一元线性回归模型习题及答案解析

合集下载

高一数学一元线性回归案例试题

高一数学一元线性回归案例试题

高一数学一元线性回归案例试题1. (2014•重庆一模)某小卖部销售一品牌饮料的零售价x (元/瓶)与销量y (瓶)的关系统计如下:已知x ,y 的关系符合线性回归方程,其中,.当单价为4.2元时,估计该小卖部销售这种品牌饮料的销量为( ) A.20 B.22 C.24 D.26 【答案】D【解析】利用平均数公式计算平均数,,利用b=﹣20求出a ,即可得到回归直线方程,把x=4.2代入回归方程求出y 值. 解:===3.5;==40,∴a=40﹣(﹣20)×3.5=110,∴回归直线方程为:=b +a=﹣20+110, 当=4.2时,=﹣20×4.2+110=26, 故选:D .点评:本题考查回归方程的求法,考查学生的计算能力,运算要细心.2. (2014•新余二模)已知某产品连续4个月的广告费用x i (i=1,2,3,4)千元与销售额y i (i=1,2,3,4)万元,经过对这些数据的处理,得到如下数据信息: ①x 1+x 2+x 3+x 4=18,y 1+y 2+y 3+y 4=14;②广告费用x 和销售额y 之间具有较强的线性相关关系; ③回归直线方程=bx+a 中的b=0.8(用最小二乘法求得); 那么,当广告费用为6千元时,可预测销售额约为( ) A .3.5万元 B .4.7万元 C .4.9万元D .6.5万元【答案】B【解析】求出数据的中心点的坐标,代入回归直线方程求得系数a ,根据广告费用为6千元,求得预报变量y 的值. 解:∵=,=, ∴数据的中心为(,), 则=0.8×+a ,∴a=﹣,当广告费用为6千元时,可预测销售额y=0.8×6﹣0.1=4.7(万元). 故选:B .点评:本题考查了线性回归分析思想,考查了学生的数据处理能力,在回归分析中数据的中心在回归直线上.3. (2014•辽宁模拟)从某高中随机选取5名高三男生,其身高和体重的数据如下表所示:身高x (cm )160165170175180)A.70.09kg B.70.12kg C.70.55kg D.71.05kg【答案】B【解析】根据所给的表格做出本组数据的样本中心点,根据样本中心点在线性回归直线上,利用待定系数法做出的值,现在方程是一个确定的方程,根据所给的x的值,代入线性回归方程,预报身高为172cm的高三男生的体重解:由表中数据可得==170,==69∵(,)一定在回归直线方程=0.56x+上故69=0.56×170+解得=﹣26.2故=0.56x﹣26.2当x=172时,=0.56×172﹣26.2="70.12"故选B.点评:本题主要考查线性回归方程的求解与运用,解题的关键是线性回归方程经过样本点的中心同时注意理解线性回归方程中相关系数的意义.4.(2014•郑州模拟)某车间加工零件的数量x与加工时间y的统计数据如表:现已求得上表数据的回归方程中的值为0.9,则据此回归模型可以预测,加工100个零件所需要的加工时间约为()A.84分钟B.94分钟C.102分钟D.112分钟【答案】C【解析】根据表中所给的数据,做出横标和纵标的平均数,得到样本中心点,代入样本中心点求出a的值,写出线性回归方程.将x=100代入回归直线方程,得y,可以预测加工100个零件需要102分钟,这是一个预报值,不是生产100个零件的准确的时间数.解:由表中数据得:=20,=30,又值为0.9,故a=30﹣0.9×20=12,∴y=0.9x+12.将x=100代入回归直线方程,得y=0.9×100+12=102(分钟).∴预测加工100个零件需要102分钟.故选C.点评:本题考查线性回归方程的求法和应用,解题的关键是正确应用最小二乘法求出线性回归方程的系数的运算,再一点就是代入样本中心点可以求出字母a的值,是一个中档题目.5.(2012•吉安县模拟)已知x,y的取值如表:x1234从散点图分析,y与x线性相关,且回归方程为,则a=()A.﹣0.15B.﹣0.26C.﹣0.35D.﹣0.61【答案】A【解析】首先求出这组数据的横标和纵标的平均数,写出这组数据的样本中心点,把样本中心点代入线性回归方程求出a的值,解:∵,∴这组数据的样本中心点是(2.5,4.5),∵y与x线性相关,且,,∴4.5=1.86×2.5+a,,∴a=﹣0.15,故选A.点评:本题考查线性回归方程的求解和应用,是一个基础题6.(2012•湘潭模拟)一位母亲记录了儿子3~7岁时的身高,并根据记录数据求得身高(单位:cm)与年龄的回归模型为.若用这个模型预测这个孩子10岁时的身高,则下列叙述正确的是()A.身高一定是145cm B.身高在145cm以上C.身高在145cm左右D.身高在145cm以下【答案】C【解析】根据回归模型为,将x=10代入即可得到预测值.解:根据回归模型为,可得x=10时,=145cm故可预测10岁时的身高在145cm左右故选C.点评:本题考查回归模型的运用,解题的关键是理解回归模型的含义,从而合理预测.7.(2011•丰台区二模)已知x,y的取值如下表:从散点图可以看出y与x线性相关,且回归方程为,则a=()【答案】B【解析】本题考查的知识点是线性回归直线的性质,由线性回归直线方程中系数的求法,我们可知在回归直线上,满足回归直线的方程,我们根据已知表中数据计算出,再将点的坐标代入回归直线方程,即可求出对应的a值.解:∵点在回归直线上,计算得,∴回归方程过点(2,4.5)代入得4.5=0.95×2+a∴a=2.6;故选B.点评:本题就是考查回归方程过定点,考查线性回归方程,考查待定系数法求字母系数,是一个基础题8.(2010•沈阳三模)已知两个统计案例如下:①为了探究患慢性支气管炎与吸烟关系,调查了339名50岁以上的人,调查结果如表:②为了解某地母亲与女儿身高的关系,随机测得10对母女的身高如下表:则对这些数据的处理所应用的统计方法是()A.①回归分析②取平均值B.①独立性检验②回归分析C.①回归分析②独立性检验D.①独立性检验②取平均值【答案】B【解析】本题考查的知识点是回归分析和独立性检验的概念及用法,回归分析主要判断两个定量变量之间的相关关系,而独立性检验主要用来分析两个定性变量(或称分类变量)的关系,由题目可知①中两个变量是定性变量(或称分类变量),②中两个变量是两个定量变量,分析即可得到答案.解:∵①中两个变量是定性变量(或称分类变量),②中两个变量是两个定量变量,∴对这些数据的处理所应用的统计方法是:①独立性检验②回归分析故选B点评:要判断处理数据时应采用的统计方法,关键是要分析数据中两个变量是定性变量还是定量变量,回归分析主要判断两个定量变量之间的相关关系,而独立性检验主要用来分析两个定性变量(或称分类变量)的关系.9.(2005•上海模拟)某地2004年第一季度应聘和招聘人数排行榜前5个行业的情况列表如下:A.计算机,营销,物流B.机械,计算机,化工C.营销,贸易,建筑D.机械,营销,建筑,化工【答案】B【解析】由于用同一行业中应聘人数与招聘人数比值的大小来衡量该行业的就业情况,根据表格的数据可以分别求出所有行业的应聘人数与招聘人数比值,然后根据这些比值即可求解.解:依题意得化工行业的应聘人数小于招聘人数,物流的应聘人数小于招聘人数,且比值化工行业大于物流机械的应聘人数大于招聘人数,故选B.点评:本题的考点是回归分析,主要考查了统计表的识别能力,解题的关键是会根据表格找出以后条件解决问题.10.实验测得四组(x,y)的值分别为(1,2),(2,3),(3,4),(4,4),则y与x间的线性回归方程是()A.y=﹣1+x B.y=1+x C.y=1.5+0.7x D.y=1+2x【答案】C【解析】根据所给的四对数据,算出y与x的平均数,把所求的平均数代入求b的公式,算出b 的值,再把它代入求a的式子,求出a的值,写出线性回归方程即可.解:根据题意得:==2.5,==3.25,b==0.7,a=﹣b=3.25﹣0.7×2.5=1.5,∴y与x间的线性回归方程是y=1.5+0.7x.故选:C.点评:本题考查线性回归方程的求法,在一组具有相关关系的变量的数据间,利用最小二乘法做出线性回归方程的系数,再代入样本中心点求出a的值,本题是一个基础题.。

南财计量经济学答案第二章 一元线性回归模型

南财计量经济学答案第二章 一元线性回归模型

五、计算分析题 1.解:(1)收入、年龄、家庭状况、政府的相关政 策等也是影响生育率的重要的因素,在上述简单 回归模型中,它们被包含在了随机扰动项之中。 有些因素可能与受教育水平相关,如收入水平与 教育水平往往呈正相关、年龄大小与教育水平呈 负相关等。 (2)当归结在随机扰动项中的重要影响因素与模 型中的教育水平educ相关时,上述回归模型不能 够揭示教育对生育率在其他条件不变下的影响, 因为这时出现解释变量与随机扰动项相关的情形, 基本假设3不满足。
ˆ ei2 回归估计的标准误差:
(n 2) 58.3539 (12 2) 2.4157
(3) 对进行显著水平为5%的显著性检验
t
*
^
ˆ 2 2
^
ˆ) SE ( 2
ˆ

ˆ 2
ˆ) SE ( 2

^
~ t (n 2)
ˆ ) SE ( 2
4、解: (1)这是一个横截面序列回归。 (2)截距2.6911表示咖啡零售价为每磅0美元时, 每天每人平均消费量为2.6911杯,这个数字没有 经济意义;斜率-0.4795表示咖啡零售价与消费量 负相关,价格上升1美元/杯,则平均每天每人消 费量减少0.4795杯; (3)不能; (4)不能;在同一条需求曲线上不同点的价格弹性 不同,若要求出,须给出具体的值及与之对应的 值。
2 i

334229.09 0.7863 425053.73
ˆ Y ˆ X 549.8 0.7863 647.88 66.2872 1 2
ˆ 66.2872 0.7863 X 估计结果为: Y i i 说明该百货公司销售收入每增加1元,平均说来销售成本将增 加0.7863元。 (2)计算可决系数和回归估计的标准误差 2 ˆ x )2 ˆ 2 x2 ˆ y ( i 可决系数为:R 2 i 2 i 2

计量经济学第三版课后习题答案第二章 经典单方程计量经济学模型:一元线性回归模型

计量经济学第三版课后习题答案第二章  经典单方程计量经济学模型:一元线性回归模型

第二章经典单方程计量经济学模型:一元线性回归模型一、内容提要本章介绍了回归分析的基本思想与基本方法。

首先,本章从总体回归模型与总体回归函数、样本回归模型与样本回归函数这两组概念开始,建立了回归分析的基本思想。

总体回归函数是对总体变量间关系的定量表述,由总体回归模型在若干基本假设下得到,但它只是建立在理论之上,在现实中只能先从总体中抽取一个样本,获得样本回归函数,并用它对总体回归函数做出统计推断。

本章的一个重点是如何获取线性的样本回归函数,主要涉及到普通最小二乘法(OLS)的学习与掌握。

同时,也介绍了极大似然估计法(ML)以及矩估计法(MM)。

本章的另一个重点是对样本回归函数能否代表总体回归函数进行统计推断,即进行所谓的统计检验。

统计检验包括两个方面,一是先检验样本回归函数与样本点的“拟合优度”,第二是检验样本回归函数与总体回归函数的“接近”程度。

后者又包括两个层次:第一,检验解释变量对被解释变量是否存在着显著的线性影响关系,通过变量的t检验完成;第二,检验回归函数与总体回归函数的“接近”程度,通过参数估计值的“区间检验”完成。

本章还有三方面的内容不容忽视。

其一,若干基本假设。

样本回归函数参数的估计以及对参数估计量的统计性质的分析以及所进行的统计推断都是建立在这些基本假设之上的。

其二,参数估计量统计性质的分析,包括小样本性质与大样本性质,尤其是无偏性、有效性与一致性构成了对样本估计量优劣的最主要的衡量准则。

Goss-markov定理表明OLS估计量是最佳线性无偏估计量。

其三,运用样本回归函数进行预测,包括被解释变量条件均值与个值的预测,以及预测置信区间的计算及其变化特征。

二、典型例题分析例1、令kids表示一名妇女生育孩子的数目,educ表示该妇女接受过教育的年数。

生育率对教育年数的简单回归模型为β+μβkids=educ+1(1)随机扰动项μ包含什么样的因素?它们可能与教育水平相关吗?(2)上述简单回归分析能够揭示教育对生育率在其他条件不变下的影响吗?请解释。

一元线性回归模型(习题与解答)

一元线性回归模型(习题与解答)

β1 X i + u i ,试证明
Var ( β 1 ) =
2-7. 试证明: (1) (2) (3)

∑X
σ u2
2 i
∑e
i
= 0 ,从而: e = 0
i
∑e x
i
=0
∑e Y
i
∧ i
= 0 ;即残差 ei 与 Yi 的估计值之积的和为零。
2-8.为什么在一元线性方程中,最小二乘估计量与极大似然估计量的表达式是一致的?证
10) 最小平方法
2-2.判断正误并说明理由: 1) 2) 3) 4) 5) 随机误差项 ui 和残差项 ei 是一回事 总体回归函数给出了对应于每一个自变量的因变量的值 线性回归模型意味着变量是线性的 在线性回归模型中,解释变量是原因,被解释变量是结果 随机变量的条件均值与非条件均值是一回事
2-3.回答下列问题: 1) 2) 3) 4) 线性回归模型有哪些基本假设?违背基本假设的计量经济学模型是否就不可估计? 总体方差与参数估计误差的区别与联系。 随机误差项 ui 和残差项 ei 的区别与联系。 根据最小二乘原理, 所估计的模型已经使得拟合误差达到最小, 为什么还要讨论模型的
其中带“^”者表示“估计值” 。
2-3.下表列出若干对自变量与因变量。对每一对变量,你认为它们之间的关系如何?是正 的、负的、还是无法确定?并说明理由。
因变量 GNP 个人储蓄 小麦产出 美国国防开支 棒球明星本垒打的次数 总统声誉 学生计量经济学成绩 日本汽车的进口量 利率 利率 降雨量 前苏联国防开支 其年薪 任职时间 其统计学成绩 美国人均国民收入 自变量
3
或债券的收益率;rm 表示有价证券的收益率(用市场指数表示,如标准普尔 500 指数) ;t 表示时间。在投资分析中,β1 被称为债券的安全系数β,是用来度量市场的风险程度的, 即市场的发展对公司的财产有何影响。依据 1956~1976 年间 240 个月的数据,Fogler 和 Ganpathy 得到 IBM 股票的回归方程;市场指数是在芝加哥大学建立的市场有价证券指数:

一元线性回归模型典型例题分析

一元线性回归模型典型例题分析

第二章 一元线性回归模型典型例题分析例1、令kids 表示一名妇女生育孩子的数目,educ 表示该妇女接受过教育的年数。

生育率对教育年数的简单回归模型为μββ++=educ kids 10(1)随机扰动项μ包含什么样的因素?它们可能与教育水平相关吗?(2)上述简单回归分析能够揭示教育对生育率在其他条件不变下的影响吗?请解释。

例2.已知回归模型μβα++=N E ,式中E 为某类公司一名新员工的起始薪金(元),N 为所受教育水平(年)。

随机扰动项μ的分布未知,其他所有假设都满足。

如果被解释变量新员工起始薪金的计量单位由元改为100元,估计的截距项与斜率项有无变化?如果解释变量所受教育水平的度量单位由年改为月,估计的截距项与斜率项有无变化?例3.对于人均存款与人均收入之间的关系式t t t Y S μβα++=使用美国36年的年度数据得如下估计模型,括号内为标准差:)011.0()105.151(067.0105.384ˆtt Y S +==0.538 023.199ˆ=σ (1)β的经济解释是什么?(2)α和β的符号是什么?为什么?实际的符号与你的直觉一致吗?如果有冲突的话,你可以给出可能的原因吗?(3)对于拟合优度你有什么看法吗? (4)检验统计值?例4.下列方程哪些是正确的?哪些是错误的?为什么?⑴ y xt n t t=+=αβ12,,, ⑵ yx t n t tt=++=αβμ12,,, ⑶ y x t n t t t=++= ,,,αβμ12⑷ ,,,y x t n t t t =++=αβμ12 ⑸ y x t n t t =+= ,,,αβ12 ⑹ ,,,y x t n t t=+=αβ12 ⑺ y x t n t t t =++= ,,,αβμ12 ⑻ ,,,y x t n t t t=++=αβμ12 其中带“^”者表示“估计值”。

例5.对于过原点回归模型i i i u X Y +=1β ,试证明∑=∧221)(iu X Var σβ例6、对没有截距项的一元回归模型i i i X Y μβ+=1称之为过原点回归(regression through the origin )。

一元线性回归模型习题及答案

一元线性回归模型习题及答案

一元线性回归模型一、单项选择题1、变量之间的关系可以分为两大类__________。

AA 函数关系与相关关系B 线性相关关系和非线性相关关系C 正相关关系和负相关关系D 简单相关关系和复杂相关关系 2、相关关系是指__________。

DA 变量间的非独立关系B 变量间的因果关系C 变量间的函数关系D 变量间不确定性的依存关系 3、进行相关分析时的两个变量__________。

AA 都是随机变量B 都不是随机变量C 一个是随机变量,一个不是随机变量D 随机的或非随机都可以 4、表示x 和y 之间真实线性关系的是__________。

CA 01ˆˆˆt tY X ββ=+ B 01()t t E Y X ββ=+ C 01t t t Y X u ββ=++ D 01t t Y X ββ=+5、参数β的估计量ˆβ具备有效性是指__________。

B A ˆvar ()=0βB ˆvar ()β为最小C ˆ()0ββ-= D ˆ()ββ-为最小 6、对于01ˆˆi i iY X e ββ=++,以σˆ表示估计标准误差,Y ˆ表示回归值,则__________。

B A ii ˆˆ0Y Y 0σ∑=时,(-)=B 2ii ˆˆ0Y Y σ∑=时,(-)=0 C ii ˆˆ0Y Y σ∑=时,(-)为最小 D 2iiˆˆ0Y Yσ∑=时,(-)为最小 7、设样本回归模型为i 01i iˆˆY =X +e ββ+,则普通最小二乘法确定的i ˆβ的公式中,错误的是__________。

DA ()()()i i 12i X X Y -Y ˆX X β--∑∑= B ()i i i i 122i i n X Y -X Y ˆn X -X β∑∑∑∑∑=C i i 122iX Y -nXY ˆX -nX β∑∑= D i i i i12xn X Y -X Y ˆβσ∑∑∑=8、对于i 01i iˆˆY =X +e ββ+,以ˆσ表示估计标准误差,r 表示相关系数,则有__________。

计量经济学:一元线性回归模型习题与答案

计量经济学:一元线性回归模型习题与答案

一、单选题1、假设检验采用的逻辑推理方法是A.归纳推理法B.类比推理法C.反证法D.演绎推理法正确答案:C2、在Eviews软件操作中,预测是用()命令。

A.GENERATEB.PLOTC.FORECASTD.SCAT正确答案:C3、对任意两个随机变量X和Y,若EXY=EX*EY,则()A.X和Y不独立B.X和Y相互独立C.Var(XY)=VarX*VarYD.Var(X+Y)=VarX+VarY正确答案:D4、设随机变量X1,X2,...,Xn(n>1)独立同分布,且方差σ2>0。

令随机变量Y=1n ∑X ini=1,则()A.Var(X1+Y)=n+2nσ2B.Cov(X1,Y)=1nσ2C. Var(X1−Y)=n+2nσ2D. Cov(X1,Y)=σ2正确答案:B5、设随机变量X~t(n)(n>1),Y=1X,则A. Y~F(1,n)B. Y~F(n,1)C. Y~χ2(n−1)D. Y~χ2(b)正确答案:B二、多选题1、变量的显著性T检验的步骤有哪些?A.以原假设H0构造T统计量B.对总体参数提出假设C.给定显著性水平α,查t分布表得临界值tα/2(n-2)D.比较t统计量和临界值正确答案:A、B、C、D2、随机误差项的主要影响因素是A.变量观测值的观测误差的影响B.在解释变量中被忽略的因素的影响C.都不是D.模型关系的设定误差的影响正确答案:A、B、D3、下列中属于最小二乘法基本假设的有A.解释变量X是确定性变量,不是随机变量B.m服从零均值、同方差、零协方差的正态分布:μi~N(0,σμ2) i=1,2, …,nC.随机误差项μ与解释变量X之间不相关:Cov(Xi,μi)=0i=1,2, …,nD.随着样本容量的无限增加,解释变量X的样本方差趋于一有限常数。

正确答案:A、B、C、D4、最小二乘估计量的性质A.有效性B.无偏性C.一致性D.线性性正确答案:A、B、D5、缩小置信区间的途径有哪些A.增大样本容量B.降低模型的拟合优度C.提高模型的拟合优度D.减小样本容量正确答案:A、C三、判断题1、可以通过散点图来确定模型的形式。

统计学一元线性回归课后习题答案分析

统计学一元线性回归课后习题答案分析
运送时间y 3.5 1.0 4.0 2.0 1.0 3.0 4.5 1.5 3.0 5.0
(1)绘制运送距离和运送时间的散点图,判断二者之间的关系形 态 (2)计算线性相关系数,说明两个变量之间的关系强度。 (3)利用最小二乘法求出估计的回归方程,并解释回归系数的实 际意义。
运送时间(天)
(1)绘制运送距离和运送时间的散点图,判断二者之间的关系形态
(4)计算判定系数,并解释其意义。
= 81444968.68 =0.9963 81750763.71
人均GDP对人均消费的影响达到99.6%。
(5)检验回归方程线性关系的显著性(a=0.05)。
提出假设
H0:1=0 人均消费水平与人均GDP之间的
线性关系不显著 计算检验统计量F
F SSR 1 81444968.68 1 1331.6921 SSE (n 2) 305795.03 (7 2)

次数
1
81.1
21
2
76.6
58
3
76.6
85
4
75.7
68
5
73.8
74
6
72.2
93
7
71.2
72
8
70.8
122
9
91.4
18
10
68.5
125
1)绘制散点图,说明二者之间的股息形态
顾客投诉次数
140 120 100
80 60 40 20
0 0
20
40
60
航班正点率
二者之间为负的线性相关关系
1580.46315 E( y0 ) 2975.74999
人均GDP为5 000元时,人均消费水平95%的预 测区间为[1580.46315,2975.74999]。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元线性回归模型一、单项选择题1、变量之间的关系可以分为两大类__________。

AA 函数关系与相关关系B 线性相关关系和非线性相关关系C 正相关关系和负相关关系D 简单相关关系和复杂相关关系 2、相关关系是指__________。

DA 变量间的非独立关系B 变量间的因果关系C 变量间的函数关系D 变量间不确定性的依存关系 3、进行相关分析时的两个变量__________。

AA 都是随机变量B 都不是随机变量C 一个是随机变量,一个不是随机变量D 随机的或非随机都可以 4、表示x 和y 之间真实线性关系的是__________。

CA 01ˆˆˆt tY X ββ=+ B 01()t t E Y X ββ=+ C 01t t t Y X u ββ=++ D 01t t Y X ββ=+5、参数β的估计量ˆβ具备有效性是指__________。

B A ˆvar ()=0βB ˆvar ()β为最小C ˆ()0ββ-= D ˆ()ββ-为最小 6、对于01ˆˆi i iY X e ββ=++,以σˆ表示估计标准误差,Y ˆ表示回归值,则__________。

BA i i ˆˆ0Y Y 0σ∑=时,(-)=B 2iiˆˆ0Y Y σ∑=时,(-)=0 C ii ˆˆ0Y Y σ∑=时,(-)为最小 D 2iiˆˆ0Y Yσ∑=时,(-)为最小 7、设样本回归模型为i 01i iˆˆY =X +e ββ+,则普通最小二乘法确定的i ˆβ的公式中,错误的是__________。

DA ()()()ii12i X X Y -Y ˆX X β--∑∑=B ()i iii122iin X Y -X Y ˆn X -X β∑∑∑∑∑=C ii 122iX Y -nXY ˆX -nXβ∑∑= D i i ii12xn X Y -X Y ˆβσ∑∑∑=8、对于i 01i i ˆˆY =X +e ββ+,以ˆσ表示估计标准误差,r 表示相关系数,则有__________。

DA ˆ0r=1σ=时, B ˆ0r=-1σ=时, C ˆ0r=0σ=时, D ˆ0r=1r=-1σ=时,或 9、产量(X ,台)与单位产品成本(Y ,元/台)之间的回归方程为ˆY356 1.5X -=,这说明__________。

DA 产量每增加一台,单位产品成本增加356元B 产量每增加一台,单位产品成本减少元C 产量每增加一台,单位产品成本平均增加356元D 产量每增加一台,单位产品成本平均减少元10、在总体回归直线01ˆE Y X ββ+()=中,1β表示__________。

B A 当X 增加一个单位时,Y 增加1β个单位 B 当X 增加一个单位时,Y 平均增加1β个单位 C 当Y 增加一个单位时,X 增加1β个单位 D 当Y 增加一个单位时,X 平均增加1β个单位11、对回归模型i 01i i Y X u ββ+=+进行检验时,通常假定i u 服从__________。

CA 2i N 0) σ(, B t(n-2) C 2N 0)σ(, D t(n)12、以Y 表示实际观测值,ˆY表示回归估计值,则普通最小二乘法估计参数的准则是使__________。

Di i 2i i i i 2i i ˆA Y Y 0ˆB Y Y 0ˆC Y Y ˆD Y Y ∑∑∑∑ (-)= (-)= (-)=最小 (-)=最小13、设Y 表示实际观测值,ˆY表示OLS 估计回归值,则下列哪项成立__________。

D ˆˆA YY B Y Y ˆˆC YY D Y Y = = = =14、用OLS 估计经典线性模型i 01i i Y X u ββ+=+,则样本回归直线通过点_________。

DˆA X Y B X YˆC X Y D X Y (,) (,) (,) (,)15、以Y 表示实际观测值,ˆY表示OLS 估计回归值,则用OLS 得到的样本回归直线i 01iˆˆˆY X ββ+=满足__________。

A ii2i i 2i i 2i i ˆA Y Y 0B Y Y 0ˆC Y Y 0ˆD Y Y 0∑∑∑∑ (-)= (-)= (-)= (-)=16、用一组有30个观测值的样本估计模型i 01i i Y X u ββ+=+,在的显着性水平下对1β的显着性作t 检验,则1β显着地不等于零的条件是其统计量t 大于__________。

D A (30) B (30) C (28) D (28) 17、已知某一直线回归方程的判定系数为,则解释变量与被解释变量间的线性相关系数为__________。

BA B C D18、相关系数r 的取值范围是__________。

DA r ≤-1B r ≥1C 0≤r ≤1D -1≤r ≤119、判定系数R 2的取值范围是__________。

CA R2≤-1B R2≥1C 0≤R2≤1D -1≤R2≤120、某一特定的X 水平上,总体Y 分布的离散度越大,即σ2越大,则__________。

A A 预测区间越宽,精度越低 B 预测区间越宽,预测误差越小 C 预测区间越窄,精度越高 D 预测区间越窄,预测误差越大 22、如果X 和Y 在统计上独立,则相关系数等于__________。

C A 1 B -1 C 0 D ∞23、根据决定系数R 2与F 统计量的关系可知,当R 2=1时,有__________。

D A F =1 B F =-1 C F =0 D F =∞24、在C —D 生产函数βαK AL Y =中,__________。

A A.α和β是弹性 和α是弹性 和β是弹性 是弹性25、回归模型i i i u X Y ++=10ββ中,关于检验010=β:H 所用的统计量)ˆ(ˆ111βββVar -,下列说法正确的是__________。

DA 服从)(22-n χ B 服从)(1-n t C 服从)(12-n χ D 服从)(2-n t26、在二元线性回归模型i i i i u X X Y +++=22110βββ中,1β表示__________。

A A 当X2不变时,X1每变动一个单位Y 的平均变动。

B 当X1不变时,X2每变动一个单位Y 的平均变动。

C 当X1和X2都保持不变时,Y 的平均变动。

D 当X1和X2都变动一个单位时,Y 的平均变动。

27、在双对数模型i i i u X Y ++=ln ln ln 10ββ中,1β的含义是__________。

D A Y 关于X 的增长量 B Y 关于X 的增长速度 C Y 关于X 的边际倾向 D Y 关于X 的弹性26、根据样本资料已估计得出人均消费支出Y 对人均收入X 的回归模型为i i X Y ln 75.000.2ln +=,这表明人均收入每增加1%,人均消费支出将增加__________。

CA 2%B %C %D %28、按经典假设,线性回归模型中的解释变量应是非随机变量,且__________。

A A 与随机误差项不相关 B 与残差项不相关 C 与被解释变量不相关 D 与回归值不相关29、根据判定系数R 2与F 统计量的关系可知,当R 2=1时有__________。

C =1 =-1 =∞ =0 30、下面说法正确的是__________。

DA.内生变量是非随机变量B.前定变量是随机变量C.外生变量是随机变量D.外生变量是非随机变量31、在具体的模型中,被认为是具有一定概率分布的随机变量是__________。

A A.内生变量 B.外生变量 C.虚拟变量 D.前定变量 32、回归分析中定义的__________。

B A.解释变量和被解释变量都是随机变量B.解释变量为非随机变量,被解释变量为随机变量C.解释变量和被解释变量都为非随机变量D.解释变量为随机变量,被解释变量为非随机变量33、计量经济模型中的被解释变量一定是__________。

C A .控制变量 B .政策变量 C .内生变量 D .外生变量二、多项选择题1、指出下列哪些现象是相关关系__________。

ACDA 家庭消费支出与收入B 商品销售额与销售量、销售价格C 物价水平与商品需求量D 小麦高产与施肥量E 学习成绩总分与各门课程分数2、一元线性回归模型i 01i i Y X u ββ+=+的经典假设包括__________。

ABCDEA ()0t E u =B 2var()t u σ=C cov(,)0t s u u =D (,)0t t Cov x u =E 2~(0,)t u N σ3、以Y 表示实际观测值,ˆY表示OLS 估计回归值,e 表示残差,则回归直线满足__________。

ABEii2i i 2i i i i A X Y ˆB Y YˆC Y Y 0ˆD Y Y 0E cov(X ,e )=0∑∑∑∑ 通过样本均值点(,) = (-)= (-)= 4、ˆY表示OLS 估计回归值,u 表示随机误差项,e 表示残差。

如果Y 与X 为线性相关关系,则下列哪些是正确的__________。

ACi 01ii1ii 01i i i1iii 01i A E Y X ˆˆB Y X ˆˆC Y X e ˆˆˆD YX e ˆˆE E(Y )X ββββββββββ+++++++ ()= = ===5、ˆY表示OLS 估计回归值,u 表示随机误差项。

如果Y 与X 为线性相关关系,则下列哪些是正确的__________。

BEi 01i i 01i ii1iii 01i i i1iA Y XB Y X u ˆˆC Y X u ˆˆˆD Y X u ˆˆˆE YX ββββββββββ+++++++ = =+ ===6、回归分析中估计回归参数的方法主要有__________。

CDE A 相关系数法 B 方差分析法 C 最小二乘估计法 D 极大似然法 E 矩估计法7、用OLS 法估计模型i 01i i Y X u ββ+=+的参数,要使参数估计量为最佳线性无偏估计量,则要求__________。

ABCDEA i E(u )=0B 2i Var(u )=σC i j Cov(u ,u )=0D i u 服从正态分布E X 为非随机变量,与随机误差项i u 不相关。

8、假设线性回归模型满足全部基本假设,则其参数的估计量具备__________。

CDE A 可靠性 B 合理性 C 线性 D 无偏性 E 有效性9、普通最小二乘估计的直线具有以下特性__________。

ABDE A 通过样本均值点(,)X YBˆii Y Y =∑∑C 2ˆ()0iiY Y-=∑ D 0ie =∑E (,)0i i Cov X e =10、由回归直线i 01iˆˆˆY X ββ+=估计出来的i ˆY 值__________。

相关文档
最新文档