高三一轮复习-动量守恒定律带答案
高三物理一轮复习易错题7动量守恒定律

精品基础教育教学资料,仅供参考,需要可下载使用!易错点07 动量守恒定律易错题【01】对动量守恒定义理解有误动量守恒定律1.内容:如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变。
[注1]2.表达式:m1v1+m2v2=m1v1′+m2v2′。
3.适用条件(1)理想守恒:不受外力或所受外力的合力为0。
(2)近似守恒:系统内各物体间相互作用的内力远大于它所受到的外力。
[注2](3)某一方向守恒:如果系统在某一方向上所受外力的合力为0,则系统在该方向上动量守恒。
易错题【02】对爆炸、反冲运动分析有误碰撞、反冲、爆炸1.碰撞(1)特点:作用时间极短,内力(相互碰撞力)远大于外力,总动量守恒。
(2)分类①弹性碰撞:碰撞后系统的总动能没有损失。
[注3]②非弹性碰撞:碰撞后系统的总动能有损失。
③完全非弹性碰撞:碰撞后合为一体,机械能损失最大。
2.爆炸与碰撞类似,物体间的相互作用时间很短,作用力很大,且远大于系统所受的外力,所以系统动量守恒。
[题型技法] 碰撞问题解题策略(1)抓住碰撞的特点和不同种类碰撞满足的条件,列出相应方程求解。
(2)可熟记一些公式,例如“一动一静”模型中,两物体发生弹性正碰后的速度满足:v 1′=m 1-m 2m 1+m 2v 1 v 2′=2m 1m 1+m 2v 1 (3)熟记弹性正碰的一些结论,例如,当两球质量相等时,两球碰撞后交换速度。
当m 1≫m 2,且v 2=0时,碰后质量大的速率不变,质量小的速率为2v 1。
当m 1≪m 2,且v 2=0时,碰后质量小的球原速率反弹。
易错题【03】对爆炸过程各个量分析有误爆炸现象的三个规律动量守恒 由于爆炸是在极短的时间内完成的,爆炸物体间的相互作用力远远大于受到的外力,所以在爆炸过程中,系统的总动量守恒动能增加 在爆炸过程中,由于有其他形式的能量(如化学能)转化为动能,所以爆炸后系统的总动能增加位置不变爆炸的时间极短,因而作用过程中,物体产生的位移很小,一般可忽略不计,可以认为爆炸后仍然从爆炸前的位置以新的动量开始运动01 对动量守恒定律理解不到位1、关于系统动量守恒的条件,下列说法正确的是( )A .只要系统内存在摩擦力,系统动量就不可能守恒B.只要系统中有一个物体具有加速度,系统动量就不守恒C.只要系统所受的合外力为零,系统动量就守恒D.系统中所有物体的加速度为零时,系统的总动量不一定守恒【警示】本题容易出错的主要原因是对动量守恒定义理解有误。
物理试题 人教版高考一轮复习第6章 动量动量守恒定律

第1讲 动量 动量定理[A 组 基础题组]一、单项选择题1.下列解释正确的是( )A .跳高时,在落地处垫海绵是为了减小冲量B .在码头上装橡皮轮胎,是为了减小渡船靠岸过程受到的冲量C .动量相同的两个物体受相同的制动力作用,质量小的先停下来D .人从越高的地方跳下,落地时越危险,是因为落地时人受到的冲量越大解析:跳高时,在落地处垫海绵是为了延长作用时间减小冲力,不是减小冲量,故选项A 错误;在码头上装橡皮轮胎,是为了延长作用时间,从而减小冲力,不是减小冲量,故选项B 错误;动量相同的两个物体受相同的制动力作用,根据动量定理Ft =mv ,可知运动时间相等,故选项C 错误;人从越高的地方跳下,落地前瞬间速度越大,动量越大,落地时动量变化量越大,则冲量越大,故选项D 正确。
答案:D2.如图所示,AB 为固定的光滑圆弧轨道,O 为圆心,AO 水平,BO 竖直,轨道半径为R ,将质量为m 的小球(可视为质点)从A 点由静止释放,在小球从A 点运动到B 点的过程中( )A .小球所受合力的冲量方向为弧中点指向圆心B .小球所受支持力的冲量为0C .小球所受重力的冲量大小为m 2gRD .小球所受合力的冲量大小为m 2gR解析:小球受到竖直向下的重力和垂直切面指向圆心的支持力,所以合力不指向圆心,故合力的冲量也不指向圆心,故A 错误;小球的支持力不为零,作用时间不为零,故支持力的冲量不为零,故B 错误;小球在运动过程中只有重力做功,所以根据机械能守恒定律可得mgR =12mv B 2,故v B =2gR ,根据动量定理可得I 合=Δp =mv B =m 2gR ,故C 错误,D 正确。
答案:D3.一小球从水平地面上方无初速度释放,与地面发生碰撞后反弹至速度为零。
假设小球与地面碰撞没有机械能损失,运动时的空气阻力大小不变,则下列说法正确的是( ) A .上升过程中小球动量改变量等于该过程中空气阻力的冲量 B .小球与地面碰撞过程中,地面对小球的冲量为零 C .下落过程中小球动能的改变量等于该过程中重力做的功D .从释放到反弹至速度为零的过程中,小球克服空气阻力做的功等于重力做的功解析:根据动量定理可知,上升过程中小球动量改变量等于该过程中重力和空气阻力的合力的冲量,选项A 错误;小球与地面碰撞过程中,由动量定理得Ft -mgt =mv 2-(-mv 1),可知地面对小球的冲量Ft 不为零,选项B 错误;下落过程中小球动能的改变量等于该过程中重力和空气阻力做功的代数和,选项C 错误;由能量守恒关系可知,从释放到反弹至速度为零的过程中,小球克服空气阻力做的功等于重力做的功,选项D正确。
高考物理一轮总复习课后习题 第7章 动量守恒定律 第6讲 实验 验证动量守恒定律 (4)

第6讲实验:验证动量守恒定律1.“探究碰撞中的不变量”的实验装置如图所示,阻力很小的滑轨上有两辆小车A、B,给小车A一定速度去碰撞静止的小车B,小车A、B碰撞前后的速度大小可由速度传感器测得。
(1)实验应进行的操作有。
A.测量滑轨的长度B.测量小车的长度和高度C.碰撞前将滑轨调成水平(2)下表是某次实验时测得的数据:由表中数据可知,碰撞后小车A、B所构成系统的总动量大小是kg·m/s。
(结果保留3位有效数字)2.(广东广州期末)如图所示,在研究“验证动量守恒定律”的实验中,先让A球从斜槽轨道上某一固定位置S由静止开始滚下,从轨道末端水平抛出,落到位于水平地面的复写纸上,在复写纸下面的白纸上留下痕迹。
重复上述操作10次,得到10个落点痕迹,P为平均落点。
再把B球放在斜槽轨道末端,让A球仍从位置S由静止滚下,与B球碰撞后,分别在白纸上留下各自的落点痕迹,重复操作10次。
M为A球的平均落点,N为B球的平均落点,O点是轨道末端在白纸上的竖直投影点。
(1)关于该实验的注意事项,下列说法正确的是。
A.斜槽轨道可以不光滑B.斜槽轨道末端的切线必须水平C.上述实验过程中白纸不能移动D.两小球A、B半径相同,A的质量可以小于B的质量(2)设A球质量为m1,B球质量为m2,测量可知l OP=4l OM,l ON=6l OM,若碰撞过程动量守恒,则A球质量m1和B球质量m2之比为。
(3)若A球质量m1是B球质量m2的4倍,两球发生的是弹性碰撞,则l OM和l ON之比为。
3.在学校开展的一次科技活动中,某同学为了用打点计时器验证动量守恒定律,他设计了一个实验,装置如图甲所示,他在长木板右端垫着薄木片平衡摩擦力后,再在小车A后面连上纸带,前端粘有强力双面胶,然后推动小车A使之做匀速直线运动,到达长木板下端时与原来静止的小车B发生碰撞并粘合在一起继续做匀速直线运动,电磁打点计时器所用电源的频率为f。
甲乙(1)选择一条比较理想的纸带,每间隔4个点取一个计数点,并测得各计数点间的距离标在纸带上(如图乙所示),A点为运动的起点,则应选段来计算小车A碰撞前的速度,应选段来计算小车A和小车B碰后的共同速度(以上两空均选填“AB”“BC”“CD”或“DE”)。
2025年高考物理一轮复习(新人教版)第7章第2讲 动量守恒定律及应用

碰撞问题
梳理 必备知识
1.碰撞 碰撞是指物体间的相互作用持续时间很短,而物体间相互作用力 很大 的 现象. 2.特点 在碰撞现象中,一般都满足内力 远大于 外力,可认为相互碰撞的系统 动量守恒.
3.分类
弹性碰撞 非弹性碰撞 完全非弹性碰撞
动量是否守恒 守恒 _守__恒__ 守恒
机械能是否守恒 _守__恒__ 有损失
相对性 各物体的速度必须是相对同一参考系的速度(一般是相对于地面)
动量是一个瞬时量,表达式中的p1、p2、…应是系统中各物体 同时性 在相互作用前同一时刻的动量,p1′、p2′、…应是系统中各
物体在相互作用后同一时刻的动量
系统性
研究的对象是相互作用的两个或多个物体组成的系统
动量守恒定律不仅适用于低速宏观物体组成的系统,还适用 普适性
2.反冲运动的三点说明 作用 反冲运动是系统内两物体之间的作用力和反作用力产生的效果 原理 动量 反冲运动中系统不受外力或内力 远大于 外力,所以反冲运动 守恒 遵循动量守恒定律 机械能 反冲运动中,由于有其他形式的能转化为机械能,所以系统的 增加 总机械能增加
判断 正误
1.发射炮弹,炮身后退;园林喷灌装置一边喷水一边旋转均属于
考向2 反冲运动
例5 (2023·河南省模拟)发射导弹过程可以简化为:将静止的质量为
M(含燃料)的导弹点火升空,在极短时间内以相对地面的速度v0竖直向下 喷出质量为m的炽热气体,忽略喷气过程中重力和空气阻力的影响,则
喷气结束时导弹获得的速度大小是
A.Mm v0
B.Mm v0
M C.M-m v0
√m
爆炸、反冲运动和人船模型
梳理 必备知识
1.爆炸现象的三个规律 动量 爆炸物体间的相互作用力远远大于受到的外力,所以在爆炸过 守恒 程中,系统的总动量_守__恒__ 动能 在爆炸过程中,有其他形式的能量(如化学能)转化为机械能, 增加 所以系统的机械能增加 位置 爆炸的时间极短,因而作用过程中物体产生的位移 很小 ,可 不变 以认为爆炸后各部分仍然从爆炸前的位置以新的动量开始运动
高考物理动量守恒定律试题(有答案和解析)

高考物理动量守恒定律试题(有答案和解析)一、高考物理精讲专题动量守恒定律1.如图所示,在倾角30°的斜面上放置一个凹撸B,B 与斜面间的动摩擦因数36μ=;槽内靠近右侧壁处有一小物块A(可视为质点),它到凹槽左侧壁的距离d =0.1m ,A 、B 的质量都为m=2kg ,B 与斜面间的最大静摩擦力可认为等于滑动摩摞力,不计A 、B 之间的摩擦,斜面足够长.现同时由静止释放A 、B,经过一段时间,A 与B 的侧壁发生碰撞,碰撞过程不计机械能损失,碰撞时间极短,g 取210/m s .求:(1)释放后物块A 和凹槽B 的加速度分别是多大?(2)物块A 与凹槽B 的左侧壁第一次碰撞后瞬间A 、B 的速度大小;(3)从初始位置到物块A 与凹糟B 的左侧壁发生第三次碰撞时B 的位移大小. 【答案】(1)(2)v An =(n-1)m∙s -1,v Bn ="n" m∙s -1(3)x n 总=0.2n 2m 【解析】 【分析】 【详解】(1)设物块A 的加速度为a 1,则有m A gsin θ=ma 1, 解得a 1=5m/s 2凹槽B 运动时受到的摩擦力f=μ×3mgcos θ=mg 方向沿斜面向上; 凹槽B 所受重力沿斜面的分力G 1=2mgsin θ=mg 方向沿斜面向下; 因为G 1=f ,则凹槽B 受力平衡,保持静止,凹槽B 的加速度为a 2=0 (2)设A 与B 的左壁第一次碰撞前的速度为v A0,根据运动公式:v 2A0=2a 1d 解得v A0=3m/s ;AB 发生弹性碰撞,设A 与B 第一次碰撞后瞬间A 的速度大小为v A1,B 的速度为v B1,则由动量守恒定律:0112A A B mv mv mv =+ ;由能量关系:2220111112222A AB mv mv mv =+⨯ 解得v A1=-1m/s(负号表示方向),v B1=2m/s2.一质量为的子弹以某一初速度水平射入置于光滑水平面上的木块并留在其中,与木块用一根弹性良好的轻质弹簧连在一起,开始弹簧处于原长,如图所示.已知弹簧被压缩瞬间的速度,木块、的质量均为.求:•子弹射入木块时的速度;‚弹簧被压缩到最短时弹簧的弹性势能.【答案】22()(2)Mm aM m M m++b【解析】试题分析:(1)普朗克为了对于当时经典物理无法解释的“紫外灾难”进行解释,第一次提出了能量量子化理论,A正确;爱因斯坦通过光电效应现象,提出了光子说,B正确;卢瑟福通过对粒子散射实验的研究,提出了原子的核式结构模型,故正确;贝克勒尔通过对天然放射性的研究,发现原子核有复杂的结构,但没有发现质子和中子,D错;德布罗意大胆提出假设,认为实物粒子也具有波动性,E错.(2)1以子弹与木块A组成的系统为研究对象,以子弹的初速度方向为正方向,由动量守恒定律得:解得:.2弹簧压缩最短时,两木块速度相等,以两木块与子弹组成的系统为研究对象,以木块的初速度方向为正方向,由动量守恒定律得:解得:由机械能守恒定律可知:.考点:本题考查了物理学史和动量守恒定律3.如图所示,在光滑的水平面上放置一个质量为2m的木板B,B的左端放置一个质量为m的物块A,已知A、B之间的动摩擦因数为μ,现有质量为m的小球以水平速度0υ飞来与A物块碰撞后立即粘住,在整个运动过程中物块A始终未滑离木板B,且物块A和小球均可视为质点(重力加速度g).求:①物块A相对B静止后的速度大小;②木板B至少多长.【答案】①0.25v0.②216v Lgμ=【解析】试题分析:(1)设小球和物体A碰撞后二者的速度为v1,三者相对静止后速度为v2,规定向右为正方向,根据动量守恒得,mv0=2mv1,① (2分)2mv1=4mv2② (2分)联立①②得,v2=0.25v0.(1分)(2)当A在木板B上滑动时,系统的动能转化为摩擦热,设木板B的长度为L,假设A刚好滑到B的右端时共速,则由能量守恒得,③ (2分)联立①②③得,L=考点:动量守恒,能量守恒.【名师点睛】小球与 A碰撞过程中动量守恒,三者组成的系统动量也守恒,结合动量守恒定律求出物块A相对B静止后的速度大小;对子弹和A共速后到三种共速的过程,运用能量守恒定律求出木板的至少长度.4.装甲车和战舰采用多层钢板比采用同样质量的单层钢板更能抵御穿甲弹的射击.通过对一下简化模型的计算可以粗略说明其原因.质量为2m、厚度为2d的钢板静止在水平光滑桌面上.质量为m的子弹以某一速度垂直射向该钢板,刚好能将钢板射穿.现把钢板分成厚度均为d、质量均为m的相同两块,间隔一段距离水平放置,如图所示.若子弹以相同的速度垂直射向第一块钢板,穿出后再射向第二块钢板,求子弹射入第二块钢板的深度.设子弹在钢板中受到的阻力为恒力,且两块钢板不会发生碰撞不计重力影响.【答案】【解析】设子弹初速度为v0,射入厚度为2d的钢板后,由动量守恒得:mv0=(2m+m)V(2分)此过程中动能损失为:ΔE损=f·2d=12mv20-12×3mV2(2分)解得ΔE=13mv20分成两块钢板后,设子弹穿过第一块钢板时两者的速度分别为v1和V1:mv1+mV1=mv0(2分)因为子弹在射穿第一块钢板的动能损失为ΔE损1=f·d=mv2(1分),由能量守恒得:1 2mv21+12mV21=12mv20-ΔE损1(2分)且考虑到v1必须大于V1,解得:v1=13(26v0设子弹射入第二块钢板并留在其中后两者的共同速度为V2,由动量守恒得:2mV 2=mv 1(1分) 损失的动能为:ΔE′=12mv 21-12×2mV 22(2分) 联立解得:ΔE′=13(1)22+×mv 2因为ΔE′=f·x (1分), 可解得射入第二钢板的深度x 为:(2分)子弹打木块系统能量损失完全转化为了热量,相互作用力乘以相对位移为产生的热量,以系统为研究对象由能量守恒列式求解5.(1)恒星向外辐射的能量来自于其内部发生的各种热核反应,当温度达到108K 时,可以发生“氦燃烧”。
2020高考大一轮复习(新课改专用)第6章 第2节 动量守恒定律

第2节动量守恒定律一、动量守恒定律1.内容:如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变。
[注1] 2.表达式:m1v1+m2v2=m1v1′+m2v2′。
3.适用条件(1)理想守恒:不受外力或所受外力的合力为0。
(2)近似守恒:系统内各物体间相互作用的内力远大于它所受到的外力。
[注2](3)某一方向守恒:如果系统在某一方向上所受外力的合力为0,则系统在该方向上动量守恒。
二、碰撞、反冲、爆炸1.碰撞(1)特点:作用时间极短,内力(相互碰撞力)远大于外力,总动量守恒。
(2)分类①弹性碰撞:碰撞后系统的总动能没有损失。
[注3]②非弹性碰撞:碰撞后系统的总动能有损失。
③完全非弹性碰撞:碰撞后合为一体,机械能损失最大。
2.爆炸与碰撞类似,物体间的相互作用时间很短,作用力很大,且远大于系统所受的外力,所以系统动量守恒。
3.反冲 [注4](1)定义:当物体的一部分以一定的速度离开物体时,剩余部分将获得一个反向冲量,如发射炮弹、火箭等。
(2)特点:系统内各物体间的相互作用的内力远大于系统受到的外力,动量守恒。
【注解释疑】[注1] 外力和内力是相对的,与研究对象的选取有关。
[注2] 外力的冲量在相互作用的时间内忽略不计。
[注3] 弹性碰撞是一种理想化的物理模型,在宏观世界中不存在。
[注4] 反冲运动和爆炸问题中,系统的机械能可以增大,这与碰撞问题是不同的。
[深化理解]1.动量守恒方程为矢量方程,列方程时必须选择正方向。
2.动量守恒方程中的速度必须是系统内各物体在同一时刻相对于同一参考系(一般选地面)的速度。
3.碰撞、爆炸、反冲均因作用时间极短,内力远大于外力满足动量守恒(或近似守恒),但系统动能的变化是不同的。
4.“人船”模型适用于初状态系统内物体均静止,物体运动时满足系统动量守恒或某个方向上系统动量守恒的情形。
[基础自测]一、判断题(1)只要系统合外力做功为零,系统动量就守恒。
(×)(2)系统动量不变是指系统的动量大小和方向都不变。
高三复习高中物理重点知识习题 动量守恒定律 - (含答案)

第七章动量守恒定律考点一:动量、动量变化量与冲量、动量定理1. (多选)如图所示,两个质量相等的物体在同一高度沿倾角不同的两个光滑斜面由静止开始自由下滑,不计空气阻力,在它们到达斜面底端的过程中()A.重力的冲量相同B.斜面弹力的冲量不同C.斜面弹力的冲量均为零D.合力的冲量不同答案BD2.(多选)质量为m的物块以初速度v0从光滑斜面底端向上滑行,到达最高位置后再沿斜面下滑到底端,则物块在此运动过程中()A.上滑过程与下滑过程中物块所受重力的冲量相同B.整个过程中物块所受弹力的冲量为零C.整个过程中物块合外力的冲量为零D.若规定沿斜面向下为正方向,则整个过程中物块合外力的冲量大小为2mv0 答案AD3.如图所示,质量为m的物体,在大小确定的水平外力F作用下,以速度v沿水平面匀速运动,当物体运动到A点时撤去外力F,物体由A点继续向前滑行的过程中经过B点,则物体由A点到B点的过程中,下列说法正确的是()A.v越大,摩擦力对物体的冲量越大,摩擦力做功越多B.v越大,摩擦力对物体的冲量越大,摩擦力做功与v的大小无关C.v越大,摩擦力对物体的冲量越小,摩擦力做功越少D.v越大,摩擦力对物体的冲量越小,摩擦力做功与v的大小无关答案D4. (多选)几个水球可以挡住一颗子弹?《国家地理频道》的实验结果是:四个水球足够!完全相同的水球紧挨在一起水平排列,子弹在水球中沿水平方向做匀变速直线运动,恰好能穿出第4个水球,则可以判断的是()A.子弹在每个水球中的速度变化相同B.子弹在每个水球中运动的时间不同C.每个水球对子弹的冲量不同D.子弹在每个水球中的动能变化相同答案BCD5. (多选)一质量为2 kg的物块在合外力F的作用下从静止开始沿直线运动。
F随时间t变化的图线如图所示,则() 答案ABA.t=1 s时物块的速率为1 m/sB.t=2 s时物块的动量大小为4 kg·m/sC.t=3 s时物块的动量大小为5 kg·m/sD.t=4 s时物块的速度为零6. (多选)一质点静止在光滑水平面上,现对其施加水平外力F,力F随时间按正弦规律变化,如图5所示,下列说法正确的是()A.第2 s 末,质点的动量为0B.第4 s 末,质点回到出发点C.在0~2 s 时间内,力F 的功率先增大后减小D.在1~3 s 时间内,力F 的冲量为0 答案 CD7.质量为1 kg 的物体做直线运动,其速度—时间图象如图所示。
高考物理一轮复习 第6章 动量守恒定律及其应用 第1讲 动量 动量定理课时作业(含解析)新人教版-新

第1讲动量动量定理时间:45分钟总分为:100分一、选择题(此题共10小题,每一小题7分,共70分。
其中1~7题为单项选择,8~10题为多项选择)1.下面关于物体动量和冲量的说法错误的答案是()A.物体所受合外力的冲量越大,它的动量也越大B.物体所受合外力的冲量不为零,它的动量一定要改变C.物体动量增量的方向,就是它所受冲量的方向D.物体所受合外力越大,它的动量变化就越快答案 A解析Ft越大,Δp越大,但动量不一定越大,它还与初态的动量有关,故A错误;Ft =Δp,Ft不为零,Δp一定不为零,B正确;冲量不仅与Δp大小相等,而且方向一样,C 正确;物体所受合外力越大,速度变化越快,即动量变化越快,D正确。
此题选说法错误的,应当选A。
2.将质量为0.5 kg的小球以20 m/s的初速度竖直向上抛出,不计空气阻力,g取10 m/s2,以下判断正确的答案是()A.小球从抛出至最高点受到的冲量大小为10 N·sB.小球从抛出至落回出发点动量的增量大小为0C.小球从抛出至落回出发点受到的冲量大小为0D.小球从抛出至落回出发点受到的冲量大小为10 N·s答案 A解析小球在最高点速度为零,取向下为正方向,小球从抛出至最高点受到的冲量:I =0-(-mv0)=10 N·s,A正确;因不计空气阻力,所以小球落回出发点的速度大小仍等于20 m/s,但其方向变为竖直向下,由动量定理知,小球从抛出至落回出发点受到的冲量为:I′=Δp=mv0-(-mv0)=20 N·s,如此冲量大小为20 N·s,B、C、D错误。
3.(2019·四川自贡高三一诊)校运会跳远比赛时在沙坑里填沙,这样做的目的是可以减小()A.人的触地时间B.人的动量变化率C.人的动量变化量D.人受到的冲量答案 B解析 跳远比赛时,运动员从与沙坑接触到静止,动量的变化量Δp 一定,由动量定理可知,人受到的合力的冲量I =Δp 是一定的,在沙坑中填沙延长了人与沙坑的接触时间,即t 变大,由动量定理:Δp =Ft ,可得Δpt=F ,Δp 一定,t 越大,动量变化率越小,人受到的合外力越小,人越安全,B 正确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动量守恒定律一、冲量、动量和动量定理1.冲量(1)定义:力和力的的乘积.(2)公式:I=,适用于求恒力的冲量.(3)方向:与相同.2.动量(1)定义:物体的与的乘积.(2)表达式:(3)单位:.符号:(4)特征:动量是状态量,是,其方向和方向相同.3.动量定理(1)内容:物体所受合力的冲量等于物体.(2)表达式: .(3)矢量性:动量变化量方向与的方向相同,可以在某一方向上用动量定理.二、动量守恒定律1.系统:相互作用的几个物体构成系统.系统中各物体之间的相互作用力称为内力,外部其他物体对系统的作用力叫做外力.2.定律内容:如果一个系统作用,或者所受的为零,这个系统的总动量保持不变.3.动量守恒定律的不同表达形式(1)m1v1+m2v2=m1v1′+m2v2′,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和.(2)Δp1=-Δp2,相互作用的两个物体动量的增量等大反向.(3)Δp=0,系统总动量的增量为零.4.守恒条件(1)理想守恒:系统不受外力或所受外力的合力为零,则系统动量守恒.(2)近似守恒:系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒.(3)分方向守恒:系统在某个方向上所受合力为零时,系统在该方向上动量守恒.三、碰撞1.概念:碰撞指的是物体间相互作用持续时间很短,物体间相互作用力很大的现象,在碰撞过程中,一般都满足内力远大于外力,故可以用动量守恒定律处理碰撞问题.解析碰撞的三个依据(1)动量守恒:p1+p2=p1′+p2′.(2)动能不增加:E k1+E k2≥E k1′+E k2′或p212m1+p222m2≥p1′22m1+p2′22m2.(3)速度要符合情景①如果碰前两物体同向运动,则后面的物体速度必大于前面物体的速度,即v后>v前,否则无法实现碰撞.②碰撞后,原来在前面的物体速度一定增大,且速度大于或等于原来在后面的物体的速度,即v前′≥v后′.③如果碰前两物体是相向运动,则碰后两物体的运动方向不可能都不改变.除非两物体碰撞后速度均为零.2.分类(1)弹性碰撞:这种碰撞的特点是系统的机械能守恒,相互作用过程中遵循的规律是动量守恒和机械能守恒.(2)非弹性碰撞:在碰撞过程中机械能损失的碰撞,在相互作用过程中只遵循动量守恒定律.(3)完全非弹性碰撞:这种碰撞的特点是系统的机械能损失最大,作用后两物体粘合在一起,速度相等,相互作用过程中只遵循动量守恒定律.3.碰撞问题的探究(1)弹性碰撞的求解求解:两球发生弹性碰撞时应满足动量守恒和动能守恒.以质量为m1、速度为v1的小球与质量为m2的静止小球发生正面弹性碰撞为例,则有m1v1=m1v1′+m2v2′12m1v21=12m1v1′2+12m2v2′2解得:v1′=m1-m2v1m1+m2,v2′=2m1v1m1+m2(2)弹性碰撞的结论①当两球质量相等时,v1′=0,v2′=v1,两球碰撞后交换了速度.②当质量大的球碰质量小的球时,v1′>0,v2′>0,碰撞后两球都沿速度v1的方向运动.③当质量小的球碰质量大的球时,v1′<0,v2′>0,碰撞后质量小的球被反弹回来.★要点一基本概念的理解【典型例题】【例1】关于物体的动量,下列说法中正确的是( )A.运动物体在任一时刻的动量方向,一定是该时刻的速度方向B.物体的加速度不变,其动量一定不变C.动量越大的物体,其速度一定越大D.物体的动量越大,其惯性也越大【例2】下列论述中错误的是( )A.相互作用的物体,如果所受合外力为零,则它们的总动量保持不变B.动量守恒是指相互作用的各个物体在相互作用前后的动量不变C.动量守恒是相互作用的各个物体组成的系统在相互作用前的动量之和与相互作用之后的动量之和是一样的D.动量守恒是相互作用的物体系在相互作用过程中的任何时刻动量之和都是一样的★要点二动量守恒的判断【典型例题】【例1】(多选)木块a和b用一根轻弹簧连接起来,放在光滑水平面上,a紧靠在墙壁上.在b上施加向左的水平力F使弹簧压缩,如图所示.当撤去外力F后,下列说法中正确的是( )A.a尚未离开墙壁前,a和b组成的系统动量守恒B.a尚未离开墙壁前,a和b组成的系统动量不守恒C.a离开墙壁后,a、b组成的系统动量守恒D.a离开墙壁后,a、b组成的系统动量不守恒解析BC [在a离开墙壁前、弹簧伸长的过程中,对a和b构成的系统,由于受到墙给a 的弹力作用,所以a、b构成的系统动量不守恒,因此B选项正确,A选项错误;a离开墙壁后,a、b构成的系统所受合外力为零,因此动量守恒,故C选项正确,D选项错误.] 【例2】(多选)如图,A、B两物体的中间用一段细绳相连并有一压缩的弹簧,放在平板小车C上后,A、B、C均处于静止状态.若地面光滑,则在细绳被剪断后,A、B从C上未滑离之前,A、B在C上向相反方向滑动的过程中( )A.若A、B与C之间的摩擦力大小相同,则A、B及弹簧组成的系统动量守恒,A、B、C及弹簧组成的系统动量守恒B.若A、B与C之间的摩擦力大小相同,则A、B及弹簧组成的系统动量不守恒,A、B、C 及弹簧组成的系统动量守恒C.若A、B与C之间的摩擦力大小不相同,则A、B及弹簧组成的系统动量不守恒,A、B、C及弹簧组成的系统动量不守恒D.若A、B与C之间的摩擦力大小不相同,则A、B及弹簧组成的系统动量不守恒,A、B、C及弹簧组成的系统动量守恒解析当A、B两物体及弹簧组成一个系统时,弹簧的弹力为内力,而A、B与C之间的摩擦力为外力.当A、B与C之间的摩擦力大小不相等时,A、B及弹簧组成的系统所受合外力不为零,动量不守恒;当A、B与C之间的摩擦力大小相等时,A、B及弹簧组成的系统所受合外力为零,动量守恒.对A、B、C及弹簧组成的系统,弹簧的弹力及A、B与C之间的摩擦力均属于内力,无论A、B与C之间的摩擦力大小是否相等,系统所受的合外力均为零,系统的动量守恒.故选项A、D正确.【对应练习】1. (多选)如图1所示,光滑水平面上两小车中间夹一压缩了的轻弹簧,两手分别按住小车,使它们静止,对两车及弹簧组成的系统,下列说法中正确的是( )A.两手同时放开后,系统总动量始终为零B.先放开左手,后放开右手,动量不守恒C.先放开左手,后放开右手,总动量向左D.无论何时放手,只要两手放开后在弹簧恢复原长的过程中,系统总动量都保持不变,但系统的总动量不一定为零图12. 质量为M和m0的滑块用轻弹簧连接,以恒定的速度v沿光滑水平面运动,与位于正对面的质量为m的静止滑块发生碰撞,如图4所示,碰撞时间极短,在此过程中,下列哪个或哪些说法是可能发生的?( )A.M、m0、m速度均发生变化,分别为v1、v2、v3,而且满足(M+m0)v=Mv1+m0v2+mv3 B.m0的速度不变,M和m的速度变为v1和v2,而且满足Mv=Mv1+mv2C.m0的速度不变,M、m的速度都变为v′,且满足Mv=(M+m)v′D.M、m0、m速度均发生变化,M和m0速度都变为v,m速度变为v2,而且满足(M+m)v0=(M+m0)v1+mv2图4解:碰撞的瞬间M和m组成的系统动量守恒,m0的速度在瞬间不变,以M的初速度方向为正方向,若碰后M和m的速度变v1和v2,由动量守恒定律得:Mv=Mv1+mv2若碰后M和m速度相同,由动量守恒定律得:Mv=(M+m)v′.故BC 正确,AD 错误.故选:BC .★要点三 动量守恒的应用【典型例题】【例1】一质量为2m 的物体P 静止于光滑水平地面上,其截面如图所示.图中ab 为粗糙的水平面,长度为L ;bc 为一光滑斜面,斜面和水平面通过与ab 与bc 均相切的长度可忽略的光滑圆弧连接.现有一质量为m 的木块以大小为v 0的水平初速度从a 点向左运动,在斜面上上升的最大高度为h ,返回后在到达a 点前与物体P 相对静止.重力加速度为g.求:(1)木块在ab 段受到的摩擦力f ;(2)木块最后距a 点的距离s.解析 木块m 和物体P 组成的系统在相互作用过程中遵守动量守恒、能量守恒.(1)以木块开始运动至在斜面上上升到最大高度为研究过程,当木块上升到最高点时两者具有相同的速度,根据动量守恒,有mv 0=(2m +m)v①根据能量守恒,有12mv 20=12(2m +m)v 2+fL +mgh② 联立①②得f =mv 203L -mgh L =mv 20-3mgh 3L③ (2)以木块开始运动至最后与物体P 在水平面ab 上相对静止为研究过程,木块与物体P 相对静止,两者具有相同的速度,根据动量守恒,有mv 0=(2m +m)v④根据能量守恒,有12mv 20=12(2m +m)v 2+f(L +L -s)⑤ 联立③④⑤得s =v 20L -6ghL v 20-3gh【例2】如图,A 、B 、C 三个木块的质量均为m ,置于光滑的水平桌面上,B 、C 之间有一轻质弹簧,弹簧的两端与木块接触而不固连.将弹簧压紧到不能再压缩时用细线(细线未画出)把B 和C 紧连,使弹簧不能伸展,以至于B 、C 可视为一个整体.现A 以初速度v 0沿B 、C 的连线方向朝B 运动,与B 相碰并粘合在一起.以后细线突然断开,弹簧伸展,从而使C 与A 、B 分离.已知C 离开弹簧后的速度恰为v 0.求弹簧释放的势能.解析 设碰后A 、B 和C 的共同速度的大小为v ,由动量守恒定律得3mv =mv 0①设C 离开弹簧时,A 、B 的速度大小为v 1,由动量守恒定律得3mv =2mv 1+mv 0② 设弹簧的弹性势能为Ep ,从细线断开到C 与弹簧分开的过程中机械能守恒,有12(3m)v 2+Ep =12(2m)v 21+12mv 20③ 由①②③式得弹簧所释放的势能为Ep =13mv 20④ 【针对练习】1.(多选)质量为M、内壁间距为L的箱子静止于光滑的水平面上,箱子中间有一质量为m 的小物块,小物块与箱子底板间的动摩擦因数为μ.初始时小物块停在箱子正中间.如图所示.现给小物块一水平向右的初速度v,小物块与箱壁碰撞N次后恰又回到箱子正中间,并与箱子保持相对静止.设碰撞都是弹性的,则整个过程中,系统损失的动能为( )图1 图2A. 12mv2 B.12mMm+Mv2 C.12NμmgL D.NμmgL解析小物块与箱子作用过程中满足动量守恒,小物块最后恰好又回到箱子正中间.二者相对静止,即为共速,设速度为v1,mv=(m+M)v1,系统损失动能ΔE k=12mv2-12(M+m)v21=12Mmv2M+m,A错误、B正确;由于碰撞为弹性碰撞,故碰撞时不损失能量,系统损失的动能等于系统产生的热量,即ΔE k=Q=NμmgL,C错误,D正确.2. 如图2所示,三辆完全相同的平板小车a、b、c成一直线排列,静止在光滑水平面上.c 车上有一小孩跳到b车上,接着又立即从b车跳到a车上.小孩跳离c车和b车时对地水平速度相同.他跳到a车上相对a车保持静止.此后( )A.a、b两车运动速率相等B.a、c两车运动速率相等C.三辆车的速率关系v c>v a>v b D.a、c两车运动方向相同3. 如图所示,小球A系在细线的一端,线的另一端固定在O点,O点到水平面的距离为h.物块B质量是小球的5倍,至于粗糙的水平面上且位于O点正下方,物块与水平面间的动摩擦因数为μ.现拉动小球使线水平伸直,小球由静止开始释放,运动到最低点时与物块发生正碰(碰撞时间极短),反弹后上升至最高点时到水平面的距离为h16.小球与物块均视为质点,不计空气阻力,重力加速度为g,求物块在水平面上滑行的时间t.★要点五动量和能量观点的综合应用【例1】如图所示,在光滑水平面上有一辆质量M=8 kg的平板小车,车上有一个质量m=1.9 kg的木块,木块距小车左端6 m(木块可视为质点),车与木块一起以v=1 m/s的速度水平向右匀速行驶.一颗质量m0=0.1 kg的子弹以v0=179 m/s的速度水平向左飞来,瞬间击中木块并留在其中.如果木块刚好不从车上掉下来,求木块与平板小车之间的动摩擦因数μ.(g =10 m/s2)解析以子弹和木块组成的系统为研究对象,设子弹射入木块后两者的共同速度为v1,以水平向左为正方向,则由动量守恒有:m 0v 0-mv =(m +m 0)v 1① 解得v 1=8 m/s它们恰好不从小车上掉下来,则它们相对平板小车滑行距离x =6 m 时它们跟小车具有共同速度v 2,则由动量守恒定律有(m +m 0)v 1-Mv =(m +m 0+M)v 2② 解得v 2=0.8 m/s由能量守恒定律有 μ(m 0+m)gx =12(m +m 0)v 21+12Mv 2-12(m 0+m +M)v 22③由①②③,解得μ=0.54【例2】如图所示,AOB 是光滑水平轨道,BC 是半径为R 的光滑的1/4固定圆弧轨道,两轨道恰好相切.质量为M 的小木块静止在O 点,一个质量为m 的子弹以某一初速度水平向右射入小木块内,并留在其中和小木块一起运动,且恰能到达圆弧轨道的最高点C(木块和子弹均可以看成质点).求:(1)子弹射入木块前的速度;(2)若每当小木块返回到O 点或停止在O 点时,立即有相同的子弹射入小木块,并留在其中,则当第9颗子弹射入小木块后,小木块沿圆弧轨道能上升的最大高度为多少?【针对练习】1. 如图所示,光滑的水平地面上有一木板,其左端放有一重物,右方有一竖直的墙.重物质量为木板质量的2倍,重物与木板间的动摩擦因数为μ.使木板与重物以共同的速度v0向右运动,某时刻木板与墙发生弹性碰撞,碰撞时间极短.求木板从第一次与墙碰撞到再次碰撞所经历的时间.设木板足够长,重物始终在木板上.重力加速度为g.解析 第一次与墙碰撞后,木板的速度反向,大小不变,此后木板向左做匀减速运动,速度减到0后向右做加速运动,重物向右做匀减速运动,最后木板和重物达到一共同的速度v ,设木板的质量为m ,重物的质量为2m ,取向右为正方向,由动量守恒定律得2mv 0-mv 0=3mv①设木板从第一次与墙碰撞到和重物具有共同速度v 所用的时间为t 1,对木板应用动量定理得,2μmgt 1=mv -m(-v 0)② 由牛顿第二定律得2μmg=ma③ 式中a 为木板的加速度在达到共同速度v 时,木板离墙的距离l 为l =v 0t 1-12at 21④ 从开始向右做匀速运动到第二次与墙碰撞的时间为 t 2=l v⑤ 所以,木板从第一次与墙碰撞到再次碰撞所经过的时间为t =t 1+t 2⑥由以上各式得t =4v 03μg. 2. 如图7所示,小球a 、b 用等长细线悬挂于同一固定点O.让球a 静止下垂,将球b 向右拉起,使细线水平.从静止释放球b ,两球碰后粘在一起向左摆动,此后细线与竖直方向之间的最大偏角为60°.忽略空气阻力,求:(ⅰ)两球a 、b 的质量之比;(ⅱ)两球在碰撞过程中损失的机械能与球b 在碰前的最大动能之比.解析 (ⅰ)设球b 的质量为m 2,细线长为L ,球b 下落至最低点但未与球a 相碰时的速率为v ,由机械能守恒定律得m 2gL =12m 2v 2 ①式中g 是重力加速度的大小.设球a 的质量为m 1;在两球碰后的瞬间,两球共同速度为v′,以向左为正.由动量守恒定律得m 2v =(m 1+m 2)v′ ②设两球共同向左运动到最高处时,细线与竖直方向的夹角为θ,由机械能守恒定律得 12(m 1+m 2)v′2=(m 1+m 2)gL(1-cos θ) ③ 联立①②③式得m 1m 2=11-cos θ-1 ④ 代入题给数据得m 1m 2=2-1 ⑤(ⅱ)两球在碰撞过程中的机械能损失为Q =m 2gL -(m 1+m 2)gL(1-cos θ)⑥ 联立①⑥式,Q 与碰前球b 的最大动能E k (E k =12m 2v 2)之比为Q E k =1-m 1+m 2m 2(1-cos θ)⑦ 联立⑤⑦式,并代入题给数据得Q E k =1-22综合练习:1. (多选)如图所示,光滑水平面上小球A 和B 向同一方向运动,设向右为正方向,已知两小球的质量和运动速度分别为m A =3kg 、m B =2kg 和vA=4m/s 、vB=2m/s .则两将发生碰撞,碰撞后两球的速度可能是( )A .v ′A =3 m/s 、 v ′B =3.5 m/s B .v ′A =C .v ′A =-2 m/s 、 v ′B =11 m/sD .v ′A =5 m/s 、 v ′B =0.5 m/s2. 静止在湖面上的船,有两个人分别向相反方向抛出质量为m 的相同小球,甲向左抛,乙向右抛,甲先抛,乙后抛,抛出后两球相对于岸的速率相同,下列说法中,正确的是( )(设水的阻力不计).A .两球抛出后,船往左以一定速度运动,抛乙球时,乙球受到的冲量大B .两球抛出后,船往右以一定速度运动,抛甲球时,甲球受到的冲量大C .两球抛出后,船的速度为零,抛甲球和抛乙球过程中受到的冲量大小相等D .两球抛出后,船的速度为零,抛甲球时受到的冲量大解:设小船的质量为M ,小球的质量为m ,甲球抛出后,根据动量守恒定律有:mv=(M+m )v ′,v ′的方向向右.乙球抛出后,规定向右为正方向,根据动量守恒定律有:(M+m )v ′=mv+Mv ″,解得v ″为负值,方向向左.根据动量定理得,所受合力的冲量等于动量的变化,对于甲球,动量的变化量为mv ,对于乙球动量的变化量为mv-mv ′,知甲的动量变化量大于乙球的动量变化量,所以抛出时,人给甲球的冲量比人给乙球的冲量大.故D 正确.3. 两名质量相等的滑冰人甲和乙都静止在光滑的水平冰面上.现在,其中一人向另一个人抛出一个篮球,另一人接球后再抛回.如此反复进行几次后,甲和乙最后的速率关系是( )A .若甲最先抛球,则一定是v 甲>v 乙B .若乙最后接球,则一定是v 甲>v 乙C .只有甲先抛球,乙最后接球,才有v 甲>v 乙D .无论怎样抛球和接球,都是v 甲>v 乙解析:系统动量守恒,故最终甲、乙动量大小必相等.谁最后接球谁的质量中包含了球的质量,即质量大,根据动量守恒:m 1v 1=m 2v 2,因此最终谁接球谁的速度小.4. 如图 所示,水平光滑轨道的宽度和弹簧自然长度均为d.m 2的左边有一固定挡板,m 1由图示位置静止释放.当m 1与m 2第一次相距最近时m 1速度为v 1,在以后的运动过程中( )A .m 1的最小速度是0B .m 1的最小速度是m 1-m 2m 1+m 2v 1C .m 2的最大速度是v 1D .m 2的最大速度是m 1m 1+m 2v 15. 如图2所示,甲、乙两船的总质量(包括船、人和货物)分别为10m 、12m ,两船沿同一直线、同一方向运动,速度分别为2v 0、v 0.为避免两船相撞,乙船上的人将一质量为m 的货物沿水平方向抛向甲船,甲船上的人将货物接住,求抛出货物的最小速度.(不计水的阻力)图2解析:设乙船上的人抛出货物的最小速度大小为v min,抛出货物后船的速度为v1,甲船上的人接到货物后船的速度为v2,由动量守恒定律得12m×v0=11m×v1-m×v min①10m×2v0-m×v min=11m×v2②为避免两船相撞应满足v1=v2③联立①②③式得v min=4v0.④6.如图所示,质量m1=0.3 kg的小车静止在光滑的水平面上,车长L=1.5 m,现有质量m2=0.2 kg可视为质点的物块,以水平向右的速度v0=2 m/s从左端滑上小车,最后在车面上某处与小车保持相对静止,物块与车面间的动摩擦因数μ=0.5,取g=10 m/s2,求(1)物块在车面上滑行的时间t;(2)要使物块不从小车右端滑出,物块滑上小车左端的速度v0'不超过多少。