功放IC 8002

合集下载

英锐芯电子 3W 单声道带关断模式音频功率放大器 8002D 数据手册说明书

英锐芯电子 3W 单声道带关断模式音频功率放大器 8002D 数据手册说明书

3W单声道带关断模式音频功率放大器8002D8002D简介数据手册版本V1.0电话:*************82568883邮箱:**********************传真:*************网址:公司地址:深圳市福田区滨河大道联合广场A座13083W单声道带关断模式音频功率放大器8002D 芯片功能说明:Ø8002D是一款AB类,单声道带关断模式,桥式音频功率放大器。

在输入1KHz,5V工作电压时,最大驱动功率为:3W,(4Ω负载,THD<10%),2W,(4Ω负载,THD<1%);音频范围内总谐波失真噪音小于1%(20Hz·20KHz);8002D应用电路简单,只需要极少数外围器件,就能提供高品质的输出功率。

8002D输出不需要外接耦合电容或上举电容、缓冲网络、反馈电阻。

Ø8002D采样SOP封装,特别适用于低功耗、小体积的便携式系统。

8002D可以通过控制进入休眠模式,从而减少功耗:8002D内部有过热自动关断保护机制。

8002D工作稳定,并且单位增益稳定。

通过配置外围电阻可以调整放大器的电压增益,方便应用。

是一款深受市场欢迎,用户认可度高的典型芯片。

芯片功能主要特性:3D实物图:芯片基本应用:Ø个人电脑Ø便携式消费类电子产品Ø无源扬声器Ø玩具及游戏机8002D内部原理框图:Ø输出功率高(4Ω,1KHz频率),THD+N<10%,(3w);THD+N<1%,(2W).Ø掉电模式漏电流小:18µA(典型)Ø采样SOP8封装Ø外部增益可调Ø宽工作电压范围2.2V-5.5VØ不需驱动输出耦合电容、自举电容和缓冲网络Ø单位增益稳定电话:*************82568883邮箱:**********************传真:*************网址:公司地址:深圳市福田区滨河大道联合广场A座13083W单声道带关断模式音频功率放大器8002D典型应用图图1.8002D典型应用图8002D封装引脚图图2.8002D SOP-8封装管脚分布图电话:*************82568883邮箱:**********************传真:*************网址:公司地址:深圳市福田区滨河大道联合广场A座130823W单声道带关断模式音频功率放大器8002D 8002D引脚描述芯片封装尺寸如没有特别提示,所有尺寸标注均为:(毫米)电话:*************82568883邮箱:**********************传真:*************网址:公司地址:深圳市福田区滨河大道联合广场A座13083。

WT8002功放芯片说明书.pdf

WT8002功放芯片说明书.pdf

WT8002V1.00WT8002功放芯片说明书Note:WAYTRONIC ELECTRONIC CO.,LTD.reserves the right to change this document without prior rmation provided by WAYTRONIC is believed to be accurate and reliable.However,WAYTRONIC makes no warranty for any errors which may appear in this document.Contact WAYTRONIC to obtain the latest version of device specifications before placing your orders.No responsibility is assumed by WAYTRONIC for any infringement of patent or other rights of thirdparties which may result from its use.In addition,WAYTRONIC products are not authorized for use as critical components in V1.02一.概述WT8002是一款音频功率放大芯片.工作电压2V~6V,以BTL的方式输出,它內含降低上电瞬间与启动/关闭产生pop声的电路与过温保护,低待机电流0.5uA二、特性内置降低上电瞬间与启动/关闭产生pop声的电路增益可由外挂电阻调节宽广的工作电流:1.6V-6V封装形式:SOP-8高輸出功率Pout= 1.2W(VDD=5V,THD+N=1%,8ohm)Pout=2W(VDD=5V,THD+N=1%,4ohm)三、应用可应用于手提设备,台式电脑及低电压工作的音频设备四、功能特性桥路设置WT8002内部共有2个运放工作,第一个运放增益可在外部用RF和RJ两个电阻进行设置(+IN 和-IN端口),第二个运放的增益由内部固定不变。

8002a小功放使用经验

8002a小功放使用经验

8002a小功放使用经验一、引言8002a小功放是一款常见的音频功放器件,具有音质好、功率大、易于使用等特点,广泛应用于音响设备、电视、电脑等领域。

本文将从使用经验的角度出发,分享一些关于8002a小功放的使用技巧和注意事项,希望对读者有所帮助。

二、选择合适的电源在使用8002a小功放时,首先需要选择合适的电源。

建议使用直流电源,通常在9V-12V之间。

同时,为了保证功放的稳定工作,应选择质量可靠、电流稳定的电源适配器。

三、连接输入输出信号在连接输入输出信号时,需要注意以下几点:1. 输入信号:8002a小功放的输入端有两个引脚,分别是IN+和IN-。

一般情况下,音频信号的左声道应连接到IN+,右声道应连接到IN-。

如果只有单声道信号,则将其连接到IN+,同时将IN-接地。

2. 输出信号:8002a小功放的输出端有两个引脚,分别是OUT+和OUT-。

连接扬声器时,应将扬声器的正极连接到OUT+,负极连接到OUT-。

四、调节音量和音质8002a小功放具有音量和音质调节功能,可以根据个人需求进行调整。

在调节音量时,建议先将音量调至最小,然后逐渐增加,以避免突然出现过大的音量。

在调节音质时,可以根据个人喜好适当调整低音、中音和高音的平衡,以获得更好的听觉效果。

五、注意保护功放和扬声器在使用8002a小功放时,需要注意以下几点以保护功放和扬声器的安全:1. 不要将功放过热:长时间高音量使用或通风不良会导致功放过热,可能损坏功放器件。

因此,在使用过程中应注意通风良好,并避免长时间高音量使用。

2. 避免短路和过载:连接扬声器时,确保扬声器的阻抗符合功放的要求,避免短路和过载情况的发生。

3. 注意静电防护:在操作8002a小功放时,应采取静电防护措施,避免静电对器件的损坏。

六、避免干扰在使用8002a小功放时,可能会遇到一些干扰问题,如杂音、电磁干扰等。

为了减少干扰,可以采取以下措施:1. 优化输入信号:使用质量良好的音频源,并保证输入信号的稳定和纯净。

功放IC常用选型与详细说明

功放IC常用选型与详细说明

功放IC常用选型与详细说明前言:小功率功放芯片的遍地开花,使的目前生产和开发蓝牙、MP3的音箱的公司,在功放选型上有很大的多样性和灵活性。

但要选择一个合适的功放芯片,也是一件比较麻烦的事,特别是选一款工作电压较宽的功放芯片,更加不容易。

下面我就针对我公司的功放芯片,给在家介绍一下。

先例出几款常用功放芯片的比较:QQ:298391364从列表可以看出,我公司推出的HX系列功放芯片,工作电压和输出功率明显的高于其它的功放。

HX8358资料介绍:芯片功能说明:HX8358是一款超低EMI,无需滤波器,AB/D类可选式音频功率放大器。

6V工作电压时,最大驱动功率为8W(VDD=6V,2ΩBTL负载,THD<10%),音频范围内总谐波失真噪声小于1%,(20Hz~20KHz);HX8358的应用电路简单,只需极少数外围器件;HX8358输出不需要外接耦合电容或上举电容和缓冲网络;HX8358采用ESOP8封装,特别适合用于小音量、小体重的便携系统中;HX8358可以通过控制进入关断模式,从而减少功耗;HX8358内部具有过热自动关断保护机制;HX8358工作稳定,通过配置外围电阻可以调整放大器的电压增益,方便应用。

芯片功能主要特性:超低EMI,高效率,音质优AB/D类切换、单通道VDD=6V,RL=2Ω,Po=8W,THD+N≤10%VDD=6V,RL=4Ω,Po=5W,THD+N≤10%(防失真关断模式)宽工作电压范围2.5V—7V优异的上掉电POP声抑制采用ESOP8封装芯片的基本应用:手提电脑、台式电脑扩音器蓝牙音箱HX8358原理框图:典型应用电路:注:以上应用图中元件说明:Ci:隔直电容,采用0.1μF或更小的,进一步消除咔嗒-噼噗声和从输入端耦合进入的噪声。

Cs:电源去耦电容,采用足够低ESR的电容(小于1μF),当VDD=5V 时,为更好的滤除低频噪声,建议另加一个低ESR电容(不小于10μF)。

8002音频功放IC规格书 矽源特科技

8002音频功放IC规格书  矽源特科技

Tel: 0755-27595155 27595165 Fax:0755-27594792

DIP-8
1 .5 5 0 .1
3 .3 0 2
1 .2 7 4 .9 0 .4 2
2 .4 1 3
3 .9
6 .0
8002 V1.1
0 .2 1
Tel: 0755-27595155 27595165 Fax:0755-27594792
类型 I I I I O
POWER POWER
O
说明 关断端口 电压基准端 正向输入端 反向输入端 音量输出端 1 电源端 接地端 音量输出端 2
¾ 桥路设置 8002 内部共有 2 个运放工作,但 2 个运放的设置却有所不同。 第一个运放增益可在外部用 RF 和 RJ 两个电阻进行设置(+IN 和-IN 端口),而第二个运放的增益则固定
四、管脚排列及说明
管脚排列图
S HU TD OW N
1
8
V O2
B YP AS S
2
7
G ND
+ IN
3
6
V DD
- IN
4
5
V O1
注:I:输入;O:输出;POWER:电源。
五、功能说明
序号 1 2 3 4 5 6 7 8
名称 SHUTDOWN
BYPASS +IN -IN VO1 VDD GND VO2
在很多应用场合,关断端的电平转换都是由处理器来完成的。当使用单向闸刀开关实现电平转换时,可以在
关断端加上拉电阻,这样当开关关断时,因上拉电阻的作用,使得 8002 关断端的电平处于一个正确的状态,以保 证 8002 不会进入错误的工作状态。

功率放大器8002芯片基本结构描述

功率放大器8002芯片基本结构描述

文章标题:探秘功率放大器8002芯片:基本结构揭秘一、引言功率放大器8002芯片,作为音频功率放大器领域的重要组成部分,其基本结构和工作原理一直备受关注。

本文将从8002芯片的基本结构出发,深入解析其组成和功能,帮助读者全面理解这一重要器件。

二、8002芯片的基本构造1. 芯片外部形状:8002芯片通常采用DIP-8封装,包括8个引脚,外形小巧玲珑却功能强大。

2. 内部器件构成:8002芯片内部包括了多个功能模块,包括输入级、驱动级和输出级等,每个部分都承担着不同的功能。

三、8002芯片的工作原理1. 输入级:8002芯片的输入级主要负责接收外部音频信号,并对其进行放大和处理,为后续级别提供合适的信号源。

2. 驱动级:驱动级是8002芯片的核心部分,它负责将输入的信号放大,并驱动功放芯片的输出级,保证输出级得到稳定的驱动信号。

3. 输出级:8002芯片的输出级将来自驱动级的信号经过二次放大和滤波,输出给扬声器,从而实现音频信号的放大和放大。

四、8002芯片的应用领域8002芯片由于其优秀的性能和稳定的工作特性,在音频功率放大器领域得到了广泛的应用。

无论是消费类电子产品中的音箱、手机等,还是工业控制系统中的音频放大器模块,都离不开8002芯片的支持。

五、结论与展望功率放大器8002芯片的基本结构和工作原理,本文进行了深入的剖析和阐释。

通过本文的阅读,相信读者已经对这一重要器件有了全面的了解和认识。

未来,随着技术的不断进步,8002芯片将会迎来更广阔的应用空间,也希望它能为音频领域的发展贡献更多的力量。

六、个人观点与理解在笔者看来,功率放大器8002芯片作为音频领域的重要器件,其基本结构紧凑、功能全面,能够满足不同场景的音频放大需求。

随着智能化、数字化的发展,8002芯片将会迎来更多的创新应用,为人们带来更加优质的音频体验。

以上内容为文章的主要结构和内容,希望对您有所帮助。

在8002芯片的基本结构和工作原理的基础上,我们可以进一步探讨其在音频功率放大器领域的具体应用和未来发展趋势。

3W单声道音频功率放大器8002BSOP

3W单声道音频功率放大器8002BSOP

3W单声道音频功率放大器8002BSOP
一、功放电路 8002B的描述:
8002B是一种桥工音频功率放大器,使用5V电源,且THD+N≤1.0%时,能给一个4Ω的负载提供2W的平均功率。

8002B音频功率放大器是为提供高质量的输出功率而设计的,需要很少的外围设备,便可以提供高品质的输出功率。

8002B不需要输出耦合电容,且有高电平关断模式,非常适合低功耗的便携式系统。

8002B可以通过外部电阻控制增益,并有补偿器件保证芯片的正常工作。

二、功放电路 8002B的特征:
•无输出耦合电容
•外部电阻可调增益
•整体增益稳定
•热敏关断保护电路
•小尺寸(SOP-8)封装形式
三、功放电路 8002B的应用:
•个人电脑
•便携式消费类电子产品
•无源扬声器
•玩具及游戏机
四、功放电路 8002B的引脚分布:
五、功放电路 8002B的典型应用图:
六、功放电路 8002B的极限值:•电源电压:6V
•存储温度:-65~+150℃
•气化态(60秒):215℃
•输入电压:-0.3~VDD+0.3V •ESD磁化系数(人体模型):3000V •θJC(典型):35℃/W
•ESD磁化系数(机器模型):250V •θJA(典型):140℃/W
•结温:150℃
七、功放电路 8002B的电特性:
八、功放电路 8002B的封装外形尺寸:。

tc8002d原理

tc8002d原理

tc8002d原理
TC8002D是一种集成电路芯片,广泛用于音频放大器和音频处
理应用。

它通常被用于电子设备中,如音响系统、功放、耳机放大
器等。

TC8002D芯片的原理主要涉及其内部电路结构和工作原理。

TC8002D芯片的内部电路结构包括输入级、中间级和输出级。

输入级通常包括音频信号的输入端和前置放大电路,用于接收外部
音频信号并进行放大。

中间级是放大器的核心部分,它通常包括主
放大电路和音频处理电路,用于对输入的音频信号进行放大和处理,以输出更强的音频信号。

输出级通常包括输出端和功率放大电路,
用于输出经过放大和处理后的音频信号。

TC8002D芯片的工作原理主要是通过内部的放大电路和音频处
理电路,对输入的音频信号进行放大和处理,然后输出经过处理后
的音频信号。

其放大电路通常采用了一定的放大倍数和负反馈控制,以保证音频信号的放大质量和稳定性。

同时,音频处理电路可以包
括均衡器、音量控制、混响等功能,用于对音频信号进行调节和优化。

除此之外,TC8002D芯片还可能包括保护电路和供电电路等功
能模块,以确保芯片在工作过程中的稳定性和安全性。

总的来说,TC8002D芯片的原理是通过内部的放大和处理电路,对输入的音频信号进行处理和放大,然后输出经过处理后的音频信号,以实现音频放大和处理的功能。

希望这样的回答能够帮助你全面了解TC8002D芯片的原理。

如果你对此还有其他问题,欢迎继续提出。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8002 DataSheet V1.0CONTENTSGeneral Description (4)Features (4)Applications (4)Typical Application Circuit (4)Absolute Maximum Ratings (5)Electrical Characteristics (5)Pin Configuration (6)Pin Layout (6)Pin Discription (6)Typical Characteristics (7)THD, THD+N,S/N (7)Power Supply Rejection Ratio (PSRR) (9)Power Dissipation (10)Output Power (11)Application Information (12)BLOCK DIAGRAM (12)BRIDGE CONFIGURATION EXPLANATION (13)POWER DISSIPATION (13)POWER SUPPLY BYPASSING (14)SHUTDOWN FUNCTION (14)PROPER SELECTION OF EXTERNAL COMPONENTS (14)Selection of Input Capacitor Size (15)AUDIO POWER AMPLIFIER DESIGN (15)A 1W/8Ω Audio Amplifier (15)Physical Size of Chip Package (17)FIGURE LISTFigure1. typical Audio Amplifier Application Circuit (4)Figure2. SOP Package Pin Distribution (6)Figure3. The block diagram of 8002 (12)Figure4. The Package of SOP-8 (17)TABLE LISTSTable1. Chip Limit Parameter Table (5)Table2. Electrical Characteristics (5)Table3. Pin Discription (6)General DescriptionThe 8002 is an audio power amplifier primarily designed for demanding applications in low-power portable systems. It is capable of delivering 3 watts of continuous average power to an 3ΩBTL load with less than 10% distortion (THD) from a 5VDC power supply. the 8002 does not require output coupling capacitors or bootstrap capacitors, and therefore is ideally suited for mobile phone and other low voltage applications where minimal power consumption is a primary requirement.the 8002 features a low-power consumption shutdown mode.the 8002 contains advanced pop & click circuitry which eliminates noise which would otherwise occur during turn-on and turn-off transitions. The 8002 is unity-gain stable and can be configured by external gain-setting resistorsFeaturesPower Output at 5.0V, 10% THD+N, 3Ω 3W (typ)Power Output at 5.0V,10% THD+N,4Ω 2.65W (typ)Power Output at 5.0V,10% THD+N,8Ω 1.8W (typ)Shutdown Current 0.6µA (typ)Available in space-saving packages: SOPImproved pop & click circuitry eliminates noise during turn-on and turn-off transitions2.20- 5.5V operationNo output coupling capacitors, snubber networks or bootstrap capacitors requiredUnity-gain stableExternal gain configuration capabilityApplicationsPortable computersDesktop computersLow voltage audio systemsTypical Application Circuitypical Audio Amplifier Application CircuitAbsolute Maximum RatingsChip Limit Parameter TableNameParameterSupply Voltage 6.0V Storage Temperature −65°C to +150°C Input Voltage −0.3V to VDD +0.3VESD Susceptibility 2000VJunction Temperature 150°CThermal ResistanceθJA 210°C/W θJC56°C/WWARNING: In addition to limits or any other conditions, the chip may be damaged.Electrical CharacteristicsThe following specifications apply for V DD =5V and R L =8Ω, unless otherwise specified. Limits apply for TA = 25°C.Electrical Characteristics8002SymbolParameter ConditionsTypical MaxUnits (Limits)V IN =0V,I O =0A, No load 6.510 mA I DD Quiescent Power Supply CurrentV IN =0V,I O =0A, 8load7.0 10 mA I OFF Shutdown Current0.8 2 uA V OS Outpt Offset Voltage5.7 30 mV R O Resistor Output8.5 10 K ΩOutput Power,3ΩLoad THD ≤1%,f=1KHz 2.3 Output Power,4ΩLoad THD ≤1%,f=1KHz 2 Output Power,8ΩLoad THD ≤1%,f=1KHz1.3 WOutput Power,3ΩLoadTHD+N ≤10%,f=1KHz 3 Output Power,4ΩLoad THD+N ≤10%,f=1KHz 2.56 P OOutput Power,8ΩLoadTHD+N ≤10%,f=1KHz 1.8 WT D Wake-up time100 mSTHD+N TotalHarmonicDistortion+Noise20Hz ≤ f ≤ 20kHz, A VD = 2R L = 8Ω, P O = 1W0.2 %PSRR Power Supply Rejection RatioV ripple =200mV sine P-P Input terminated With 10Ω 63(f=217Hz)67(f=1KHz)60 (min)dBPin ConfigurationPin LayoutSOP Package Pin DistributionPin DiscriptionTabl3. Pin DisnriptionPin NO.Pin Name Description1 SD The device enters in shutdown mode when a high level isapplied on this pin2 BYP Bypass capacitor pin which provides the common mode voltage3 +IN Positive input of the first amplifier, receives the common mode voltage4 -IN Negative input of the first amplifier, receives the audio inputsignal5 Vo1 Negative output6 VDD Analog VDD input supply.7 GND Ground connection for circuitry.8 Vo2 Positive outputTypical Characteristics THD, THD+N,S/NPower Supply Rejection Ratio (PSRR)Power DissipationPower Dissipaton vs Output Power,VDD=2.5VOutput PowerApplication InformationBLOCK DIAGRAMThe block diagram of 8002BRIDGE CONFIGURATION EXPLANATIONAs shown in Figure 1, the 8002 has two internal operational amplifiers. The first amplifier’s gain is externally configurable, while the second amplifier is internally fixed in a unity-gain, inverting configuration. The closed-loop gain of the first amplifier is set by selecting the ratio of Rf to Ri whilethe second amplifier’s gain is fixed by the two internal 20kΩ resistors. Figure 1 shows that the output of amplifier one serves as the input to amplifier two which results in both amplifiers producing signals identical in magnitude, but out of phase by 180°. Consequently, the differential gain for the IC isBy driving the load differentially through outputs Vo1 and Vo2, an amplifier configuration commonly referred to as “bridged mode” is established. Bridged mode operation is different from the classical single-ended amplifier configuration where one side of the load is connected to ground.A bridge amplifier design has a few distinct advantages over the single-ended configuration, as it provides differential drive to the load, thus doubling output swing for a specified supply voltage. Four times the output power is possible as compared to a single-ended amplifier under the same conditions. This increase in attainable output power assumes that the amplifier is not current limited or clipped. In order to choose an amplifier’s closed-loop gain without causing excessive clipping, please refer to the Audio Power Amplifier Design section.A bridge configuration, such as the one used in 8002,also creates a second advantage over single-ended amplifiers. Since the differential outputs, Vo1 and Vo2, are biased at half-supply, no net DC voltage exists across the load. This eliminates the need for an output coupling capacitor which is required in a single supply, single-ended amplifier configuration. Without an output coupling capacitor, the half-supply bias across the load would result in both increased internal IC power dissipation and also possible loudspeaker damage.POWER DISSIPATIONPower dissipation is a major concern when designing a successful amplifier, whether the amplifier is bridged or single-ended. A direct consequence of the increased power delivered to the load by a bridge amplifier is an increase in internal power dissipation. Since the 8002 has two operational amplifiers in one package, the maximum internal power dissipation is 4 times that of a single-ended amplifier.The maximum power dissipation for a given application can be derived from the power dissipation graphs or from Equation 1.It is critical that the maximum junction temperature TJMAX of 150°C is not exceeded. TJMAX can be determined from the power derating curves by using PDMAX and the PC board foil area. By adding copper foil, the thermal resistance of the application can be reduced from the free air value of θJA, resulting in higher PDMAX values without thermal shutdown protection circuitry being activated. Additional copper foil can be added to any of the leads connected to the 8002. It is especially effective when connected to VDD, GND, and the output pins. Refer to the application information on the 8002 reference design board for an example of good heat sinking. If TJMAX still exceeds 150°C, thenadditional changes must be made. These changes can include reduced supply voltage, higher load impedance, or reduced ambient temperature. Internal power dissipation is a function of output power. Refer to the Typical Performance Characteristics curves for power dissipation information for different output powers and output loading. POWER SUPPLY BYPASSINGAs with any amplifier, proper supply bypassing is critical for low noise performance and high power supply rejection. The capacitor location on both the bypass and power supply pins should be as close to the device as possible. Typical applications employ a 5V regulator with 10µF tantalum or electrolytic capacitor and a ceramic bypass capacitor which aid in supply stability. This does not eliminate the need for bypassing the supply nodes of the 8002. The selection of a bypass capacitor, especially CB, is dependent upon PSRR requirements, click and pop performance (as explained in the section, Proper Selection of External Components), system cost, and size constraints.SHUTDOWN FUNCTIONIn order to reduce power consumption while not in use, the 8002 contains shutdown circuitry that is used to turn off the amplifier’s bias circuitry. In addition, the 8002 contains a Shutdown Mode pin (LD and MH packages only), allowing the designer to designate whether the part will be driven into shutdown with a high level logic signal or a low level logic signal. This allows the designer maximum flexibility in device use, as the Shutdown Mode pin may simply be tied permanently to either VDD or GND to set the 8002 as either a "shutdown-high" device or a "shutdown-low" device, respectively. The device may then be placed into shutdown mode by toggling the Shutdown pin to the same state as the Shutdown Mode pin. For simplicity’s sake, this is called "shutdown same", as the 8002 enters shutdown mode whenever the two pins are in the same logic state. The MM package lacks this Shutdown Mode feature, and is permanently fixed as a ‘shutdown-low’ device. The trigger point for either shutdown high or shutdown low is shown as a typical value in the Supply Current vs Shutdown Voltage graphs in the Typical Performance Characteristics section. It is best to switch between ground and supply for maximum performance. While the device may be disabled with shutdown voltages in between ground and supply, the idle current may be greater than the typical value of 0.1µA. In either case, the shutdown pin should be tied to a definite voltage to avoid unwanted state changes.In many applications, a microcontroller or microprocessor output is used to control the shutdown circuitry, which provides a quick, smooth transition to shutdown. Another solution is to use a single-throw switch in conjunction with an external pull-up resistor (or pull-down, depending on shutdown high or low application). This scheme guarantees that the shutdown pin will not float, thus preventing unwanted state changes.PROPER SELECTION OF EXTERNAL COMPONENTSProper selection of external components in applications using integrated power amplifiers is critical to optimize device and system performance. While the 8002 is tolerant of external component combinations, consideration to component values must be used to maximize overall system quality. The 8002 is unity-gain stable which gives the designer maximum system flexibility. The 8002 should be used in low gain configurations to minimize THD+N+N values, and maximize the signal to noise ratio. Low gain configurations require large input signals to obtain a given output power. Input signals equal to or greater than 1Vrms are available from sources such as audio codecs. Please refer to the section, AudioPower Amplifier Design, for a more complete explanation of proper gain selection. Besides gain, one of the major considerations is the closedloop bandwidth of the amplifier. To a large extent, the bandwidth is dictated by the choice of external components shown in Figure 1. The input coupling capacitor, Ci, forms a first order high pass filter which limits low frequency response. This value should be chosen based on needed frequency response for a few distinct reasons.Selection of Input Capacitor SizeLarge input capacitors are both expensive and space hungry for portable designs. Clearly, a certain sized capacitor is needed to couple in low frequencies without severe attenuation. But in many cases the speakers used in portable systems, whether internal or external, have little ability to reproduce signals below 100Hz to 150Hz. Thus, using a large input capacitor may not increase actual system performance .In addition to system cost and size, click and pop performance is effected by the size of the input coupling capacitor, Ci. A larger input coupling capacitor requires more charge to reach its quiescent DC voltage (nominally 1/2 VDD). This charge comes from the output via the feedback and is apt to create pops upon device enable. Thus, by minimizing the capacitor size based on necessary low frequency response, turn-on pops can be minimized.Besides minimizing the input capacitor size, careful consideration should be paid to the bypass capacitor value. Bypass capacitor, CB, is the most critical component to minimize turn-on pops since it determines how fast the 8002 turns on. The slower the 8002’s outputs ramp to their quiescent DC voltage (nominally 1/2 VDD), the smaller the turn-on pop. Choosing CB equal to 1.0µF along with a small value of Ci (in the range of 0.1µF to 0.39µF), should produce a virtually clickless and popless shutdown function. While the device will function properly, (no oscillations or motorboating), with CB equal to 0.1µF, the device will be much more susceptible to turn-on clicks and pops. Thus, a value of CB equal to 1.0µF is recommended in all but the most cost sensitive designs.AUDIO POWER AMPLIFIER DESIGNA 1W/8Ω Audio Amplifier Given:Power OutputLoad ImpedanceInput LevelInput ImpedanceBandwidthA designer must first determine the minimum supply rail to obtain the specified output power. By extrapolating from the Output Power vs Supply Voltage graphs in the Typical Performance Characteristics section, the supply rail can be easily found.5V is a standard voltage in most applications, it is chosen for the supply rail. Extra supply voltage creates headroom that allows the 8002 to reproduce peaks in excess of 1W without producing audible distortion. At this time, the designer must make sure that the power supply choice along with the output impedance does not violate the conditions explained in the Power Dissipation section.1Wrms8Ω1Vrms20k Ω100Hz–20kHz ± 0.25dBOnce the power dissipation equations have been addressed, the required differential gain can be determined from Equation 2.From Equation 2, the minimum AVD is 2.83; use A VD = 3.Since the desired input impedance was 20kΩ, and with a A VD impedance of 2, a ratio of 1.5:1 of Rf to Ri results in an allocation of Ri = 20kΩ and Rf = 30kΩ. The final design step is to address the bandwidth requirements which must be stated as a pair of −3dB frequency points. Five times away from a −3dB point is 0.17dB down from passband response which is better than the required ±0.25dB specified.As stated in the External Components section, Ri in conjunction with Ci create a highpass filter.Use 0.39uf.The high frequency pole is determined by the product of the desired frequency pole, fH, and the differential gain, A VD. With a A VD = 3 and fH = 100kHz, the resulting GBWP = 300kHz which is much smaller than the 8002 GBWP of 2.5MHz. This figure displays that if a designer has a need to design an amplifier with a higher differential gain, the 8002 can still be used without running into bandwidth limitations.Physical Size of Chip PackageThe Package of SOP-8Dimensions In Millimeters Dimensions In Inches Symbol Min Max MinMax A 1.350 1.750 0.053 0.069 A 1 0.100 0.250 0.004 0.010 A 2 1.350 1.55 0.053 0.061 b 0.330 0.510 0.013 0.020 c 0.170 0.250 0.006 0.010 D 4.700 5.100 0.185 0.200 E 3.800 4.000 0.150 0.157 E1 5.800 6.2000.2280.244e 1.270(BSC) 0.050(BSC)L 0.400 1.270 0.016 0.050 θ0° 8°0° 8°。

相关文档
最新文档