电场中主要用于解决导体表面的电荷分布和电场分布问题。
详细描述
当一个带电体放置在导体附近时,导体表面的电荷分布会受到带电体的影响。通 过应用镜像法,可以计算出导体表面的电荷分布和电场分布,从而进一步分析带 电体与导体之间的相互作用。
镜像法在静磁场中的应用
总结词
镜像法在静磁场中主要用于解决磁力线和磁感应强度分布问题。
详细描述
电动力学在许多领域都有重要的应用。例如,无线通信依赖于电磁波在空间的传播,雷达通过发射电磁波并检测 其反射来探测目标,电子显微镜利用电磁场来控制电子束的传播和成像。此外,电动力学还在电力传输、电磁兼 容性、粒子加速器等领域有广泛应用。
03 镜像法在电动力学中的应用
镜像法在静电场中的应用
总结词
镜像法的计算步骤
确定原问题和镜像模型
根据实际问题,确定需要求解的原问 题和对应的镜像模型。
建立等效关系
根据镜像法的数学模型,建立镜像电 荷或镜像边界与原电荷或原边界之间 的等效关系。
求解等效问题
利用等效关系,求解等效的静电场或 静磁场问题。
计算结果分析
对计算结果进行分析,得出原问题的 解。
镜像法的计算实例
电动力学镜像法课件
目录
Contents
• 镜像法简介 • 电动力学基础 • 镜像法在电动力学中的应用 • 镜像法的计算方法 • 镜像法的优缺点分析 • 镜像法的发展前景

第二章 静电场 镜像法

第二章 静电场  镜像法
§2.4 镜 象 法 Method of images
根据前面的讨论知道:在所考虑的区域内没有 自由电荷分布时,可用Laplace's equation求解场分 布;在所考虑的区域内有自由电荷分布时,用 Poisson's equation 求解场分布。
如果在所考虑的区域内只有一个或者几个点电 荷,区域边界是导体或介质界面,这类问题又如何 求解?这就是本节主要研究的:解决这类问题的一 种特殊方法— 称为镜象法。
b)由于象电荷代替了真实的感应电荷或极化电荷的作用,因此 放置象电荷后,就认为原来的真实的导体或介质界面不存在。也 就是把整个空间看成是无界的均匀空间。并且其介电常数应是所 研究场域的介电常数。(实际是通过边界条件来确定假想电荷的 大小和位置)。
c)一旦用了假想(等效)电荷,不再考虑原来的电荷分布。

(R2

R04 a2
R0 a 2R R02
a
1
cos ) 2

R0 R
a

(R R0 )
再由
内 RR0
外 RR0
得到


Q
4 0R0

Q
4 0a
b)导体球不接地其电势为U0 这种情况与例3的差别仍然在边界条件,这里
内 RR0 U0
U0 是已知常数,导体球的电势为U0,相当于在球心 处放置了电量为 4 0U0R0 的点电荷,显然,其解为
1

x2 y2 (z a)2
因为象电荷在左半空 间,所以舍去正号 解
1
]
x2 y2 (z a)2
讨论:(a)导体面上感应电荷分布



0

镜像法

镜像法
设一镜像电荷q″位于区域1中,且位置与 q 重合,同时将整个空间视为均匀介质2。
p v R
则区域2中任一点的电位为:
2

q q
4π 2 R
q q
2
2
在分界面(R = R′= R″)上,应满足电位的边界条件:
1
1
设想用镜像电荷 代替界面上极化 电荷的作用,并 使镜像电荷和点 电荷共同作用, 满足界面上的边
界条件。
当待求区域为介质1所在区域时,在边界之外设一镜像电荷 q′
介质1中任一点的电位为:
1

q q
4π1R 4π1R
电磁场
第3章 静电场及其边值问题的解法
当待求区域为介质2所在区域时,
* 此时要保证z=0平面边界条件不变,即应为零电位。
q q 4R 4R
故对z=0平面上任意点有R R R0 :
于是,

q 4

1 R

1 R


q 4

q q 0 4 R0
1

x2 y2 (z h)2
电位的法向导数

n
s

f2 s
一、二类边界条件的 线性组合,即

n
s2

f4 s
电磁场
一、静电场边值问题及其分类
第3章 静电场及其边值问题的解法
1. 边值问题的分类----根据场域边界条件的不同
狄利克雷问题:给定整个场域边界上的电位函数值 s f1s
(第一类)
聂曼问题:给定待求位函数在边界上的法向导数值 (第二类)
U0
O
ax
第3章 静电场及其边值问题的解法

镜像法

镜像法

/jp2007/02/wlkc/htm/c_4_p_4.htm§4.4 镜像法镜像法是求解电磁场的一种特殊方法,特别适用于边界面较规则(如平面、球面和柱面等)情况下,点源或线源产生的静态场的计算问题。

例如当一点电荷q 位于一导体附近时,该导体将处于点电荷q产生的静电场中,在导体表面上会产生感应电荷,则空间的电场应为该感应电荷产生的电场和点电荷q产生的电场的叠加。

一般情况下,在空间电场未确定之前,导体表面的感应电荷分布是不知道的,因此直接求解该空间的电场是困难的。

然而,在一定条件下,可以用一个或多个位于待求场域边界以外虚设的等效电荷来代替导体表面上感应电荷的作用,且保持原有边界上边界条件不变,则根据惟一性定理,空间电场可由原来的电荷q和所有等效电荷产生的电场叠加得到。

这些等效电荷称为镜像电荷,这种求解方法称为镜像法。

可见,惟一性定理是镜像法的理论依据。

在镜像法应用中应注意以下几点:(1)镜像电荷位于待求场域边界之外。

(2)将有边界的不均匀空间处理为无限大均匀空间,该均匀空间中媒质特性与待求场域中一致。

(3)实际电荷(或电流)和镜像电荷(或电流)共同作用保持原边界上的边界条件不变。

4.4.1 点电荷对无限大接地导体平面的镜像zqdx设在自由空间有一点电荷位于无限大接地导体平面上方,且与导体平面的距离为d 。

如图4.2(a)所示上半空间的电位分布和电场强度计算可用镜像法解决。

待求场域为0z >空间,边界为0z =的无限大导体平面,边界条件为在边界上电位为零,即(,,)0x y z φ= (4.29)设想将无限大平面导体撤去,整个空间为自由空间。

在原边界之外放置一镜像电荷'q ,当'q q =-,且'q 和q 相对于0z =边界对称时,如图4.2(b)所示。

点电荷q 和镜像电荷'q 在边界上产生的电位满足式(4.29)所示的边界条件。

根据镜像法原理,在0z >空间的电位为点电荷q 和镜像电荷'q 所产生的电位叠加,即1/21/2222222011{}4()()qx y z d x y z d φπε=-⎡⎤⎡⎤++-+++⎣⎦⎣⎦(4.30)上半空间任一点的电场强度为E φ=-∇电场强度E 的三个分量分别为3/23/22222220{}4()()x qxxE x y z d x y z d πε=-⎡⎤⎡⎤++-+++⎣⎦⎣⎦(4.31a)3/23/22222220{}4()()y qyyE x y z d x y z d πε=-⎡⎤⎡⎤++-+++⎣⎦⎣⎦(4.31b)3/23/22222220{}4()()z qz dz dE x y z d x y z d πε-+=-⎡⎤⎡⎤++-+++⎣⎦⎣⎦(4.31c)可见,在导体表面0z =处,0x y E E ==,只有z E 存在,即导体表面上法向电场存在。

电动力学镜像法_2023年学习资料

电动力学镜像法_2023年学习资料

5若导体球不接地,且带上自由电荷-20-2导体上总电荷为-Q比-时要保持导体为等势体,也应均匀分布在球面上 -02=+-4π 8R-6导体球不接地而带自由电荷Q时所受到的作用力-可以看作Q与Q'及位于球心处的等效电荷 ,+Q"的作用力之和-Q2+2"--1_0R2a2-R3-4π 8a-b2-4π 8a2-4π 6a2-a3a2 R2-设9,>0-Q>0,第一项为排斥力,第二项为吸引力-与Q无关,与Q正负无关。当a→R,时,F<0-即 电荷与带正电导体球在靠的很近时会出现相互吸引。-17
②l№<QL,因此0发出的电力线一部分会聚到导-体球面上,剩余传到无穷远。-15
Rla-476o R2+a2 -2Racos0-R2+Ro/a2-2RRg cos0/a-4若导体不接地导体不接地,可视为”分布在导体面上。不接地导体已为-等势体,加上Q"还要使导体为等势体,Q'必须均匀分布在 面上。-这时导体球上总电量Q'+Q”=0(因为均匀分布球面上可使导体-产生的电势等效于在球心的点电荷产生的 势-1=0+-4π 8R-等效电荷一般是点电荷组或一个带电体系,-而不一定就是一个点电荷。-16
b电荷Q产生的电场的电力线全部终止在导体面上,-它与无导体时,两个等量异号电荷产生的电场在右半空-间完全相 。-c导体对电荷Q的作用-力相当两点电荷间的作用力-二一-4π Gor-42a-166a
d镜象法的图形与光路用此图比较:-根据光的反射可找-到Q的大小和位置-Q与Q位置对于导体板镜象对称,故这种 法称为镜-象法(又称电象法)·-但要注意:光线是直线传播到导体板面上的。有的地方是与-板面⊥,有的地方是与 面有一定夹角;但电力线切线方向-是场强的方向,电力线在板面附近处处与板面L,这一点通-过静电平衡原理可知。 8

高考物理电学十大方法精讲 方法02镜像法(1)

高考物理电学十大方法精讲 方法02镜像法(1)

方法02镜像法在讨论一个点电荷受到面电荷(如导体表面的感应电荷)的作用时,根据“镜像法”可以设想一个“像电荷”,并使它的电场可以代替面电荷的电场,从而把问题大大简化.【调研1】如图所示,有一块无限大的原来不带电的金属平板MN ,现将一个带电量为+Q 的点电荷放置于板右侧的A 点,并使金属板接地.已知A 点离金属板MN 的距离为d ,C 点在A 点和板MN 之间,AC ⊥MN ,且AC 长恰为2d.金属平板与电量为+Q 的点电荷之间的空间电场分布可类比 (选填“等量同种电荷”、“等量异种电荷”)之间的电场分布;在C 点处的电场强度E C = .解析:金属平板上感应出的电荷理解为在A 点与板对称的另一点B 点存在一个电荷-Q ,所以金属板与电量为+Q 的点电荷之间的空间电场分布可类比等量异种电荷之间的电场分布. 根据场强的叠加,E =E 1+E 2=2224039()()22QQ kQ k k d dd +=【调研2】无限大接地金属板和板前一点电荷形成的电场区域,和两个等量异号的点电荷形成的电场等效.如图所示P 为一无限大金属板,Q 为板前距板为r 的一带正电的点电荷,MN 为过Q 点和金属板垂直的直线,直线上A 、B 是和Q 点的距离相等的两点.下面关于A. B 两点的电场强度E A 和E B 、电势φA 和φB 判断正确的是( ) A. E A >E B φA >φB B. E A >E B φA <φBC. E A >E B φA =φBD. E A =E B φA >φB解析:大金属板接地屏蔽,就是说,金属板上感应电荷分布后对于右边电场的影响,相当于在+Q 关于板对称的地方放上一个镜像电荷-Q .具体原因可以分析左边,左边电场为0.那么接地金属板电荷分布对于左边电场的影响相当于在+Q 原处放上一个-Q .而明显金属板对左右电场影响是对称的.这就是镜像法的原理.可以推得A 的电场为正负点电荷在此处方向相同,从而相加;而在B 处,方向相反,从而相减.则E A > E B ,由于A 的电场强度大于B 处,则正电荷从O 点移到A 处的电场力做功大于移到B 处,则U OA > U OB ,则ϕA <ϕB .故B 正确,A 、C 、D 错误;【调研3】如图所示为一块很大的接地导体板,在与导体板相距为d 的A 处放有带电量为-q 的点M+A d Nd /2 C MANQB P电荷.(1)试求板上感应电荷在导体内P 点产生的电场强度.(2)试求感应电荷在导体外P '点产生的电场强度(P 与P '点对导体板右表面是对称的); (3)在本题情形,试分析证明导体表面附近的电场强度的方向与导体表面垂直; (4)试求导体上的感应电荷对点电荷-q 的作用力.解析:(1)导体板静电平衡后有E 感=E 点,且方向相反,因此板上感应电荷在导体内P 点产生的场强:E p =2kqr ,其中r 为AP 间距离,方向沿AP ,如图甲所示. (2)因为导体接地,感应电荷分布在右表面,感应电荷在P 点和P '点的电场具有对称性,因此有:E P '=2kqr ,方向如所示. (3)考察导体板在表面两侧很靠近表面的两点P 1点和P 1'.如前述分析,感应电荷在导体外P 1'点产生的场强大小为:121iP kq E r =.点电荷-q 在P 1'点产生的场强大小也是121iP kqE r =.它们的方向如图乙所示.从图乙看出,P 1'点的场强为上述两个场强的矢量和,即与导体表面垂直.甲 乙(4)重复(2)的分析可知,感应电荷在-q 所在处A 点的场强为:E iA =22(2)4kq kqd d =,方向垂直于导体板指向右方,该场作用于点电荷-q 的电场力为:F =-qE iA =224kq d-,负号表示力的方向垂直于导体板指向左方.【调研4】如图所示,有一块很大的接地导体,具有两个相互垂直的表面,在此表面外较近处有一个点电荷q ,坐标为(x 0,y 0),试求点电荷q 的受力情况.解析: 求点电荷q 的受力即要求OA 、OB 板上感应电荷对它的作用力,但感应电荷在板上的分布并不均匀,直接求它们对q 的作用力很困难,如果此时空间中的电场与某些点电荷产生的电场相同,-qA d P 'P-qA E PPrE P ' P ' -qAP 1rAyxq (x 0,y 0)OB边界面上的感应电荷就可用这些点电荷代替,这就上上面所说的“镜像法”,为使OA 、OB 板电势为零,可先在q 关于OA 、OB 对称处分别放置q 1、q 2,q 1=q 2=-q . q 、q 1能使OA 板电势为零,但不能使OB 板电势为零;q 、q 2能使OB 板电势为零,但不能使OA 板电势为零;为使两板电势均为零,还需再放置一个与q 1、q 2都对称的q 1=q ,如图所示,导体表面感应电荷对q 的作用力相当于q 1、q 2、q 3三个镜像电荷对其的作用力. F x =-k2204q x +k222004()q x y +cos θ,其中cos θ=2200x y +.故F x = –k 24q [201x –223/20()x x y +]. 同理可得F y = –k 24q [201y –223/200()y x y +],负号表示库仑力与x 、y 轴的方向相反,点电荷q 的受力情况就是F x 、F y 的合力F =22+xyF F =k222002223/22223/200000011+4()()x yq x x y y x y ⎡⎤⎡⎤--⎢⎥⎢⎥++⎣⎦⎣⎦.A yx q (x 0,y 0O-q (q 1)q (q 3)-q (q 2)B θ。

镜像法及其应用

镜像法及其应用

镜像法在静电场中,如果在所考虑的区域内没有自由电荷分布时,可用拉普拉斯方程求解场分布;如果在所考虑的区域内有自由电荷分布时,可用泊松方程求解场分布。

如果在所考虑的区域内只有一个或者几个点电荷,区域边界是导体或介质界面时,一般情况下,直接求解这类问题比较困难,通常可采用一种特殊方法—镜象法来求解这类问题。

镜像法是直接建立在唯一性定理基础上的一种求解静电场问题的方法。

适用于解决导体或介质边界前存在点源或线源的一些特殊问题。

镜像法的特点是不直接求解电位函数所满足的泊松或拉普拉斯方程,而是在所求区域外用简单的镜像电荷代替边界面上的感应电荷或极化电荷。

根据唯一性定理,如果引入镜像电荷后,原求解区域所满足的泊松或拉普拉斯方程和边界条件不变,该问题的解就是原问题的解。

下面我们举例说明。

1导体平面的镜像例.1 在无限大的接地导电平面上方h 处有一个点电荷q ,如图3.2.1所示,求导电平板上方空间的电位分布。

解 建立直角坐标系。

此电场问题的待求场区为0z >;场区的源是电量为q 位于(0,0,)P h 点的点电荷,边界为xy 面,由于导电面延伸到无限远,其边界条件为xy 面上电位为零。

导电平板上场区的电位是由点电荷以及导电平面上的感应电荷产生的,但感应电荷是未知的,因此,无法直接利用感应电荷进行计算。

现在考虑另一种情况,空间中有两个点电荷q 和q -,分别位于(0,0,)P h 和点(0,0,)P h '-,使得xy 面的电位为零,如图3.2.2。

这种情况,对于0z >的空间区域,电荷分布与边界条件都与前一种情况相同,根据唯一性定理,这两种情况0z >区域的电位是相同的。

也就是说,可以通过后一种情况中的两个点电荷来计算前种问题的待求场。

对比这两种情况,对0z >区域的场来说,后一种情况位于(0,0,)P h '-点的点电荷与前一种情况导电面上的感应电荷是等效的。

由于这个等效的点电荷与待求场区的点电荷相对于边界面是镜像对称的,所以这个等效的点电荷称为镜像电荷,这种通过场区之内的电荷与其在待求场区域之外的镜像电荷来进行计算电场的方法称为镜像法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

方法02镜像法
在讨论一个点电荷受到面电荷(如导体表面的感应电荷)的作用时,根据“镜像法”可以设想一个“像电荷”,并使它的电场可以代替面电荷的电场,从而把问题大大简化.
【调研1】如图所示,有一块无限大的原来不带电的金属平板MN ,现将一个带电量为+Q 的点电荷放置于板右侧的A 点,并使金属板接地.已知A 点离金属板MN 的距离为d ,C 点在A 点和板MN 之间,AC ⊥MN ,且AC 长恰为
2
d
.金属平板与电量为+Q 的点电荷之间的空间电场分布可类比 (选填“等量同种电荷”、“等量异种电荷”)之间的电场分布;在C 点处的电场强度E C = .
解析:金属平板上感应出的电荷理解为在A 点与板对称的另一点B 点存在一个电荷-Q ,所以金属板与电量为+Q 的点电荷之间的空间电场分布可类比等量异种电荷之间的电场分布. 根据场强的叠加,E =E 1+E 2=2
2
2
4039()()
2
2
Q
Q kQ k k d d
d +=
【调研2】无限大接地金属板和板前一点电荷形成的电场区域,和两个等量异号的点电荷形成的电场等效.如图所示P 为一无限大金属板,Q 为板前距板为r 的一带正电的点电荷,MN 为过Q 点和金属板垂直的直线,直线上A 、B 是和Q 点的距离相等的两点.下面关于A. B 两点的电场强度E A 和E B 、电势φA 和φB 判断正确的是( ) A. E A >E B φA >φB B. E A >E B φA <φB
C. E A >E B φA =φB
D. E A =E B φA >φB
解析:大金属板接地屏蔽,就是说,金属板上感应电荷分布后对于右边电场的影响,相当于在+Q 关于板对称的地方放上一个镜像电荷-Q .具体原因可以分析左边,左边电场为0.那么接地金属板电荷分布对于左边电场的影响相当于在+Q 原处放上一个-Q .而明显金属板对左右电场影响是对称的.这就是镜像法的原理.可以推得A 的电场为正负点电荷在此处方向相同,从而相加;而在B 处,方向相反,从而相减.则E A > E B ,由于A 的电场强度大于B 处,则正电荷从O 点移到A 处的电场力做功大于移到B 处,则U OA > U OB ,则ϕA <ϕB .故B 正确,A 、C 、D 错误;
【调研3】如图所示为一块很大的接地导体板,在与导体板相距为d 的A 处放有带电量为-q 的点
M

A d N
d /2 C M
A
N
Q
B P
电荷.
(1)试求板上感应电荷在导体内P 点产生的电场强度.
(2)试求感应电荷在导体外P '点产生的电场强度(P 与P '点对导体板右表面是对称的); (3)在本题情形,试分析证明导体表面附近的电场强度的方向与导体表面垂直; (4)试求导体上的感应电荷对点电荷-q 的作用力.
解析:(1)导体板静电平衡后有E 感=E 点,且方向相反,因此板上感应电荷在导体内P 点产生的场强:E p =
2
kq
r ,其中r 为AP 间距离,方向沿AP ,如图甲所示. (2)因为导体接地,感应电荷分布在右表面,感应电荷在P 点和P '点的电场具有对称性,因此有:E P '=
2
kq
r ,方向如所示. (3)考察导体板在表面两侧很靠近表面的两点P 1点和P 1'.如前述分析,感应电荷在导体外P 1'点产生的场强大小为:1
21iP kq E r =
.点电荷-q 在P 1'点产生的场强大小也是121
iP kq
E r =.它们的方向如图乙所示.从图乙看出,P 1'点的场强为上述两个场强的矢量和,即与导体表面垂直.
甲 乙
(4)重复(2)的分析可知,感应电荷在-q 所在处A 点的场强为:E iA =
22
(2)4kq kq
d d =,方向垂直于导体板指向右方,该场作用于点电荷-q 的电场力为:F =-qE iA =2
24kq d
-,负号表示力的方向垂直于导体板指向左
方.
【调研4】如图所示,有一块很大的接地导体,具有两个相互垂直的表面,在此表面外较近处有一个点电荷q ,坐标为(x 0,y 0),试求点电荷q 的受力情况.
解析: 求点电荷q 的受力即要求OA 、OB 板上感应电荷对它的作用力,但感应电荷在板上的分布并不均匀,直接求它们对q 的作用力很困难,如果此时空间中的电场与某些点电荷产生的电场相同,
-q
A d P '
P
-q
A E P
P
r
E P ' P ' -q
A
P 1
r
A
y
x
q (x 0,y 0)
O
B
边界面上的感应电荷就可用这些点电荷代替,这就上上面所说的“镜像法”,为使OA 、OB 板电势为零,可先在q 关于OA 、OB 对称处分别放置q 1、q 2,q 1=q 2=-q . q 、q 1能使OA 板电势为零,但不能使OB 板电势为零;q 、q 2能使OB 板电势为零,但不能使OA 板电势为零;为使两板电势均为零,还需再放置一个与q 1、q 2都对称的q 1=q ,如图所示,
导体表面感应电荷对q 的作用力相当于q 1、q 2、q 3三个镜像电荷对其的作用力. F x =-k
220
4q x +k
222004()
q x y +cos θ,
其中cos θ=
220
0x y +.
故F x = –k 2
4
q [
20
1x –
223/2
0()
x x y +]. 同理可得F y = –k 2
4
q [
20
1y –
223/2
00()
y x y +],负号表示库仑力与x 、y 轴的方向相反,点电荷q 的受力情况就是F x 、F y 的合力F =
22+x
y
F F =k
22
2
002223/22223/200000011+4
()()x y
q x x y y x y ⎡⎤⎡⎤--⎢⎥
⎢⎥++⎣⎦⎣⎦
.
A y
x q (x 0,y 0O
-q (q 1)
q (q 3)
-q (q 2)
B θ。

相关文档
最新文档