函数单调性与导数教案

合集下载

函数的单调性与导数教案

函数的单调性与导数教案

函数的单调性与导数教案一、教学目标1. 让学生理解函数的单调性的概念,能够判断函数的单调性。

2. 让学生掌握导数的定义,能够计算常见函数的导数。

3. 让学生理解导数与函数单调性的关系,能够利用导数判断函数的单调性。

二、教学内容1. 函数的单调性定义:如果函数f(x)在区间I上,对于任意的x1, x2∈I,当x1 < x2时,都有f(x1) ≤f(x2),则称f(x)在区间I上为增函数;如果对于任意的x1, x2∈I,当x1 < x2时,都有f(x1) ≥f(x2),则称f(x)在区间I上为减函数。

2. 导数的定义定义:函数f(x)在点x处的导数定义为函数在点x处的切线斜率,记作f'(x),即f'(x) =lim┬(h→0)⁡〖(f(x+h)-f(x))/h〗。

3. 常见函数的导数(1)常数函数f(x) = c,其导数为f'(x) = 0。

(2)幂函数f(x) = x^n,其导数为f'(x) = nx^(n-1)。

(3)指数函数f(x) = a^x,其导数为f'(x) = a^x ln(a)。

(4)对数函数f(x) = ln(x),其导数为f'(x) = 1/x。

4. 导数与函数单调性的关系(1)如果f'(x) > 0,则f(x)在区间(-∞, +∞)上为增函数。

(2)如果f'(x) < 0,则f(x)在区间(-∞, +∞)上为减函数。

(3)如果f'(x) = 0,则f(x)可能在某点处改变单调性。

三、教学方法1. 采用讲解法,讲解函数的单调性和导数的定义及计算方法。

2. 采用案例分析法,分析导数与函数单调性的关系。

3. 采用练习法,让学生通过练习巩固所学知识。

四、教学步骤1. 导入:回顾函数的概念,引导学生思考函数的单调性。

2. 讲解:讲解函数的单调性的定义,并通过实例演示如何判断函数的单调性。

3. 讲解:引入导数的定义,讲解常见函数的导数计算方法。

数学《函数单调性与导数》教案

数学《函数单调性与导数》教案

数学《函数单调性与导数》教案教学目标:1. 知道函数单调性的定义,掌握判断单调性的方法。

2. 知道导数的定义,掌握求导的方法。

3. 熟练掌握函数单调性与导数的关系,能够应用相关知识解决实际问题。

教学重点:1. 函数单调性与导数的概念及其关系。

2. 求导数的方法和技巧。

3. 应用函数单调性和导数解决实际问题。

教学难点:1. 求高阶导数,各种复杂函数的单调性判断。

2. 应用函数单调性与导数解决实际问题。

教学方法:1. 讲授法:讲解相关知识点,示范演示,点拨解释。

2. 实验法:以具体例子演示如何判断函数的单调性。

3. 问题解决法:提供丰富的例题及作业,引导学生自主思考,解决问题。

教学过程设计:Part 1:函数单调性的引入1. 通过一个具体的例子引入函数单调性的概念,让学生理解函数单调性的含义。

2. 介绍单调递增和单调递减的概念,以及如何判断一个函数的单调性。

3. 引导学生思考,研究不同类型函数单调性的特点和判断方法。

Part 2:导数的定义和求导方法1. 导数的概念:定义导数,解释导数的几何意义和物理意义。

2. 求导方法:讲解求导过程,引导学生掌握基本的求导技巧。

3. 常用函数的导数:讲解常用函数的导数公式,让学生记忆。

Part 3:函数单调性与导数1. 函数单调性与导数的关系:引导学生研究函数单调性与导数之间的关系。

2. 求解函数单调性:利用导数判断函数单调性,让学生掌握方法。

3. 应用导数求解实际问题:让学生通过实际问题应用导数,求解函数单调性问题。

Part 4:案例分析1. 给出一些实际问题,让学生通过函数单调性和导数的方法求解。

2. 分组讨论,展示各自的解题思路和方法,互相学习。

Part 5:练习与总结1. 提供一些例题给学生练习,巩固所学知识。

2. 学生自己整理笔记,总结函数单调性与导数的概念及其应用教具准备:1. 教师演示用的白板或黑板、彩色粉笔或白板笔。

2. 学生实验用的计算器。

3. 相关练习题和例题。

函数的单调性与导数(教学设计)

函数的单调性与导数(教学设计)

函数的单调性与导数(教学设计)教学设计:函数的单调性与导数本节课的主要内容是函数的单调性与导数。

在研究本节课之前,学生已经研究了导数、函数及函数单调性等概念,对导数的几何意义与函数单调性有了一定的感性和理性的认识。

函数的单调性是高中数学中极为重要的一个知识点。

在以前的研究中,学生已经研究了如何利用函数单调性的定义和函数的图像来研究函数的单调性。

而在研究了导数之后,学生可以利用导数来研究函数的单调性,这是导数在研究处理函数性质问题中的一个重要应用。

学好本课时的知识对接下来要研究利用导数研究函数的极值奠定知识基础,因此,研究本节内容具有承上启下的作用。

在本节课之前,学生已经研究了导数的概念、导数的几何意义和导数的四则运算,研究了用导数求曲线的切线方程。

因此,本节课应着重让学生通过探究来研究利用导数判定函数的单调性。

本节课的教学目标包括以下几点:1.知识与能力:1) 理解函数单调性与导数的关系:函数f(x)在区间(a,b)内可导,若f'(x)>0,则f(x)在区间(a,b)内单调递增;若f'(x)<0,则f(x)在区间(a,b)内单调递减。

2) 探究函数的单调性与导数的关系,利用导数与函数单调性的关系求函数的单调区间、画函数的简单图像。

2.过程与方法:通过利用导数研究单调性问题的研究过程,引导学生养成自主研究的研究惯,体会知识的类比迁移,体会从特殊到一般的、数形结合的研究方法。

3.情感态度与价值观:1) 通过导数方法研究单调性问题,体会到不同数学知识间的内在联系,认识到数学是一个有机整体。

2) 通过导数研究单调性,使学生知道用导数判断函数的单调性比用单调性的定义更容易,知道导数作为研究函数的工具的实用价值。

本节课的教学重点是利用导数判断函数的单调性,并求函数的单调区间。

教学难点在于如何将导数与函数的单调性联系起来。

本节课的教学方法为启发引导式,课时安排为1课时。

教学准备包括多媒体平台和课件。

函数的单调性与导数教案

函数的单调性与导数教案

函数的单调性与导数教案函数的单调性与导数教案一、目标知识与技能:了解可导函数的单调性与其导数的关系;能利用导数研究函数的单调性,会求函数的单调区间。

过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。

二、重点难点教学重点:利用导数研究函数的单调性,会求不超过4次的多项式函数的单调区间教学难点:利用导数研究函数的单调性,会求不超过4次的多项式函数的单调区间三、教学过程:函数的赠与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有一个基本的了解.我们以导数为工具,对研究函数的增减及极值和最值带来很大方便.四、学情分析我们的学生属于平行分班,没有实验班,学生已有的知识和实验水平有差距。

需要教师指导并借助动画给予直观的认识。

五、教学方法发现式、启发式新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习六、课前准备1.学生的学习准备:2.教师的教学准备:多媒体课件制作,课前预习学案,课内探究学案,课后延伸拓展学案。

七、课时安排:1课时八、教学过程(一)预习检查、总结疑惑检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。

提问1.判断函数的单调性有哪些方法?(引导学生回答“定义法”,“图象法”。

)2.比如,要判断y=x2的单调性,如何进行?(引导学生回顾分别用定义法、图象法完成。

)3.还有没有其它方法?如果遇到函数:y=x3-3x判断单调性呢?(让学生短时间内尝试完成,结果发现:用“定义法”,作差后判断差的符号麻烦;用“图象法”,图象很难画出来。

)4.有没有捷径?(学生疑惑,由此引出课题)这就要用到咱们今天要学的导数法。

以问题形式复习相关的旧知识,同时引出新问题:三次函数判断单调性,定义法、图象法很不方便,有没有捷径?通过创设问题情境,使学生产生强烈的问题意识,积极主动地参与到学习中来。

函数单调性与导数教案

函数单调性与导数教案

一、教材分析1.教材背景“函数的单调性和导数”这节新知在教材是选修2—1,本节计划两个课时完成。

首先明确考纲的要求了解函数的单调性和导数的关系;能利用导数研究函数的单调性;会求函数的单调区间(其中多项式函数一般不超过三次)。

在高考中常利用导数研究函数的单调性,并求单调区间、极值、最值、以及利用导数解决生活中的优化问题。

其中利用导数判断单调性起着基础性的作用,形成初步的知识体系,培养学生掌握一定的分析问题和解决问题的能力。

激发学生独立思考和创新的意识,让学生有创新的机会,充分体验成功的喜悦,开发了学生的自我潜能。

2.本课的地位和作用本节课的主要教学内容是导数在研究函数中的应用(1)—函数的单调性与导数。

在练习解二次不等式、含参数二次不等式的问题后,结合导数的几何意义回忆函数的单调性与函数的关系。

例题精讲强化函数单调性的判断方法,例题的选择有梯度,由无参数的一般问题转化为解关于导函数的不等式,再解关于含参数的问题,最后提出函数单调性与导数关系逆推成立。

培养学生数形结合思想、转化思想、分类讨论的数学思想。

二、重难点分析根据新课程标准及对教材的分析,确定本节课重难点如下:教学重点:利用导数研究函数的单调性、求函数的单调区间。

探求含参数函数的单调性的问题。

三、目标分析(一)知识与技能目标:1、能探索并应用函数的单调性与导数的关系求单调区间;2、能解决含参数函数的单调性问题以及函数单调性与导数关系逆推。

(二)过程与方法目标:1、通过本节的学习,掌握用导数研究函数单调性的方法。

2、培养学生的观察、比较、分析、概括的能力,数形结合思想、转化思想、分类讨论的数学思想。

(三)情感、态度与价值观目标:1、通过在教学过程中让学生多动手、多观察、勤思考、善总结,2、培养学生的探索精神,渗透辩证唯物主义的方法论和认识论教育。

四、学情分析学生经过复习对基本初等函数掌握较扎实,前面复习了函数的单调性的基本概念,判断方法、导数的概念,以及导数的计算,为综合应用导数与函数单调性作好充分的准备。

高中数学-函数的单调性与导数教学设计学情分析教材分析课后反思

高中数学-函数的单调性与导数教学设计学情分析教材分析课后反思

《函数的单调性与导数》教学设汁【教学目标】知识与技能:1.探索函数的单调性与导数的关系2.会利用导数判断函数的单调性并求函数的单调区间过程与方法:i.通过本巧的学习,掌握用导数研究单调性的方法2.在探索过程中培养学生的观察、分析、概括的能力渗透数形结合思想、转化思想、分类讨论思想。

情感态度与价值观:通过在教学过程中让学生多动手、多观察、勤思考、善总结,培养学生的探索精神,引导学生养成自主学习的学习习惯。

【教学的重点和难点】教学重点:探索并应用函数的单调性与导数的关系求单调区间。

教学难点:探索函数的单调性与导数的关系。

性问题.内容讲授例题讲解例1 : 求函数f(x) = x3-3x2的单调区间,并画出函数的大致图像.分析:根据上面结论,我们知道函数的单调性与函数导数的符号有关。

因此,可以通过分析导数的符号求出函数的单调区间.解:引导学生回答问题并同时板书.根据单调性的结论画出函数的图像.学生思考回答思路.学生利用导数知识解决函数的单调性问题.明确利用导数是求函数单调区间的最简单的方法.加深对单调性的理解,体会数形结合的思想.加强学生对利用导数求函数单调性的方法进一步熟练掌握,特别是单调区间满足在定义域内.学生总结并回答问题加深记忆.练习1求函数/(x ) = — lnx 的单调区间.函数的导数值大 于零时,其函数为 单调递增;函数的 导数值小于零时, 其函数为单调递 从函数的单调性 和导数的正负关 系的讨论环节中, 不断的比较了函 数和导函数的图 像,因此设置该 题,从熟悉的函数 到该题,题LI 更容 易解决.1求定义域;2求函数/(X )的导数, 3讨论单调区间,解不等式 广(力>°,解集为增区间;4解不等式广(切<°,解集为减区间.山学生共同回答.例2函数图像如下图,导函数图像可能为哪'一木讨论函数单调性的一般步骤 是什么教师根据一个学 生的作图进行讲 解.学生对所学知识 进一步巩固和熟 练掌握.【板书设计】参与课堂的学生为高二年级理科的学生,学生基础参差不齐,差别较大,而单调性的槪念是在髙一第一学期学过的,因此对于单调性槪念的理解不够准确,同时导数是髙中学生新接触的概念,如何将导数与函数的单调性联系起来是一个难点.在本节课之前学生已经学习了导数的概念、导数的几何意义和导数的四则运算,初步接触了导数在几何中的简单应用,但对导数的应用还仅停留在表而上•本节课应着重让学生通过探究来研究利用导数判左函数的单调性.效果分析本节课教师运用了多种教学手段,创设了丰富的教学情境,成功的激发了学生的学习兴趣:教学目标简明扼要,便于实施,注重数学思想、能力的培养,广度和深度都符合数学课程标准的要求,符合学生的实际情况。

函数的单调性与导数 说课稿 教案 教学设计

函数的单调性与导数  说课稿  教案  教学设计

函数的单调性与导数教学目标:1.了解可导函数的单调性与其导数的关系;2.能利用导数研究函数的单调性,会求函数的单调区间,对多项式函数一般不超过三次.教学重点:利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间;教学难点:利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间. 教学过程设计(一)、情景引入,激发兴趣。

【教师引入】黑暗中,你是怎样通过远处汽车自身的灯光判断该车是上坡还是下坡的?(二)、探究新知,揭示概念探究1.问题:图1.3-1(1),它表示跳水运动中高度h 随时间t 变化的函数2() 4.9 6.510h t t t =-++的图像,图3.3-1(2)表示高台跳水运动员的速度v 随时间t 变化的函数'()()9.8 6.5v t h t t ==-+的图像. 运动员从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别?通过观察图像,我们可以发现:(1) 运动员从起点到最高点,离水面的高度h 随时间t 的增加而增加,即()h t 是增函数.相应地,'()()0v t h t =>.(2) 从最高点到入水,运动员离水面的高度h 随时间t 的增加而减少,即()h t 是减函数.相应地,'()()0v t h t =<.探究2.2.函数的单调性与导数的关系观察下面函数的图像,探讨函数的单调性与其导数正负的关系.如图1.3-3,导数'0()f x 表示函数()f x 在点00(,)x y 处的切线的斜率.猜想:导数与函数的单调性有什么联系呢?在0x x =处,'0()0f x >,切线是“左下右上”式的,这时,函数()f x 在0x 附近单调递增; 在1x x =处,'0()0f x <,切线是“左上右下”式的,这时,函数()f x 在1x 附近单调递减.(三)、分析归纳,抽象概括 函数的单调性与导数的关系曲线 切线斜率k >0 上升函数()y f x = ()0f x '> ? 递增()x I ∈在某个区间(,)a b 内,如果'()0f x >,那么函数()y f x =在这个区间内单调递增; 如果'()0f x <,那么函数()y f x =在这个区间内单调递减.说明:(1)特别的,如果'()0f x =,那么函数()y f x =在这个区间内是常函数.(2)“某区间”指的是定义域的子集,研究函数单调性问题“定义域优先”. (四)、知识应用,深化理解例1.已知导函数'()f x 的下列信息: 当14x <<时,'()0f x >; 当4x >,或1x <时,'()0f x <; 当4x =,或1x =时,'()0f x = 试画出函数()y f x =图像的大致形状.解:当14x <<时,'()0f x >,可知()y f x =在此区间内单调递增; 当4x >,或1x <时,'()0f x <;可知()y f x =在此区间内单调递减; 当4x =,或1x =时,'()0f x =,这两点比较特殊,我们把它称为“临界点”. 综上,函数()y f x =图像的大致形状如图3.3-4所示. 例2.判断下列函数的单调性,并求出单调区间.(1)3()3f x x x =+; (2)2()23f x x x =--(3)()sin (0,)f x x x x π=-∈; (4)32()23241f x x x x =+-+ 解:(1)因为3()3f x x x =+,所以, '22()333(1)0f x x x =+=+>因此,3()3f x x x =+在R 上单调递增,如图3.3-5(1)所示.(2)因为2()23f x x x =--,所以, ()'()2221f x x x =-=-当'()0f x >,即1x >时,函数2()23f x x x =--单调递增; 当'()0f x <,即1x <时,函数2()23f x x x =--单调递减; 函数2()23f x x x =--的图像如图3.3-5(2)所示.(3)因为()sin (0,)f x x x x π=-∈,所以,'()cos 10f x x =-< 因此,函数()sin f x x x =-在(0,)π单调递减,如图3.3-5(3)所示. (4)因为32()23241f x x x x =+-+,所以 .当'()0f x >,即 时,函数2()23f x x x =-- ; 当'()0f x <,即 时,函数2()23f x x x =-- ; 函数32()23241f x x x x =+-+的图像如图3.3-5(4)所示. 注:(3)、(4)生练课堂练习1.求下列函数的单调区间1.f (x )=2x 3-6x 2+7 2.f (x )=x1+2x3. f (x )=sin x , x ]2,0[π∈4. y=xlnx(五)、归纳小结、布置作业。

函数的单调性与导数(获奖教案

函数的单调性与导数(获奖教案

函数的单调性与导数(获奖教案
一、概念介绍
1.单调性
单调性是一种函数的性质,即函数在其中一区间内的值单调增加或单调减少,不存在最大值和最小值,数学上称为函数的单调性。

函数的单调性是一种函数的微分性质,即函数在其中一区间内的值只有一个方向上有变化,也就是说,在其中一点之后,它的值只会减少或者增加,不会出现拐点的现象。

2.导数
导数是一种多元函数的微分性质,即函数在多元空间内的值只有一个方向上有变化,若函数y=f(x)的x方向的变化只影响y的变化,则可以称其为一阶导数,即为f'(x)。

一般情况下,导数也是函数的单调性,只不过是在多元空间中。

二、单调性和导数的关系
1.单调性和导数的关系
2.单调性的定理
单调性的定理是:当函数在其中一区间内的值单调增加时,其导数大于等于0;当函数在其中一区间内的值单调减少时,其导数小于等于0。

即:
若函数f(x)为单调递增的函数,则f'(x)>=0;
若函数f(x)为单调递减的函数,则f'(x)<=0。

从定义来看,单调性可以用导数的正负性来判定,如果函数的导数的正负性是一致的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.3.1函数的单调性与导数
【三维目标】
知识与技能:1.探索函数的单调性与导数的关系
2.会利用导数判断函数的单调性并求函数的单调区间
过程与方法:1.通过本节的学习,掌握用导数研究单调性的方法
2.在探索过程中培养学生的观察、分析、概括的能力渗透数形
结合思想、转化思想。

情感态度与价值观:通过在教学过程中让学生多动手、多观察、勤思考、善总结,培养学生的探索精神,引导学生养成自主学习的学习习惯。

【教学重点难点】
教学重点:探索并应用函数的单调性与导数的关系求单调区间。

教学难点:探索函数的单调性与导数的关系。

【教学方法】问题启发式
【教学过程】
一.复习回顾
复习 1:导数的几何意义
复习2:函数单调性的定义,判断单调性的方法,(图像法,定义法)
问题提出:判断y=x 2
的单调性,如何进行?(分别用图像法,定义法完成) 那么如何判断();,0,sin )(π∈-=x x x x f 的单调性呢?引导学生图像法,定义去尝试发觉有困难,引出课题:板书课题:函数的单调性与导数
二.新知探究
探究任务一:函数单调性与其导数的关系:
问题1:如图(1)表示高台跳水运动员的高度h 随时间t 变化的函数105.69.4)(2
++-=t t t h 的图像,图(2)表示高台跳水运动员的速度5.68.9)(')(+-==t t h t V h 的图像.
通过观察图像, 运动员从起跳到最高点,以及从最高点
到入水这两段时间的运动状态有什么区别?此时你能发
现)(')(t h t h 和这两个函数图像有什么联系吗?
启发: 函数)(t h 在(0,a)上位增函数,
函数)('t h 在(0,a)
上有何特点呢?函数)(t h 在(a,b)上为减函数,那么函数)('t h 在(a,b)上有何特点呢?
问题2:观察图(1)~图(4),探讨函数与其导函数是否也存在问题(1)的关系呢?
问题3:通过对问题1和问题2的观察,你能得到原函数的单调性与其导函数的正负号有何关系?你能得到怎样的结论?(形成初步结论,板书结论结论:函数的单调性与导数的关系:在某个区间(,)a b 内,如果'
()0f x >,那么函数()y f x =在这个区间内单调递增;如果'()0f x <,那么函数()y f x =在这个区间内单调递减.)
问题4:上述结论主要是通过观察得到的,你能结合导数的几何意义为切线的斜率,你能从这个角度给予说明吗?
探究任务二:()0'=x f 与函数单调性的关系:
问题5:若函数()x f 的导数()0'=x f ,那么()x f 会是一个什么函数呢?(板书:特别的,如果'()0f x =,那么函数()y f x =在这个区间内是常值函数.)
问题6:在区间()b a ,上()0'≥x f ,则函数()x f 区间()b a ,必为增函数,你认为这句话对吗?请说明理由.
问题7:函数()x f 在区间()b a ,上为增函数,则在区间()b a ,上()0'≥x f 成立.你认为这句话对吗?说明理由.
问题8:平时我们遇到很多需要数形结合的题目,那么现在我们知道了导数的正负能帮助我们判断函数的单调性,那么我们能否利用导数信息画出函数的大致图像呢?
例1:已知某函数的导函数的下列信息: 当;0)('41><<x f x 时,当;0)('1,4<<>x f x x 时,或
当.0)('1,4===x f x x 时,或试画出函数()x f 图像的大致形状.
问题9:根据我们得到的导数与单调性之间关系的结论,你能否利用此结论来求函
数的单调区间呢?
例3:判断下列函数的单调性,并求出单调区间:
(1)();
,0
,
sin
)


-
=x
x
x
x
f(2);1
24
3
2
)
(2
3+
-
+
=x
x
x
x
f
(3);
3
)
(3x
x
x
f+
=(4);3
2
)
(2-
-
=x
x
x
f
(对于(2)让学生课后探究尝试单调性的定义法和图象法)
问:你对利用导数去研究函数的单调性有什么看法?你能总结出利用导数求单调区间的步骤吗?(简单易行)
(板书“求解函数()
y f x
=单调区间的步骤:
(1)确定函数()
y f x
=的定义域;(2)求导数''()
y f x
=;
(3)解不等式'()0
f x>,解集在定义域内的部分为增区间;
(4)解不等式'()0
f x<,解集在定义域内的部分为减区间.
问题10:导数能帮助我们简洁的求出单调区间,画出大致图象,但我们知道就是递增(递减)也有快与慢的区别,在导数上如何体现呢?下面我们就来看一下下面这个问题例3.如图3.3-6,水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中,请分别找出与各容器对应的水的高度h与时间t的函数关系图像.
分析:
在导数几何意义那节我们就感受了增加与减少也由快慢之分,那么我们以容器(2)为例,由于容器上细下粗,所以水以常速注入时,开始阶段高度增加得慢,以后高度增加得越来越快.反映在图像上,(A)符合上述变化情况.同理可知其它三种容器的情况.解:()()()()()()()()
1,2,3,4
B A D C
→→→→
思考:例3表明,通过函数图像,不仅可以看出函数的增减,还可以看出其变化的快慢.结合图像,你能从导数的角度解释变化快慢的情况吗?
一般的,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化的快,这时,函数的图像就比较“陡峭”;反之,函数的图像就“平缓”一些.三,课堂练习
1.确定下列函数的单调区间
(1)y=x e x
-(2)y=3x-x3
2、设)x(
f
y'
=是函数)x(f
y=的导数, )x(
f
y'
=的
图象如图所示, 则)x(f
y=的图象最有可能是( )
小结:重点是抓住导函数的图象与原函数的图象从哪里发生联系?
四,课堂小结
1.函数导数与单调性的关系:若函数y=f(x)在某个区间内可导,
如果f

(x)>0, 则f(x)为增函数;如果f′(x)<0,则f(x)为减函数.
2.本节课中,用导数去研究函数的单调性是中心,能灵活应用导数解题是目的,另外应注意数
形结合在解题中的应用.
3.掌握研究数学问题的一般方法:从特殊到一般,从简单到复杂.
五,作业设计
课本98页,A组1,2
课后思考:若将例3中高度h和时间t的关系变为横坐标为高度h和纵坐标为体积V的关系,那么此题结论又将如何?
函数的单调性与导数
一、函数单调性与导数的关系
二、利用导数求单调性的步骤
三、例题讲解
例2:
四、学生板演。

相关文档
最新文档