培优专题二:与三角形有关的角
三角形培优专题 - 参考答案

《三角形培优专题》参考答案【例题讲解】例题1.已知等腰三角形的周长为24,试求腰长x 的取值范围和底边长y 的取值范围.【解答】解:依题意有2x +y = 24 ;对于腰长,有:y < 2x < 24 ,即:24 - 2x < 2x < 24 ,解得:6 <x < 12 ;对于底长,有:0 <y < 2x ,即:0 <y < 24 -y ,解得:0 <y < 12 .故腰长x 的取值范围是 6 <x < 12 ,底边长y 的取值范围是0 <y < 12 .例题2.如图,已知∠B =∠C =∠BAD ,∠ADC =∠DAC ,AE ⊥BC ,求∠DAE 的度数.【解答】解: ∠ADC =∠B +∠BAD ,∠B =∠C =∠BAD ,∠ADC =∠DAC ,∴∠B +∠C +∠BAD +∠DAC = 180︒,∴ 5∠B = 180︒,解得∠B = 36︒,∴∠ADC = 72︒.AE ⊥BC ,∴∠DAE = 90︒-∠ADE = 90︒- 72︒= 18︒.例题3.(1)如图1,这是一个五角星ABCDE,你能计算出∠A+∠B+∠C+∠D+∠E的度数吗?为什么?(必须写推理过程)(2)如图2,如果点B 向右移动到AC 上,那么还能求出∠A +∠DBE +∠C +∠D +∠E 的大小吗?若能结果是多少?(可不写推理过程)(3)如图,当点 B 向右移动到AC 的另一侧时,上面的结论还成立吗?(4)如图4,当点B 、E 移动到∠CAD 的内部时,结论又如何?根据图3 或图4,说明你计算的理由.【解答】解:(1)如图,由三角形的外角性质,∠A+∠C=∠1,∠B+∠D=∠2,∠1 +∠2 +∠E = 180︒,∴∠A +∠B +∠C +∠D +∠E = 180︒;(2)如图,由三角形的外角性质,∠A +∠D =∠1 ,∠1 +∠DBE +∠C +∠E = 180︒,∴∠A +∠DBE +∠C +∠D +∠E = 180︒;(3)如图,由三角形的外角性质,∠A +∠C =∠1,∠B +∠D =∠2 ,∠1 +∠2 +∠E = 180︒,∴∠A +∠B +∠C +∠D +∠E = 180︒;(4)如图,延长CE 与AD 相交,由三角形的外角性质,∠A +∠C =∠1,∠B +∠E =∠2 , ∠1 +∠2 +∠D = 180︒,∴∠A +∠B +∠C +∠D +∠E = 180︒.例题4.Rt∆ABC 中,∠C = 90︒,点D 、E 分别是∆ABC 边AC 、BC 上的点,点P 是一动点.令∠PDA =∠1,∠PEB =∠2 ,∠DPE =∠α.(1)若点 P 在线段 AB 上,如图(1)所示,且∠α= 50︒,则∠1 +∠2 =140 ︒;(2)若点P 在边AB 上运动,如图(2)所示,则∠α、∠1、∠2 之间有何关系?(3)若点P 在Rt∆ABC 斜边BA 的延长线上运动(CE <CD) ,则∠α、∠1、∠2 之间有何关系?猜想并说明理由.【解答】解:(1)如图,连接PC ,由三角形的外角性质,∠1 =∠PCD +∠CPD ,∠2 =∠PCE +∠CPE ,∴∠1+∠2 =∠PCD +∠CPD +∠PCE +∠CPE =∠DPE +∠C ,∠DPE =∠α= 50︒,∠C = 90︒,∴∠1+∠2 = 50︒+ 90︒=140︒,故答案为:140︒;(2)连接PC ,由三角形的外角性质,∠1 =∠PCD +∠CPD ,∠2 =∠PCE +∠CPE ,∴∠1+∠2 =∠PCD +∠CPD +∠PCE +∠CPE =∠DPE +∠C ,∠C = 90︒,∠DPE =∠α,∴∠1+∠2 = 90︒+∠α;(3)如图1,由三角形的外角性质,∠2 =∠C +∠1+∠α,∴∠2 -∠1 = 90︒+∠α;如图2,∠α= 0︒,∠2 =∠1+ 90︒;如图3,∠2 =∠1-∠α+∠C ,∴∠1-∠2 =∠α- 90︒.例题 5.如图 1,在 ∆ABC 中, BE 平分∠ABC ,CE 平分∠ACB ,若∠A = 82︒,则∠BEC = 131︒;若∠A =a︒,则∠BEC = .【探究】(1)如图2,在∆ABC 中,B D ,B E 三等分∠ABC ,CD ,CE 三等分∠ACB ,若∠A =a︒,则∠BEC = ;(2)如图3,O 是∠ABC 与外角∠ACD 的平分线BO 和CO 的交点,试分析∠BOC 和∠A 有怎样的关系?请说明理由;(3)如图4,O 是外角∠DBC 与外角∠BCE 的平分线BO 和CO 的交点,则∠BOC 与∠A 有怎样的关系?请说明理由.【解答】解: ∠A = 82︒,∴∠ABC +∠ACB = 180︒-∠A = 180︒- 82︒= 98︒, BE 平分∠ABC ,CE 平分∠ACB ,∴∠EBC =1∠ABC ,∠ECB =1∠ACB ,2 2∴∠EBC +∠ECB =1(∠ABC +∠ACB) =1⨯ 98︒= 49︒,2 2∴∠BEC = 180︒- (∠EBC +∠ECB) = 180︒- 49︒= 131︒;由三角形的内角和定理得,∠ABC +∠ACB = 180︒-∠A = 180︒-a︒, BE 平分∠ABC ,CE 平分∠ACB ,∴∠EBC =1∠ABC ,∠ECB =1∠ACB ,2 2∴∠EBC +∠ECB =1(∠ABC +∠ACB) =1⨯ (180︒-a︒) = 90︒-1a︒,2 2 2∴∠BEC = 180︒- (∠EBC +∠ECB) = 180︒- (90︒-1a︒) = 90︒+1a︒;2 2故答案为:131︒,90︒+1a︒;2探究:(1)由三角形的内角和定理得,∠ABC+∠ACB=180︒-∠A=180︒-a︒, BD ,BE 三等分∠ABC ,CD ,CE 三等分∠ACB ,∴∠EBC =2∠ABC ,∠ECB =2∠ACB ,3 3∴∠EBC +∠ECB =2(∠ABC +∠ACB) =2⨯ (180︒-a︒) = 120︒-2a︒,3 3 3∴∠BEC = 180︒- (∠EBC +∠ECB) = 180︒- (120︒-2a︒) = 60︒+2a︒;3 3故答案为:60︒+2a︒;3(2)∠BOC =1∠A .2理由如下:由三角形的外角性质得,∠ACD =∠A +∠ABC ,∠OCD =∠BOC +∠OBC ,O 是∠ABC 与外角∠ACD 的平分线BO 和CO 的交点,∴∠ABC = 2∠OBC ,∠ACD = 2∠OCD ,∴∠A +∠ABC = 2(∠BOC +∠OBC ) ,∴∠A = 2∠BOC ,∴∠BOC =1∠A ;2(3)∠BOC = 90︒-1∠A .2理由如下: O 是外角∠DBC 与外角∠BCE 的平分线BO 和CO 的交点,∴∠OBC =1(180︒-∠ABC) = 90︒-1∠ABC ,∠OCB =1(180︒-∠ACB) = 90︒-1∠ACB ,2 2 2 2在∆OBC 中,∠BOC =180︒-∠OBC -∠OCB =180︒- (90︒-1∠ABC) - (90︒-1∠ACB) =1(∠ABC +∠ACB) 2 2 2,由三角形的内角和定理得,∠ABC +∠ACB = 180︒-∠A ,∴∠BOC =1(180︒-∠A) = 90︒-1∠A .2 2【巩固练习】1.已知线段AB = 3cm ,BC =1cm ,则线段AC 的长度为( )A .一定是4cmB .一定是2cmC .一定是2cm 或4cmD .以上都不对【解答】选:D.2.如图,∠ABC =∠ACB ,AD ,BD ,CD 分别平分∆ABC 的外角∠EAC 、内角∠ABC 、外角∠ACF .以下结论:①AD / / B C ;②∠ACB = 2∠ADB ;③DB 平分∠ADC ;④∠ADC = 90︒-∠ABD ;⑤∠BDC =1∠BAC .其中正确的结论有( ) 2A.1 个B.2 个C.3 个D.4 个【解答】解: AD 平分∠EAC ,∴∠EAC = 2∠EAD ,∠EAC =∠ABC +∠ACB ,∠ABC =∠ACB ,∴∠EAD =∠ABC ,∴AD / / BC ,∴①正确;AD / / BC ,∴∠ADB =∠DBC ,BD 平分∠ABC ,∠ABC =∠ACB ,∴∠ABC =∠ACB = 2∠DBC ,∴∠ACB = 2∠ADB ,∴②正确;BD 平分∠ABC ,∴∠ABD =∠DBC ,∠ADB =∠DBC ,∠ADC = 90︒-1∠ABC ,2∴∠ADB 不等于∠CDB ,∴③错误; AD 平分∠EAC ,CD 平分∠ACF ,∴∠DAC =1∠EAC ,∠DCA =1∠ACF ,2 2∠EAC =∠ACB +∠ACB ,∠ACF =∠ABC +∠BAC ,∠ABC +∠ACB +∠BAC = 180︒,∴∠ADC = 180︒- (∠DAC +∠ACD)= 180︒-1(∠EAC +∠ACF ) 2= 180︒-1(∠ABC +∠ACB +∠ABC +∠BAC) 2= 180︒-1(180︒+∠ABC) 2= 90︒-1∠ABC ,∴④正确;2∠BDC =∠DCF -∠DBF =1∠ACF -1∠ABC =1∠BAC ,∴⑤正确,2 2 2故选:D .3.如图,要使六边形木架(用六根木条钉成)不变形,至少要再钉上木条的根数是( )A .1B .2C .3D .4【解答】解:过六边形的一个顶点作对角线,有6 - 3 = 3 条对角线, 所以至少要钉上 3 根木条. 故选: C .4.如图,在 ∆ABC 中, ∠ABC 的平分线与 ∠ACD 的平分线交于点 A 1 , ∠A 1BC 的平分线与∠A CD 的平分线交于点 A ,依此类推 .已知∠A = α,则∠A 的度数为α(用含12n 、α的代数式表示).n2n【解答】解: ∆ABC 中, ∠A = ∠ACD - ∠ABC , A 1 是 ∠ABC 角平分与 ∠ACD 的平分线的交点, ∠A = α,∴∠A = ∠A CD - ∠A BC = 1 (∠ACD - ∠ABC ) = 1∠A ;1 1 12 2同理可得, ∠A = 1 ∠A = 1∠A ,22 1 22∠A = 1 ∠A = 1∠A , 32 2 23依此类推, ∠A = 1∠A ,即∠A = α .n 2n 故答案为: α.2nn2n5.如图,线段 AB 、CP 相交于点O ,连接 AD 、CB , ∠DAB 、∠BCD 的平分线 AP 、CP 相交于点 P ,并且为CD 、 AB 分别相交于 M 、N 两点,若∠D = 40︒ ,∠B = 30︒ ,则∠P 的度数为 35︒ .【解答】解:在∆AOD 中,∠AOD =180︒-∠OAD -∠D ,在∆BOC 中,∠BOC = 180︒-∠B -∠OCB ,∠AOD=∠BOC(对顶角相等),∴180︒-∠OAD -∠D = 180︒-∠B -∠OCB ,∴∠OAD +∠D =∠B +∠OCB ,∠D = 40︒,∠B = 30︒,∴∠OAD + 40︒=∠OCB + 30︒,∴∠OCB -∠OAD = 10︒,AP 、CP 分别是∠DAB 和∠BCD 的角平分线,∴∠1 =1∠OAD ,∠3 =1∠OCB ,2 2又 ∠1 +∠D =∠3 +∠P ,∴∠P =∠1 +∠D -∠3 =1(∠OAD -∠OCB) +∠D =1⨯ (-10︒) + 40︒= 35︒.2 2故答案为:35︒.6.在∆ABC 中,AB =AC ,AC 边上的中线BD 把三角形ABC 的周长分为9cm 和12cm 的两部分,求三角形各边的长.【解答】解:根据题意画出图形,如图,设等腰三角形的腰长AB =AC = 2x ,BC =y ,BD 是腰上的中线,∴AD =DC =x ,若AB +AD 的长为12,则2x +x = 12 ,解得x = 4cm ,则x +y = 9 ,即 4 +y = 9 ,解得y = 5cm ;若AB +AD 的长为9,则2x +x = 9 ,解得x = 3cm ,则x +y = 12 ,即3 +y = 12 ,解得y = 9cm ;所以等腰三角形的腰长为8 厘米,底边长为 5 厘米.或腰长为6cm ,底长为9cm .7.已知a,b,c 是△ABC 的三边长,a=4,b=6,设三角形的周长是x.(1)直接写出c 及x 的取值范围;(2)若x 是小于18 的偶数①求c 的长;②判断△ABC 的形状.【解答】解:(1)因为a=4,b=6,所以2<c<10.故周长x 的范围为12<x<20.(2)①因为周长为小于18 的偶数,所以x=16 或x=14.当x 为16 时,c=6;当x 为14 时,c=4.②当c=6 时,b=c,△ABC 为等腰三角形;当c=4 时,a=c,△ABC 为等腰三角形.综上,△ABC 是等腰三角形.8.如图,四边形ABCD 中,BE 、CF 分别是∠B 、∠D 的平分线.且∠A =∠C = 90︒,试猜想BE 与DF 有何位置关系?请说明理由.【解答】解:BE / / DF ,理由是: 四边形内角和等于360︒,∠A =∠C = 90︒,∴∠ABC +∠ADC = 180︒,BE 、CF 分别是∠B 、∠D 的平分线,∴∠1 =1∠ABC ,∠2 =1∠ADC ,2 2∴∠1 +∠2 = 90︒,在Rt∆DCF 中,∠3 +∠2 = 90︒,∴∠1 =∠3 ,∴BE / / DF .9.如图,∆ABC 中,三条内角平分线AD 、BE 、CF 相交于点O ,OG ⊥BC 于点G .(1)若∠ABC = 40︒,∠BAC = 60︒,求∠BOD 和∠COG 的度数.(2)若∠ABC =α,∠BAC =β,则∠BOD 和∠COG 相等吗?请说明理由.【解答】解:(1)∠BOD=∠OAB+∠OBA=1∠BAC +1∠ABC = 50︒2 2∠COG = 90︒-∠OCG= 90︒-1(180︒-∠ABC -∠BAC) 2= 90︒- 40︒= 50︒;(2)∠BOD 和∠COG相等. 理由: ∠BOD =∠OAB +∠OBA=1∠BAC +1∠ABC 2 2=1(α+β) 2=1(180︒-∠ACB) 2= 90︒-1∠ACB 2= 90︒-∠OCG =∠COG .10.如图1 ,在∆ABC 中,∠B = 90︒,分别作其内角∠ACB 与外角∠DAC 的平分线,且两条角平分线所在的直线交于点 E .(1)∠E = 45 ︒;(2)分别作∠EAB 与∠ECB 的平分线,且两条角平分线交于点F .①依题意在图1 中补全图形;②求∠AFC 的度数;(3)在(2)的条件下,射线FM 在∠AFC 的内部且∠AFM =1∠AFC ,设3EC 与AB 的交点为H ,射线HN 在∠AHC 的内部且∠AHN =1∠AHC ,射线3HN 与 FM 交于点 P ,若∠FAH ,∠FPH 和∠FCH 满足的数量关系为∠FCH =m∠FAH +n∠FPH ,请直接写出m ,n 的值.【解答】解:(1)如图 1 , EA平分∠DAC ,EC 平分∠ACB ,∴∠CAF =1∠DAC ,∠ACE =1∠ACB ,2 2设∠CAF =x ,∠ACE =y ,∠B = 90︒,∴∠ACB +∠BAC = 90︒,∴ 2 y +180 - 2x = 90,x -y = 45,∠CAF =∠E +∠ACE ,∴∠E =∠CAF -∠ACE =x -y = 45︒,故答案为: 45 ;(2)①如图 2 所示,②如图 2 , CF 平分∠ECB ,∴∠ECF = 1 y , 2∠E + ∠EAF = ∠F + ∠ECF ,∴ 45︒ + ∠EAF = ∠F + 1 y ①, 2同理可得: ∠E + ∠EAB = ∠B + ∠ECB , ∴ 45︒ + 2∠EAF = 90︒ + y ,∴∠EAF = 45 + y ②,2把②代入①得: 45︒ + 45 + y = ∠F + 1 y ,2 2∴∠F = 67.5︒,即∠AFC = 67.5︒ ;(3) 如图 3 ,设∠FAH =α,AF 平分∠EAB ,∴∠FAH = ∠EAF =α,∠AFM = 1∠AFC = 1⨯ 67.5︒ = 22.5︒ ,3 3 ∠E + ∠EAF = ∠AFC + ∠FCH ,∴45 +α= 67.5 + ∠FCH ,∴∠FCH =α- 22.5①,∠AHN = 1 ∠AHC = 1 (∠B + ∠BCH ) = 1 (90 + 2∠FCH ) = 30 + 2∠FCH , 3 3 3 3 ∠FAH + ∠AFM = ∠AHN + ∠FPH ,∴α+ 22.5 = 30 + 2∠FCH + ∠FPH ,②3 把①代入②得: ∠FPH = α+ 22.5 ,3∠FCH = m ∠FAH+ n ∠FPH ,α- 22.5 = m α+ n α+ 22.5 ,3解得: m = 2 , n = -3.。
2020年八年级数学上册 与三角形有关的角 培优卷(含答案)

22.△ABC中,三个内角的平分线交于点O,过点O作OD⊥OB,交边BC于点D.
18.如图,将△ABC 三个角分别沿 DE、HG、EF 翻折,三个顶点均落在点 O 处,则∠1+∠2 的度 数为 °.
三、解答题 19.已知在△ABC 中,∠A:∠B:∠C=2:3:4,CD 是∠ACB 平分线,求∠A 和∠CDB 的度数.
20.如图,∠ABC=38°,∠ACB=100°,AD平分∠BAC,AE是BC边上的高,求∠DAE度数.
研究(3):若折成图 3 的形状,猜想∠BDA′、∠CEA′和∠A的关系,并说明理由.
参考答案 1.B 2.B. 3.C. 4.A. 5.D 6.D 7.C 8.C 9.C 10.D 11.答案为:B. 12.B 13.答案为:20. 14.答案为:25° 15.答案为:6,与它不相邻的两个内角,3600 16.答案为:130 17.答案为:10°. 18.答案为:180°. 19.解:∵在△ABC 中,∠A:∠B:∠C=2:3:4,∠A+∠ACB+∠B=180°,
C.一定是直角三角形
D.一定是钝角三角形
5.如图所示,∠CGE=α,则∠A+∠B+∠C+∠D+∠E+∠F 等于( ).
A.360°-∠A B.270°-∠α
C.180°+∠α D.2∠α
6.如图,Rt△ABC 中,∠ACB=90°,∠A= 50°,将其折叠,使点 A 落在边 CB 上 A′处,折痕为
全等三角形问题培优

全等三角形问题培优在初中数学学习中,全等三角形是一个很重要的概念。
全等三角形指的是具有相等边长和相等内角的两个三角形。
在解决问题时,我们常常要运用全等三角形的性质。
本文将从这一角度出发,介绍全等三角形问题的培优方法。
一、全等三角形的定义和性质全等三角形是指具有相等边长和相等内角的两个三角形。
在解决问题时,我们可以利用全等三角形的性质来简化计算过程和证明过程。
1. 边边边(SSS)全等条件:如果两个三角形的三边分别相等,则这两个三角形全等。
2. 边角边(SAS)全等条件:如果两个三角形的一个边和其夹角分别相等,并且另一边也相等,则这两个三角形全等。
3. 角边角(ASA)全等条件:如果两个三角形的两个角和夹在两个角之间的边分别相等,则这两个三角形全等。
利用这些全等条件,我们可以在解决问题过程中找到相应的全等三角形,从而得出答案。
二、全等三角形的应用1. 边长和角度比较在问题中,经常会出现两个或多个三角形的边长或内角需要进行比较的情况。
利用全等三角形的性质,我们不需要逐一计算每个边长或者每个内角的数值,只需要通过观察边长和角度的关系,找到全等三角形,就可以简化计算过程。
例如,已知三角形ABC和三角形DEF的三个内角分别相等,我们可以得出这两个三角形全等。
如果已知三角形ABC的一条边的长度为a,而三角形DEF的相应边的长度为b,那么我们就可以直接得出三角形DEF的边长与a的比较结果。
2. 证明问题在几何证明中,全等三角形是常常被用到的工具。
通过找到一个或多个全等三角形,我们可以得到所求证的结论。
例如,我们需要证明两条线段相等,可以通过构造两个全等三角形,使得所求线段等于全等三角形中的某条边。
然后,利用全等三角形的性质,我们可以得到所求线段等于另一条边,从而得到所需要证明的结论。
3. 问题求解在解决具体问题时,全等三角形也是一个很有用的工具。
通过观察问题中的几何关系,我们可以找到并利用全等三角形来简化问题的求解过程。
第二节 与三角形有关的角-学而思培优

第二节与三角形有关的角-学而思培优第二节与三角形有关的角本节主要讲解三角形内角和定理、三角形外角和定理以及它们的应用。
同时,介绍了一些几何模型和思想方法,帮助学生更好地理解和掌握这些知识点。
1.三角形内角和定理及其应用三角形内角和定理指出,三角形三个内角的和是180度。
这个定理在解决三角形相关问题时非常有用,可以用来求解未知角度,证明角之间的关系等。
2.三角形的外角三角形的外角是指三角形一边与另一边的延长线组成的角。
它有一些重要的性质,例如一个外角等于与它不相邻的两个内角之和,一个外角大于与它不相邻的任何一个内角。
此外,三角形外角和定理指出,三角形外角和是360度。
这些性质和定理可以用来求解未知角度,证明角之间的关系等。
3.几何模型在研究三角形内角和定理和三角形外角和定理时,可以使用一些几何模型来帮助理解和记忆。
例如,“小旗”模型、“飞镖”模型、“8”字模型和角平分线相关模型等。
4.思想方法在解决三角形相关问题时,可以使用分类讨论、方程思想等思想方法,帮助学生更好地理解和解决问题。
基础演练1.若副三角板按图11-2-1所示方式叠放在一起,则图中角α的度数是65度。
2.在△ABC中,若∠XXX∠C=∠XXX,∠A=∠ABD,则∠A的度数为72度。
3.已知等腰三角形的一个内角为40度,则这个等腰三角形的顶角为100度。
4.(1) 在△ABC中,若∠A:∠B:∠C=2:3:4,则∠A=40度,∠B=60度,∠C=80度。
2) 在△ABC中,若∠A=∠B=11,则∠C=58度。
3) 若三角形的三个外角的比是2:3:4,则这个三角形按角分是锐角三角形。
5.已知如图11-2-3所示,CE⊥AB于点E,AD⊥BC于点D,∠A=30度,则∠C的度数为150度。
6.已知如图11-2-4所示,一轮船在海上往东行驶,在A处测得灯塔C位于XXX60度,在B处测得灯塔C位于XXX25度,则∠ACB=95度。
7.已知如图11-2-5所示,∠XXX∠E+∠F,则∠A+∠B+∠C+∠D的度数为360度。
初二-第02讲-直角三角形(培优)-教案

学科教师辅导讲义学员编号:年级:八年级(下)课时数:3学员姓名:辅导科目:数学学科教师:授课主题第02讲-直角三角形授课类型T同步课堂P实战演练S归纳总结教学目标①掌握直角三角形的性质与判定方法;②进一步掌握推理证明的方法,培养演绎推理能力;授课日期及时段T(Textbook-Based)——同步课堂一、知识梳理1、直角三角形的性质和判定方法定理:直角三角形的两个锐角互余。
定理:有两个角互余的三角形是直角三角形。
2、勾股定理勾股定理:直角三角形两条直角边的平方和等于斜边的平方。
3、勾股定理的逆定理如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
4、逆命题、逆定理互逆命题:在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个体系搭建命题称为互逆命题,其中一个命题称为另一个命题的逆命题。
互逆定理:如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,其中一个定理称为另一个定理的逆命题。
5、斜边、直角边定理定理:斜边和一条直角边分别相等的两个直角三角形全等。
简述为“斜边、直角边定理”或“HL”定理。
考点一:直角三角形全等的判定例1、在如图中,AB=AC,BE⊥AC于E,CF⊥AB于F,BE、CF交于点D,则下列结论中不正确的是()A.△ABE≌△ACF B.点D在∠BAC的平分线上C.△BDF≌△CDE D.点D是BE的中点【解析】选D.例2、如图,AB=12,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动4分钟后△CAP与△PQB全等.【解析】∵CA⊥AB于A,DB⊥AB于B,∴∠A=∠B=90°,设运动x分钟后△CAP与△PQB全等;则BP=xm,BQ=2xm,则AP=(12﹣x)m,分两种情况:①若BP=AC,则x=4,AP=12﹣4=8,BQ=8,AP=BQ,∴△CAP≌△PBQ;②若BP=AP,则12﹣x=x,解得:x=6,BQ=12≠AC,此时△CAP与△PQB不全等;综上所述:运动4分钟后△CAP与△PQB全等;故答案为:4.例3、如图,∠A=∠B=90°,E是AB上的一点,且AE=BC,∠1=∠2.(1)Rt△ADE与Rt△BEC全等吗?并说明理由;(2)△CDE是不是直角三角形?并说明理由.【解析】(1)全等,理由是:∵∠1=∠2,∴DE=CE,∵∠A=∠B=90°,AE=BC,∴Rt△ADE≌Rt△BEC;P(Practice-Oriented)——实战演练实战演练➢课堂狙击1、下列条件中,能判定两个直角三角形全等的是()A.一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条直角边对应相等【解析】选:D.2、如图,若要用“HL”证明Rt△ABC≌Rt△ABD,则还需补充条件()A.∠BAC=∠BAD B.AC=AD或BC=BDC.AC=AD且BC=BD D.以上都不正确【解析】从图中可知AB为Rt△ABC和Rt△ABD的斜边,也是公共边.跟据“HL”定理,证明Rt△ABC≌Rt△ABD,还需补充一对直角边相等,即AC=AD或BC=BD,故选B.3、如图,BD平分∠ABC,CD⊥BD,D为垂足,∠C=55°,则∠ABC的度数是()A.35°B.55°C.60°D.70°【解析】∵CD⊥BD,∠C=55°,∴∠CBD=90°﹣55°=35°,∵BD平分∠ABC,∴∠ABC=2∠CBD=2×35°=70°.故选D.4、如图,△ABC中,CD⊥AB于D,且E是AC的中点.若AD=6,DE=5,则CD的长等于()A.5 B.6C.7 D.8【解析】∵△ABC中,CD⊥AB于D,∴∠ADC=90°.∵E是AC的中点,DE=5,∴AC=2DE=10.∵AD=6,∴CD===8.故选D.5、如图,AC⊥BC,AD⊥DB,要使△ABC≌△BAD,还需添加条件AC=BD或BC=AD或∠DAB=∠CBA或∠CAB=∠DBA.(只需写出符合条件一种情况)【解析】∵AC⊥BC,AD⊥DB,∴∠C=∠D=90°∵AB为公共边,要使△ABC≌△BAD∴添加AC=BD或BC=AD或∠DAB=∠CBA或∠CAB=∠DBA后可分别根据HL、HL、AAS、AAS判定△ABC≌△BAD.6、如图,已知点P是射线ON上一动点(即P可在射线ON上运动),∠AON=30°,当∠A=60°或90°时,△AOP为直角三角形.【解析】若∠APO是直角,则∠A=90°﹣∠AON=90°﹣30°=60°,若∠APO是锐角,∵∠AON=30°是锐角,∴∠A=90°,综上所述,∠A=60°或90°.故答案为:60°或90°.7、如图,在直角三角形ABC中,斜边上的中线CD=AC,则∠B等于30°.【解析】∵CD是斜边AB上的中线,∴CD=AD,又CD=AC,∴△ADC是等边三角形,∴∠A=60°,∴∠B=90°﹣∠A=30°.故答案为:30°.8、底角为30°,腰长为a的等腰三角形的面积是a2.【解析】如图,过点A作AD⊥BC于D,∵△ABC是等腰三角形,∴BC=2BD,∵底角∠B=30°,∴AD=AB=a,由勾股定理得,BD==a,∴BC=2BD=a,∴三角形的面积=×a×a=a2.故答案为a2.9、如图,在△ACB中,∠ACB=90゜,CD⊥AB于D.(1)求证:∠ACD=∠B;(2)若AF平分∠CAB分别交CD、BC于E、F,求证:∠CEF=∠CFE.【解析】证明:(1)∵∠ACB=90゜,CD⊥AB于D,∴∠ACD+∠BCD=90°,∠B+∠BCD=90°,∴∠ACD=∠B;(2)在Rt△AFC中,∠CFA=90°﹣∠CAF,同理在Rt△AED中,∠AED=90°﹣∠DAE.又∵AF平分∠CAB,∴∠CAF=∠DAE,∴∠AED=∠CFE,又∵∠CEF=∠AED,∴∠CEF=∠CFE.10、已知:如图,在△ABC中,AB=AC=2,∠B=15°.过点C作CD⊥BA,交BA的延长线于点D,求△ACD的周长.【解析】如图,在△ABC中,AB=AC=2,∠B=15°,∴∠B=∠ACB=15°,∴∠DAC=2∠B=30°.又∵CD⊥BA,∴CD=AC=1,∴根据勾股定理得到AD==,∴△ACD的周长=AD+CD+AC=+1+2=+3.答:△ACD的周长是+3.➢课后反击1、要判定两个直角三角形全等,下列说法正确的有()①有两条直角边对应相等;②有两个锐角对应相等;③有斜边和一条直角边对应相等;④有一条直角边和一个锐角相等;⑤有斜边和一个锐角对应相等;⑥有两条边相等.A.6个B.5个C.4个D.3个【解析】故选B2、如图,O是∠BAC内一点,且点O到AB,AC的距离OE=OF,则△AEO≌△AFO的依据是()A.HL B.AASC.SSS D.ASA【解析】∵OE⊥AB,OF⊥AC,∴∠AEO=∠AFO=90°,又∵OE=OF,AO为公共边,∴△AEO≌△AFO.故选A.3、直角三角形两个锐角平分线相交所成的钝角的度数为()A.90°B.135°C.120°D.45°或135°【解析】如图:∵AE、BD是直角三角形中两锐角平分线,∴∠OAB+∠OBA=90°÷2=45°,两角平分线组成的角有两个:∠BOE与∠EOD这两个角互补,根据三角形外角和定理,∠BOE=∠OAB+∠OBA=45°,∴∠EOD=180°﹣45°=135°,故选B.4、如图,在Rt△ABC中,∠ACB=90°,∠A=60°,过点C的直线与AB交于点D,且将△ABC的面积分成相等的两部分,则∠CDA=()A.30°B.45°C.60°D.75°【解析】如图,∵在Rt△ABC中,∠ACB=90°,∠A=60°,∴AC=AB,又∵过点C的直线与AB交于点D,且将△ABC的面积分成相等的两部分,∴AD=BD∴AC=AD,∵∠A=60°,∴△ADC是等边三角形,∴∠CDA=60°.5、如图,△ABC中,AB=AC=10,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则DE 的长为()A.10 B.6C.8 D.5【解析】∵AB=AC=10,AD平分∠BAC,∴BD=DC,∵E为AC的中点,∴DE=AB=×10=5,故选D.6、如图,已知AB⊥CD,垂足为B,BC=BE,若直接应用“HL”判定△ABC≌△DBE,则需要添加的一个条件是AC=DE.【解析】AC=DE,理由是:∵AB⊥DC,∴∠ABC=∠DBE=90°,在Rt△ABC和Rt△DBE中,,∴Rt△ABC≌Rt△DBE(HL).故答案为:AC=DE.7、如图,在Rt△ABC中,∠ACB=90°,将边BC沿斜边上的中线CD折叠到CB′,若∠B=50°,则∠ACB′= 10°.【解析】∵∠ACB=90°,∠B=50°,∴∠A=40°,∵∠ACB=90°,CD是斜边上的中线,∴CD=BD,CD=AD,∴∠BCD=∠B=50°,∠DCA=∠A=40°,由翻折变换的性质可知,∠B′CD=∠BCD=50°,∴∠ACB′=∠B′CD﹣∠DCA=10°,故答案为:10°.8、如图,在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线ED交AB于点E,交BC于点D,若CD=3,则BD的长为6.【解析】∵DE是AB的垂直平分线,∴AD=BD,∴∠DAE=∠B=30°,∴∠ADC=60°,∴∠CAD=30°,∴AD为∠BAC的角平分线,∵∠C=90°,DE⊥AB,∴DE=CD=3,∵∠B=30°,∴BD=2DE=6,故答案为:6.9、如图所示,AB⊥BC,DC⊥AC,垂足分别为B,C,过D点作BC的垂线交BC于F,交AC于E,AB=EC,试判断AC和ED的长度有什么关系并说明理由.【解析】AC=ED,理由如下:∵AB⊥BC,DC⊥AC,ED⊥BC,∴∠B=∠EFC=∠DCE=90°.∴∠A+∠ACB=90°,∠CEF+∠ACB=90°.∴∠A=∠CEF.在△ABC和△ECD中,∴△ABC≌△ECD(ASA).∴AC=ED(全等三角形的对应边相等).10、在直角△ABC中,∠ACB=90°,∠B=30°,CD⊥AB于D,CE是△ABC的角平分线.(1)求∠DCE的度数.(2)若∠CEF=135°,求证:EF∥BC.【解析】∵∠B=30°,CD⊥AB于D,∴∠DCB=90°﹣∠B=60°.S(Summary-Embedded)——归纳总结重点回顾1、直角三角形的性质和判定方法定理:直角三角形的两个锐角互余。
8年级(下)培优课程【2】不等式含参问题、三角形的综合

【2】不等式含参问题、三角形的综合考点一:根据不等式的解集情况求参数例1、若关于x的一元一次不等式组有三个整数解,则m的取值范围是.变式1:若关于x的一元一次不等式组的解集为x>3,那么a的取值范围是.变式2:关于x的不等式组的解集中至少有5个整数解,则正数a的最小值是.考点二:“新定义”在不等式中应用求参数例2、新定义:对非负数x“四舍五入“到个位的值记为<x>,即当n为非负数时,若n﹣≤x<n+,则<x>=n.例如<0>=<0.49>=0,<0.5>=<1.49>=1,<2>=2,<3.5>=<4.23>=4,…试回答下列问题:(1)填空:①<9.6>=;②如果<x>=2,实数x的取值范围是.(2)若关于x的不等式组的整数解恰有4个,求<m>的值;(3)求满足<x>=x的所有非负实数x的值.变式1:.阅读下列材料解答问题:新定义:对非负数x“四舍五入”到个位的值记为<x>,即:当n为非负整数时,如果n﹣≤x<n+,则<x>=n;反之,当n为非负整数时,如果<x>=n,则n﹣≤x<n+.例如:<0.1>=<0.49>=0,<1.51>=<2.48>=2,<3>=3,<4.5>=<5.25>=5,…试解决下列问题:(1)①<π+2.4>=(π为圆周率);②如果<x﹣1>=2,则数x的取值范围为;(2)求出满足<x>=x﹣1的x的取值范围.变式2:若一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.例如:方程2x﹣6=0的解为x=3,不等式组的解集为2<x<5,因为2<3<5,所以方程2x﹣6=0为不等式组的关联方程.(1)在方程①5x﹣3=0,②x﹣3=0中,不等式组的关联方程是.(填序号);(2)若不等式组的一个关联方程的根是整数,则这个关联方程可以是.(写出一个即可);(3)若方程x=2与x=3都是关于x的不等式组的关联方程,求m的取值范围.考点三:与三角形有关的性质及计算1例3、已知等腰三角形的一腰上的高与底边的夹角为40度,那么它的顶角为.变式1:已知等腰三角形的一个内角为50°,则顶角为度.变式2:等腰三角形中有一个内角是70°,则另外两个内角的度数分别为.变式3:如图,在底边BC为2,腰AB为2的等腰三角形ABC中,DE垂直平分AB于点D,交BC于点E,则△ACE的周长.变式4:如图,△ABC中,D是AB的中点,DE⊥AB,∠ACE+∠BCE=180°,EF⊥AC交AC 于F,AC=12,BC=8,则AF=.变式5:如图,△ABC中,AB=AC,AD⊥BC于D点,DE⊥AB于点E,BF⊥AC于点F,DE =3cm,则BF=cm.变式6:如图,在四边形ABCD中,∠ABC=∠ADC=90°,AC=26,BD=24,M、N分别是AC、BD的中点,则线段MN的长为.考点四:与三角形有关的最值问题例4、如图,已知点P是∠AOB角平分线上的一点,∠AOB=60°,PD⊥OA,M是OP的中点,DM=4cm,如果点C是OB上一个动点,则PC的最小值为cm.例5、如图,在锐角三角形ABC中,AB=4,△ABC的面积为10,BD平分∠ABC,若M、N 分别是BD、BC上的动点,则CM+MN的最小值为.例6、如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB 上的动点,∠AOB=30°,则△PMN周长的最小值=.变式1:如图,P是∠AOB的角平分线上的一点,∠AOB=60°,PD⊥OA,M是OP的中点,点C是OB上的一个动点,若PC的最小值为3cm,则MD的长度为cm.变式2:如图,点M是∠AOB平分线上一点,∠AOB=60°,ME⊥OA于E,OE=,如果P是OB上一动点,则线段MP的取值范围是.变式3:如图,∠AOB=30°,点M、N分别是射线OB、OA上的动点,点P为∠AOB内一点,且OP=8,则△PMN的周长的最小值=.变式4:如图,在四边形ABCD中,∠DAB=130°,∠D=∠B=90°,点M,N分别是CD,BC上两个动点,当△AMN的周长最小时,∠AMN+∠ANM的度数为.变式5:如图,在△ABC中,∠C=90°,AC=4,BC=2,点A、C分别在x轴、y轴上,当点A在x轴上运动时,点C随之在y轴上运动,在运动过程中,点B到原点的最大距离是.考点五:与三角形有关的证明及计算例7、(1)如图1,已知△ABC,以AB,AC为边向△ABC外做等边△ABD和等边△ACE,连接BE,CD,求证:BE=CD;(2)如图2,已知△ABC,以AB,AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE与CD有什么数量关系?简单说明理由;(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=60米,AC=AE,求BE的长.变式1:(1)问题发现:如图1,△ABC和△DCE均为等边三角形,当△DCA应转至点A,D,E在同一直线上,连接BE,易证△BCE≌△ACD,则①∠BEC=;②线段AD,BE之间的数量关系;(2)拓展研究:如图2,△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=90°,点A,D,E在同一直线上,若AE=12,DE=7,求AB的长度;(3)如图3,P为等边三角形ABC内一点,且∠APC=150°,∠APD=30°,AP=4,CP =3,DP=7,求BD的长.变式2:如图1,在等边△ABC 中,线段AM 为BC 边上的中线,动点D 在直线AM (点D 与点A 重合除外)上时,以CD 为一边且在CD 的下方作等边△CDE ,连接BE . (1)判断AD 与BE 是否相等,请说明理由;(2)如图2,若AB =8,点P 、Q 两点在直线BE 上且CP =CQ =5,试求PQ 的长;(3)在第(2)小题的条件下,当点D 在线段AM 的延长线(或反向延长线)上时.判断PQ 的长是否为定值,若是请直接写出PQ 的长;若不是请简单说明理由.考点五:一次函数综合 如图,直线l 1的解析表达式为112y x =+,且l 1与x 轴交于点D ,直线l 2经过点A 4,0)(、B (1,5)-,直线l 1与l 2交于点C . (1)求直线l 2的函数关系式; (2)求△ADC 的面积;(3)在直线l 2上是否存在一点P ,使得△CDP 的面积为6?若存在,请求出点P 的坐标;若不存在,请说明理由。
【能力培优】与三角形有关的角(含答案)

11.2与三角形有关的角专题一利用三角形的内角和求角度1.如图,在△ABC中,∠ABC的平分线与∠ACB的外角平分线相交于D点,∠A=50°,则∠D=()A.15° B.20° C.25° D.30°2.如图,已知:在直角△ABC中,∠C=90°,BD平分∠ABC且交AC于D. 若AP平分∠BAC且交BD于P,求∠BPA的度数.3.已知:如图1,线段AB、CD相交于点O,连接AD、CB,如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:__________;(2)在图2中,若∠D=40°,∠B=30°,试求∠P的度数;(写出解答过程)(3)如果图2中∠D和∠B为任意角,其他条件不变,试写出∠P与∠D、∠B之间的数量关系.(直接写出结论即可)专题二利用三角形外角的性质解决问题4.如图,∠ABD,∠ACD的角平分线交于点P,若∠A=50°,∠D=10°,则∠P的度数为()A.15°B.20° C.25° D.30°5.如图,△ABC中,CD是∠ACB的角平分线,CE是AB边上的高,若∠A=40°,∠B=72°.(1)求∠DCE的度数;(2)试写出∠DCE与∠A、∠B的之间的关系式.(不必证明)6.如图:(1)求证:∠BDC=∠A+∠B+∠C;(2)如果点D与点A分别在线段BC的两侧,猜想∠BDC、∠A、∠ABD、∠ACD这4个角之间有怎样的关系,并证明你的结论.状元笔记【知识要点】1.三角形内角和定理三角形三个内角的和等于180°.2.直角三角形的性质及判定性质:直角三角形的两个锐角互余.判定:有两个角互余的三角形是直角三角形.3.三角形的外角及性质外角:三角形的一边与另一边的延长线组成的角,叫做三角形的外角.性质:三角形的外角等于与它不相邻的两个内角的和.【温馨提示】1.三角形的外角是一边与另一边的延长线组成的角,而不是两边延长线组成的角.2.三角形的外角的性质中的内角一定是与外角不相邻的内角.【方法技巧】1.在直角三角形中已知一个锐角求另一个锐角时,可直接使用“直角三角形的两个锐角互余”.2.由三角形的外角的性质可得出:三角形的外角大于任何一个与它不相邻的内角.参考答案:1.C解析:∵∠ABC的平分线与∠ACB的外角平分线相交于点D,∴∠1=12∠ACE,∠2=12∠ABC.又∵∠D=∠1-∠2,∠A=∠ACE-∠ABC,∴∠D=12∠A=25°.故选C.2.解:(法1)因为∠C=90°,所以∠BAC+∠ABC=90°,所以12(∠BAC+∠ABC)=45°.因为BD平分∠ABC,AP平分∠BAC ,∠BAP=12∠BAC,∠ABP=12∠ABC ,即∠BAP+∠ABP=45°,所以∠APB=180°-45°=135°.(法2)因为∠C=90°,所以∠BAC+∠ABC=90°,所以12(∠BAC+∠ABC)=45°,因为BD平分∠ABC,AP平分∠BAC,∠DBC=12∠ABC,∠PAC=12∠BAC ,所以∠DBC+∠PAD=45°.所以∠APB=∠PDA+∠PAD =∠DBC+∠C+∠PAD=∠DBC+∠PAD+∠C =45°+90°=135°.3.解:(1)∠A+∠D=∠B+∠C;(2)由(1)得,∠1+∠D=∠3+∠P,∠2+∠P=∠4+∠B,∴∠1-∠3=∠P-∠D,∠2-∠4=∠B-∠P,又∵AP、CP分别平分∠DAB和∠BCD,∴∠1=∠2,∠3=∠4,∴∠P-∠D=∠B-∠P,即2∠P=∠B+∠D,∴∠P=(40°+30°)÷2=35°.(3)2∠P=∠B+∠D.4.B 解析:延长DC,与AB交于点E.根据三角形的外角等于不相邻的两内角和,可得∠ACD=50°+∠AEC=50°+∠ABD+10°,整理得∠ACD-∠ABD=60°.设AC与BP相交于点O,则∠AOB=∠POC,∴∠P+12∠ACD=∠A+12∠ABD,即∠P=50°-12(∠ACD-∠ABD)=20°.故选B.5.解:(1)∵∠A=40°,∠B=72°,∴∠ACB=68°.∵CD平分∠ACB,6.(1)证明:延长BD交AC于点E,∵∠BEC是△ABE的外角,∴∠BEC=∠A+∠B.∵∠BDC是△CED的外角,∴∠BDC=∠C+∠DEC=∠C+∠A+∠B.(2)猜想:∠BDC+∠ACD+∠A+∠ABD=360°.祝福语祝你考试成功!。
与三角形有关的角培优知识讲解

与三角形有关的角(培优)知识讲解【学习目标】1.理解三角形内角和定理的证明方法;2.掌握三角形内角和定理及三角形的外角性质;3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.小学初中高中各科视频讲义汇总小学初中高中 Word汇总同步培优竞赛三轮复习一些书籍Word 还可以订做你需要Word联系我 468453607 微信t442546597【要点梳理】要点一、三角形的内角1. 三角形内角和定理:三角形的内角和为180°.要点诠释:应用三角形内角和定理可以解决以下三类问题:①在三角形中已知任意两个角的度数可以求出第三个角的度数;②已知三角形三个内角的关系,可以求出其内角的度数;③求一个三角形中各角之间的关系.2. 直角三角形:如果一个三角形是直角三角形,那么这个三角形有两个角互余.反过来,有两个角互余的三角形是直角三角形.要点诠释:如果直角三角形中有一个锐角为45°,那么这个直角三角形的另一个锐角也是45°,且此直角三角形是等腰直角三角形.要点二、三角形的外角1.定义:三角形的一边与另一边的延长线组成的角叫做三角形的外角.如图,∠ACD是△ABC的一个外角.要点诠释:(1)外角的特征:①顶点在三角形的一个顶点上;②一条边是三角形的一边;③另一条边是三角形某条边的延长线.(2)三角形每个顶点处有两个外角,它们是对顶角.所以三角形共有六个外角,通常每个顶点处取一个外角,因此,我们常说三角形有三个外角.2.性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.要点诠释:三角形内角和定理和三角形外角的性质是求角度及与角有关的推理论证明经常使用的理论依据.另外,在证角的不等关系时也常想到外角的性质.3.三角形的外角和:三角形的外角和等于360°.要点诠释:因为三角形的每个外角与它相邻的内角是邻补角,由三角形的内角和是180°,可推出三角形的三个外角和是360°.【典型例题】类型一、三角形的内角和1.在△ABC中,若∠A=12∠B=13∠C,试判断该三角形的形状.【思路点拨】由∠A=12∠B=13∠C,以及∠A+∠B+∠C=180°,可求出∠A、∠B和∠C的度数,从而判断三角形的形状.【答案与解析】解:设∠A=x,则∠B=2x,∠C=3x.由于∠A+∠B+∠C=180°,即有x+2x+3x=180°.解得x=30°.故∠A=30°.∠B=60°,∠C=90°.故△ABC是直角三角形.【总结升华】本题利用设未知数的方法求出三角形三个内角的度数,解法较为巧妙.举一反三:【变式1】三角形中至少有一个角不小于________度.【答案】60.【变式2】(2015春•新沂市校级月考)如图,BE、CF都是△ABC的角平分线,且∠BDC=110°,则∠A= .【答案】40°.解:∵BE、CF都是△ABC的角平分线,∴∠A=180°﹣(∠ABC+∠ACB),=180°﹣2(∠DBC+∠BCD)∵∠BDC=180°﹣(∠DBC+∠BCD),∴∠A=180°﹣2(180°﹣∠BDC)∴∠BDC=90°+∠A,∴∠A=2(110°﹣90°)=40°.2.在△ABC中,∠ABC=∠C,BD是AC边上的高,∠ABD=30°,则∠C的度数是多少?【思路点拨】按△ABC为锐角三角形和钝角三角形两种情况,分类讨论.【答案与解析】解:分两种情况讨论:(1)当△ABC为锐角三角形时,如图所示,在△ABD中,∵ BD是AC边上的高(已知),∴∠ADB=90°(垂直定义).又∵∠ABD=30°(已知),∴∠A=180°-∠ADB-∠ABD=180°-90°-30°=60°.又∵∠A+∠ABC+∠C=180°(三角形内角和定理),∴∠ABC+∠C=120°,又∵∠ABC=∠C,∴∠C=60°.(2)当△ABC为钝角三角形时,如图所示.在直角△ABD中,∵∠ABD=30°(已知),所以∠BAD=60°.∴∠BAC=120°.又∵∠BAC+∠ABC+∠C=180°(三角形内角和定理),∴∠ABC+∠C=60°.∴∠C=30°.综上,∠C的度数为60°或30°.【总结升华】在解决无图的几何题的过程中,只有正确作出图形才能解决问题.这就要求解答者必须具备根据条件作出图形的能力;要注意考虑图形的完整性和其他各种可能性,双解和多解问题也是我们在学习过程中应该注意的一个重要环节.类型二、三角形的外角【高清课堂:与三角形有关的角例4、】3.如图,在△ABC中,AE⊥BC于E,AD为∠BAC的平分线,∠B=50º,∠C=70º,求∠DAE .【答案与解析】解:∠A=180°-∠B-∠C=180°-50°-70°=60°,又AD为∠BAC的平分线,所以∠BAD=12BAC=30°,∠ADE=∠B+∠BAD=50º+30°=80°,又 AE⊥BC于E ,所以∠DAE=90°-∠ADE=90°-80°=10°.举一反三:【变式】如图,在△ABC 中,AB >AC ,AE ⊥BC 于E ,AD 为∠BAC 的平分线,则∠DAE 与∠C -∠B 的数量关系 .【答案】2C BDAE ∠-∠∠=.4.如图所示,已知CE 是△ABC 外角∠ACD 的平分线,CE 交BA 延长线于点E.求证: ∠BAC >∠B.【答案与解析】证明:在△ACE 中,∠BAC >∠1(三角形的一个外角大于与它不相邻的任何一个内角).同理在△BCE 中,∠2 >∠B , 因为∠1=∠2,所以∠BAC >∠B.【总结升华】涉及角的不等关系的问题时,经常用到三角形外角性质:“三角形的一个外角大于与它不相邻的任何一个内角”. 举一反三:【变式】如图所示,用“<”把∠1、∠2、∠A 联系起来________.【答案】∠A <∠2 <∠1. 类型三、三角形的内角外角综合5.(2015春•启东市校级月考)如图,BE 与CD 相交于点A ,CF 为∠BCD 的平分线,EF 为∠BED 的平分线. (1)试探求:∠F 与∠B 、∠D 之间的关系? (2)若∠B :∠D :∠F=2:4:x .求x 的值.【思路点拨】(1)先根据角平分线的定义得到∠1=∠2,∠3=∠4,再根据对顶角相等和三角形内角和定理得到∠D+∠1=∠F+∠3,∠B+∠4=∠F+∠2,然后把两式相加即可得到∠F 与∠B 、∠D 之间的关系;(2)设∠B=2a ,则∠D=4a ,∠F=ax ,利用(1)中的结论得到2ax=2a+4a ,然后解关于x 的方程即可. 【答案与解析】解:(1)∵CF为∠BCD的平分线,EF为∠BED的平分线,∴∠1=∠2,∠3=∠4,∵∠D+∠1=∠F+∠3,∠B+∠4=∠F+∠2,∴∠B+∠D+∠1+∠4=2∠F+∠3+∠2,∴∠F=(∠B+∠D);(2)当∠B:∠D:∠F=2:4:x时,设∠B=2a,则∠D=4a,∠F=ax,∵2∠F=∠B+∠D,∴2ax=2a+4a∴2x=2+4,∴x=3.【总结升华】本题考查了三角形内角和定理:通过三角形内角和为180°列等量关系.也考查了角平分线的定义.举一反三:【变式1】如图所示,五角星ABCDE中,试说明∠A+∠B+∠C+∠D+∠E=180°.【答案】解:因为∠AGF是△GCE的外角,所以∠AGF=∠C+∠E.同理∠AFG=∠B+∠D.在△AFG中,∠A+∠AFG+∠AGF=180°.所以∠A+∠B+∠C+∠D+∠E=180°.【变式2】一个三角形的外角中,最多有锐角( ).A.1个 B.2个 C.3个 D.不能确定【答案】A (提示:由于三角形最多有一个内角是钝角,故最多有一个外角是锐角.)与三角形有关的角(提高)巩固练习【巩固练习】一、选择题1. (湖北荆州)如图所示,一根直尺EF压在三角板30.的角∠BAC上,与两边AC,AB交于M,N.那么∠CME+∠BNF是( ) A.150° B.180° C.135° D.不能确定2.若一个三角形的三个内角互不相等,则它的最小角必小于 ( )A.30° B.45° C.60° D.55°3.下列语句中,正确的是( )A.三角形的外角大于任何一个内角B.三角形的外角等于这个三角形的两个内角之和C.三角形的外角中,至少有两个钝角D.三角形的外角中,至少有一个钝角4.如果一个三角形的两个外角之和为270°,那么这个三角形是 ( )A.锐角三角形 B.直角三角形 C.钝角三角形 D.无法确定5.如图,已知AB∥CD,则 ( )A.∠1=∠2+∠3 B.∠1=2∠2+∠3C.∠1=2∠2-∠3 D.∠1=180°-∠2-∠36.(2015春•泰山区期中)如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A+∠P=()A.70°B.80°C.90°D.100°二、填空题7.在△ABC中,若∠A-2∠B=70°,2∠C-∠B=10°,则∠C=________.8.如图,在△ABC中,∠ABC、∠ACB的平分线相交于点O.(1)若∠A=76°,则∠BOC=________;(2)若∠BOC=120°,则∠A=_______;(3)∠A与∠BOC之间具有的数量关系是_______.9. 已知等腰三角形的一个外角等于100°,则它的底角等于________.10.(河南)将一副直角三角板如图所示放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为________.11.(2015春•龙口市期中)如图,已知△ABC中,∠ABC的平分线与∠ACE的平分线交于点D,若∠A=50°,则∠D= 度.12.如图,O是△ABC外一点,OB,OC分别平分△ABC的外角∠CBE,∠BCF.若∠A=n°,则∠BOC=(用含n的代数式表示).三、解答题13.如图,求证:∠A+∠B+∠C+∠D+∠E=180°.14.(2015春•扬州校级期中)如图①,△ABC的角平分线BD、CE相交于点P.(1)如果∠A=80°,求∠BPC的度数;(2)如图②,过P点作直线MN,分别交AB和AC于点M和N,且MN平行于BC,则有∠MPB+∠NPC=90°﹣∠A.若将直线MN绕点P旋转,(ⅰ)如图③,试探索∠MPB、∠NPC、∠A三者之间的数量关系是否依然成立,并说明理由;(ⅱ)当直线MN与AB的交点仍在线段AB上,而与AC的交点在AC的延长线上时,如图④,试问(ⅰ)中∠MPB、∠NPC、∠A三者之间的数量关系是否仍然成立?若不成立,请给出∠MPB、∠NPC、∠A三者之间的数量关系,并说明你的理由.15.如图,在△ABC中,∠ABC的平分线与外角∠ACE的平分线交于点D.试说明12D A ∠=∠.16.如图所示,在△ABC中,∠1=∠2,∠C>∠B,E为AD上一点,且EF⊥BC于F.(1)试探索∠DEF与∠B,∠C的大小关系;(2)如图(2)所示,当点E在AD的延长线上时,其余条件都不变,你在(1)中探索到的结论是否还成立?【答案与解析】一、选择题1. 【答案】A【解析】(1)由∠A=30°,可得∠AMN+∠ANM=180°-30°=150°又∵∠CME=∠AMN,∠BNF=∠ANM,故有∠CME+∠BNF=150°.2. 【答案】C;【解析】假如三角形的最小角不小于60°,则必有大于或等于60°的,因为该三角形三个内角互不相等,所以另外两个非最小角一定大于60°,此时,该三角形的三个内角和必大于180°,这与三角形的内角和定理矛盾,故假设不可能成立,即它的最小角必小于60°.3. 【答案】C ;【解析】因为三角形的内角中最多有一个钝角,所以外角中最多有一个锐角,即外角中至少有两个钝角.4. 【答案】B;【解析】因为三角形的外角和360°,而两个外角的和为270°,所以必有一个外角为90°,所以有一个内有为90°.5. 【答案】A;6. 【答案】C;【解析】解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∵∠ABP=20°,∠ACP=50°,∴∠ABC=2∠ABP=40°,∠ACM=2∠ACP=100°,∴∠A=∠ACM﹣∠ABC=60°,∠ACB=180°﹣∠ACM=80°,∴∠BCP=∠ACB+∠ACP=130°,∵∠BPC=20°,∴∠P=180°﹣∠PBC﹣∠BCP=30°,∴∠A+∠P=90°,故选C.二、填空题7. 【答案】20;【解析】联立方程组:A-2B=702C-10180BA B C∠∠︒⎧⎪∠∠=︒⎨⎪∠+∠+∠=︒⎩,解得20C∠=︒.8.【答案】128°, 60°,∠BOC =90°+12∠A ; 9. 【答案】80°或50°;【解析】100°的补角为80°,(1)80°为三角形的顶角;(2)80°为三角形底角时,则三角形顶角为20°. 10.【答案】75°; 11.【答案】25°;【解析】解:∵∠ACE=∠A+∠ABC ,∴∠ACD+∠ECD=∠A+∠ABD+∠DBE ,∠DCE=∠D+∠DBC , 又BD 平分∠ABC ,CD 平分∠ACE , ∴∠ABD=∠DBE ,∠ACD=∠ECD , ∴∠A=2(∠DCE ﹣∠DBC ),∠D=∠DCE ﹣∠DBC , ∴∠A=2∠D , ∵∠A=50°, ∴∠D=25°. 故答案为:25.12.【答案】190n ︒-︒;∴∠COB=180°-[(180)2n n ︒+︒-︒]=1902n ︒-︒.三、解答题13.【解析】解:延长BE ,交AC 于点H,易得∠BFC=∠A+∠B+∠C 再由∠EFC=∠D+∠E , 上式两边分别相加,得:∠A+∠B+∠C +∠D+∠E =∠BFC +∠EFC =180°. 即∠A+∠B+∠C+∠D+∠E=180° 14.【解析】 解:(1)如图①∵在△ABC 中,∠A+∠B+∠ACB=180°,且∠A=80°,∴∠ABC+∠ACB=100°,∵∠1=∠ABC ,∠2=∠ACB ,∴∠1+∠2=(∠ABC+∠ACB )=×100°=50°,∴∠BPC=180°﹣(∠1+∠2)=180°﹣50°=130°.(2)(ⅰ)如图③,由(1)知:∠BPC=180°﹣(∠1+∠2); ∵∠1+∠2=(180°﹣∠A )=90°∠A ,∴∠BPC=180°﹣(90°﹣∠A )=90°+∠A ;∴∠MPB+∠NP C=180°﹣∠BPC=180°﹣(90°+∠A )=90°﹣∠A . (ⅱ)不成立,∠MPB ﹣∠NPC=90°﹣∠A .如图④,由(ⅰ)知:∠BPC=90°+∠A,∴∠MPB﹣∠NPC=180°﹣∠BPC=180°﹣(90°+∠A)=90°﹣∠A.15.【解析】解:∠D=∠4-∠2=12(∠ACE-∠ABC)=12∠A,∴∠D=12∠A.16.【解析】解: (1)∵∠1=∠2,∴∠1=12∠BAC.又∵∠BAC=180°-(∠B+∠C),∴∠1=12[180°-(∠B+∠C)]=90°-12(∠B+∠C).∴∠EDF=∠B+∠1=∠B+90°-12(∠B+∠C)=90°+12(∠B-∠C).又∵ EF⊥BC,∴∠EFD=90°.∴∠DEF=90°-∠EDF=90°-[90°+12(∠B-∠C)]=12(∠C-∠B).(2)当点E在AD的延长线上时,其余条件都不变,(1)中探索所得的结论仍成立.与三角形有关的角(基础)知识讲解【学习目标】1.理解三角形内角和定理的证明方法;2.掌握三角形内角和定理及三角形的外角性质;3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.【要点梳理】要点一、三角形的内角1. 三角形内角和定理:三角形的内角和为180°.要点诠释:应用三角形内角和定理可以解决以下三类问题:①在三角形中已知任意两个角的度数可以求出第三个角的度数;②已知三角形三个内角的关系,可以求出其内角的度数;③求一个三角形中各角之间的关系.2. 直角三角形:如果一个三角形是直角三角形,那么这个三角形有两个角互余.反过来,有两个角互余的三角形是直角三角形.要点诠释:如果直角三角形中有一个锐角为45°,那么这个直角三角形的另一个锐角也是45°,且此直角三角形是等腰直角三角形.要点二、三角形的外角1.定义:三角形的一边与另一边的延长线组成的角叫做三角形的外角.如图,∠ACD是△ABC的一个外角.要点诠释:(1)外角的特征:①顶点在三角形的一个顶点上;②一条边是三角形的一边;③另一条边是三角形某条边的延长线.(2)三角形每个顶点处有两个外角,它们是对顶角.所以三角形共有六个外角,通常每个顶点处取一个外角,因此,我们常说三角形有三个外角.2.性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.要点诠释:三角形内角和定理和三角形外角的性质是求角度及与角有关的推理论证明经常使用的理论依据.另外,在证角的不等关系时也常想到外角的性质.3.三角形的外角和:三角形的外角和等于360°.要点诠释:因为三角形的每个外角与它相邻的内角是邻补角,由三角形的内角和是180°,可推出三角形的三个外角和是360°.【典型例题】类型一、三角形的内角和1.证明:三角形的内角和为180°.【答案与解析】解:已知:如图,已知△ABC,求证:∠A+∠B+∠C=180°.证法1:如图1所示,延长BC到E,作CD∥AB.因为AB∥CD(已作),所以∠1=∠A(两直线平行,内错角相等),∠B=∠2(两直线平行,同位角相等).又∠ACB+∠1+∠2=180°(平角定义),所以∠ACB+∠A+∠B=180°(等量代换).证法2:如图2所示,在BC 边上任取一点D ,作DE ∥AB ,交AC 于E ,DF ∥AC ,交AB 于点F .因为DF ∥AC (已作),所以∠1=∠C (两直线平行,同位角相等), ∠2=∠DEC (两直线平行,内错角相等). 因为DE ∥AB (已作).所以∠3=∠B ,∠DEC=∠A (两直线平行,同位角相等). 所以∠A=∠2(等量代换).又∠1+∠2+∠3=180°(平角定义), 所以∠A+∠B+∠C=180°(等量代换).证法3:如图3所示,过A 点任作直线1l ,过B 点作2l ∥1l ,过C 点作3l ∥1l , 因为1l ∥3l (已作).所以∠l=∠2(两直线平行,内错角相等). 同理∠3=∠4.又1l ∥2l (已作),所以∠5+∠1+∠6+∠4=180°(两直线平行,同旁内角互补). 所以∠5+∠2+∠6+∠3=180°(等量代换). 又∠2+∠3=∠ACB ,所以∠BAC+∠ABC+∠ACB=180°(等量代换).证法4:如图4,将ΔABC 的三个内角剪下,拼成以C 为顶点的平角.证法5:如图5-1和图5-2,在图5-1中作∠1=∠A,得CD∥AB,有∠2=∠B;在图5-2中过A作MN∥BC有∠1=∠B,∠2=∠C,进而将三个内角拼成平角.【总结升华】三角形内角和定理的证明方法有很多种,无论哪种证明方法,都是应用的平行线的性质.2.在△ABC中,已知∠A+∠B=80°,∠C=2∠B,试求∠A,∠B和∠C的度数.【思路点拨】题中给出两个条件:∠A+∠B=80°,∠C=2∠B,再根据三角形的内角和等于180°,即∠A+∠B+∠C=180°就可以求出∠A,∠B和∠C的度数.【答案与解析】解:由∠A+∠B=80°及∠A+∠B+∠C=180°,知∠C=100°.又∵∠C=2∠B,∴∠B=50°.∴∠A=80°-∠B=80°-50°=30°.【总结升华】解答本题的关键是利用隐含条件∠A+∠B+∠C=180°.本题可以设∠B=x,则∠A=80°-x,∠C=2x建立方程求解.举一反三:【变式】(2015春•安岳县期末)如图,在△ABC中,∠A=50°,E是△ABC内一点,∠BEC=150°,∠ABE的平分线与∠ACE 的平分线相交于点D,则∠BDC的度数为多少?【答案】100°.解:∵△ABC中∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,∵△BCE中∠E=150°,∴∠EBC+∠ECB=180°﹣150°=30°,∴∠ABE+∠ACE=130°﹣30°=100°,∵∠ABE的平分线与∠ACE的平分线相交于点D,∴∠DBE+∠DCE=(∠ABE+∠ACE)=×100°=50°,∴∠DBE+∠DCE=(∠DBE+∠DCE)+(∠EBC+∠ECB)=50°+30°=80°,∴∠BDC=180°﹣80°=100°.类型二、三角形的外角【高清课堂:与三角形有关的角例2、】3.(1)如图,AB和CD交于点O,求证:∠A+∠C=∠B+∠D .(2)如图,求证:∠D=∠A+∠B +∠C.【答案与解析】解:(1)如图,在△AOC中,∠COB是一个外角,由外角的性质可得:∠COB=∠A+∠C,同理,在△BOD中,∠COB=∠B+∠D,所以∠A+∠C=∠B+∠D.(2)如图,延长线段BD交线段于点E,在△ABE中,∠BEC=∠A+∠B ①;在△DCE中,∠BDC=∠BEC+∠C ②,将①代入②得,∠BDC=∠A+∠B+∠C,即得证.【总结升华】重要结论:(1)“8”字形图:∠A+∠C=∠B+∠D;(2)“燕尾形图”:∠D=∠A+∠B +∠C.举一反三:【变式1】(新疆建设兵团)如图,AB∥CD,AD和BC相交于点O,∠A=40°,∠AOB=75°,则∠C等于().A、40°B、65°C、75°D、115°【答案】B.【变式2】如图,在△ABC中,∠A=70°,BO,CO分别平分∠ABC和∠ACB,则∠BOC的度数为 .【答案】125°.类型三、三角形的内角外角综合4.(2015春•江阴市校级月考)已知如图∠xOy=90°,BE是∠ABy的平分线,BE的反向延长线与∠OAB的平分线相交于点C,当点A,B分别在射线Ox,Oy上移动时,试问∠ACB的大小是否发生变化?如果保持不变,请说明理由;如果随点A,B的移动而变化,请求出变化范围.【思路点拨】根据角平分线的定义、三角形的内角和、外角性质求解.【答案与解析】解:∠C的大小保持不变.理由:∵∠ABY=90°+∠OAB,AC平分∠OAB,BE平分∠ABY,∴∠ABE=∠ABY=(90°+∠OAB)=45°+∠OAB,即∠ABE=45°+∠CAB,又∵∠ABE=∠C+∠CAB,∴∠C=45°,故∠ACB的大小不发生变化,且始终保持45°.【总结升华】本题考查的是三角形内角与外角的关系,掌握“三角形的内角和是180°”是解决问题的关键.举一反三:【变式】如图所示,已知△ABC中,P为内角平分线AD、BE、CF的交点,过点P作PG⊥BC于G,试说明∠BPD与∠CPG 的大小关系并说明理由.【答案】解:∠BPD=∠CPG.理由如下:∵ AD、BE、CF分别是∠BAC、∠ABC、∠ACB的角平分线,∴∠1=12∠ABC,∠2=12∠BAC,∠3=12∠ACB.∴∠1+∠2+∠3=12(∠ABC+∠BAC+∠ACB)=90°.又∵∠4=∠1+∠2,∴∠4+∠3=90°.又∵ PG⊥BC,∴∠3+∠5=90°.∴∠4=∠5,即∠BPD=∠CPG.与三角形有关的角(基础)巩固练习【巩固练习】一、选择题1.已知在△ABC中有两个角的大小分别为40°和70°,则这个三角形是( ).A.直角三角形 B.等边三角形C.钝角三角形 D.等腰三角形2.若△ABC的∠A=60°,且∠B:∠C=2:1,那么∠B的度数为( ).A.40° B.80° C.60° D.120°3.(云南昆明)如图所示,在△ABC中,CD是∠ACB的平分线,∠A=80°,∠ACB=60°,那么∠BDC=( ).A.80° B.90° C.100° D.110°4.(2015•绵阳)如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=()A.118°B.119°C.120°D.121°5.(山东济宁)若一个三角形三个内角度数的比为2:3:4,那么这个三角形是( ).A.直角三角形 B.锐角三角形 C.钝角三角形 D.等边三角形6.(山东菏泽)一次数学活动课上,小聪将一幅三角板按图中方式叠放.则∠α等于( ).A.30° B.45° C.60° D.75°二、填空题7.如图,AD⊥BC,垂足是点D,若∠A=32°,∠B=40°,则∠C=_______,∠BFD=_______,∠AEF=________.8.在△ABC中,∠A+∠B=∠C,则∠C=_______.9.根据如图所示角的度数,求出其中∠α的度数.10.如图所示,飞机要从A地飞往B地,因受大风影响,一开始就偏离航线(AB)38°(即∠A=38°),飞到了C地.已知∠ABC=20°,现在飞机要到达B地,则飞机需以_______的角飞行(即∠BCD的度数).11.如图,有_______个三角形,∠1是________的外角,∠ADB是________的外角.12.(2014春•通川区校级期末)如图中,∠B=36°,∠C=76°,AD、AF分别是△ABC的角平分线和高,则∠DAF=度.三、解答题13.如图,求∠1+∠2+∠3+∠4的度数.14.已知:如图所示,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.15.(2015春•石家庄期末)已知△ABC中,AE平分∠BAC,(1)如图1,若AD⊥BC于点D,∠B=72°,∠C=36°,求∠DAE的度数;(2)如图2,P为AE上一个动点(P不与A、E重合,PF⊥BC于点F,若∠B>∠C,则∠EPF=是否成立,并说明理由.16.如图是李师傅设计的一块模板,设计要求BA与CD相交成20°角,DA与CB相交成40°角,现测得∠B=75°,∠C=85°,∠D=55°.能否判定模板是否合格,为什么?【答案与解析】一、选择题1. 【答案】D.2. 【答案】B;【解析】设∠B=2x°,则∠C=x°,由三角形的内角和定理可得,2x°+x°+60°=180°,解得x°=40°,∠B=2x°=80°.3. 【答案】D.4. 【答案】C;【解析】解:∵∠A=60°,∴∠ABC+∠ACB=120°,∵BE,CD是∠B、∠C的平分线,∴∠CBE=∠ABC,∠BCD=,∴∠CBE+∠BCD=(∠ABC+∠BCA)=60°,∴∠BFC=180°﹣60°=120°,故选:C.5. 【答案】B;【解析】先求出三角形的三个内角度数,再判断三角形的形状.6. 【答案】D;【解析】利用平行线的性质及三角形的外角性质进行解答.二、填空题7. 【答案】58°,50°,98°;【解析】在Rt△ADC中,∠A=32°,∠C=58°;在Rt△BDF中,∠B=40°,∠BFD=50°;在△BEC,∠AEF=∠B+∠C=98°.8. 【答案】90°.9. 【答案】 (1)48°; (2)27°; (3)85°;【解析】充分利用:(1)“8”字形图:∠A+∠C=∠B+∠D;(2)“燕尾形图”:∠D=∠A+∠B +∠C.10.【答案】58°.11.【答案】8,△DBC,△ADE;【解析】考查三角形外角的定义.12.【答案】20;【解析】解:∵∠B=36°,∠C=76°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣36°﹣76°=68°,∵AD是∠BAC的平分线,∴∠BAD=×68°=34°,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD=36°+34°=70°,∵AF⊥BC,∴∠AFD=90°,∴∠DAF=180°﹣∠ADC﹣∠AFD=180°﹣70°﹣90°=20°.三、解答题13.【解析】解:连接AD,在△ADC中,∠1+∠CAD+∠CDA=180°,在△ABD中,∠3+∠BAD+∠BDA=180°.∴∠1+∠2+∠3+∠4=∠1+∠CAD+∠BAD+∠3+∠CDA+∠BDA.=(∠1+∠CAD+∠CDA)+(∠3+∠BAD+∠BDA)=180°+180°=360°.14.【解析】解:设∠A=x°,则∠ABC=∠C=2x°.在△ABC中,由内角和定理有x+2x+2x=180°,∴ x=36°.∴∠C=72°,在△BDC中,∵ BD是AC边上的高,∴∠BDC=90°,∴∠DBC=90°,∴∠DBC=90°-∠C=18°.15.【解析】证明:(1)如图1,∵∠B=72°,∠C=36°,∴∠A=180°﹣∠B﹣∠C=72°;又∵AE平分∠BAC,∴∠1==72°,∴∠3=∠1+∠C=72°,又∵AD⊥BC于D,∴∠2=90°,∴∠DAE=180°﹣∠2﹣∠3=18°.(2)成立.如图2,∵AE平分∠BAC,∴∠1===90°﹣,∴∠3=∠1+∠C=90°﹣+,又∵PF⊥BC于F,∴∠2=90°,∴∠EPF=180°﹣∠2﹣∠3=.16.【解析】解:分别延长CB、DA交于点P.因为∠C=85°,∠D=55°,由三角形内角和可知∠P=180°-∠C-∠D=40°,即DA与CB相交成40°角.同理可得BA与CD相交成20°角.所以这个模板是合格的.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DCBA专题2 与三角形有关的角一、三角形内角和定理:二、三角形外角的性质:如图,∠是△的外角,则:①∠ =∠ +∠ ;或∠ =∠ —∠ ; 或∠ =∠ —∠。
② > 基本图形介绍: 1、对顶三角形:①如图,、相交于O ,求证:∠∠∠∠D②如图,、相交于O ,、分别平分∠、∠, 求证:∠12(∠∠C )AABCPEAB CPACDP ABCD2、“飞镖”形:①如图,求证:∠∠∠∠C②如图,、分别平分∠、∠,求证:∠12(∠∠D )3、三角形内外角平分线问题:①如图,△中,P 是△的角平分线的交点,求证:∠90°+12∠A②如图,△中,P 是∠的角平分线和△的外角∠的角平分线的交点。
求证:∠12∠AABC EFP③如图,△中,P 是外角∠与∠的角平分线的交点。
求证:∠90°-12∠A光的反射问题可转化为角平分线问题: ①由光的反射原理:∠1=∠2又因为∠1=∠3,所以∠2=∠3,所以平分∠。
②作法线,则平分∠4、一角平分线问题: ①在△中,平分∠,∠C>∠B 求证:(1)∠ =90°-12(∠C —∠B)(2)∠12(∠∠B)D CAEDEDCBAPED CBAPEDCBA②在△中,平分∠,⊥,求证:∠ =12(∠C —∠B)拓展:①在△中,平分∠,P 是延长线上一点,过P 作⊥,求证:∠ =12(∠C —∠B)拓展:②在△中,平分∠,P 是延长线上一点,过P 作⊥, 求证:∠ =12(∠C —∠B)5、直角三角形斜边上的高的问题:①如图,△中,∠90°,⊥于D ,求证:∠1=∠F E DCBA②如图,△中,∠90°,⊥,平分∠,求证:∠∠6、翻折问题:辁竞嶼灤监絎毙瑋諫觸態鱒積饱礙誰蝉銥蚕錸嘆來攬获诂靈鬮給馮钌联彌如图,将三角形沿直线翻折使点A 在△的内部得'A , 求证:∠12(∠1+∠2)巩固练习:1、在△中,∠12∠13∠C ,则此三角形是( )A 、锐角三角形B 、直角三角形C 、钝角三角形D 、等腰三角形2、如图,△中,∠∠C ,点D 在上,⊥于E ,⊥于F ,若∠140°,ABCA '21 ED那么∠是()A、55°B、60°C、65°D、70°3、如图,△中,为△的角平分线,为△的高,∠70°,∠48°,那么∠3是()A、59°B、60°C、56°D、22°4、如图,△中,∠θα-,∠θ,∠θα+,(090αθ<<<)若∠与∠的平分线交于P点,则∠是()A、90°B、105°C、120°D、150°第2题第3题第4题第5题5、如图,已知E、F是△的边、上的点,△沿折叠,并使点A落在四边形内,∠20°,∠86°,那么∠A是()A、52°B、53°C、54°D、60°6、等腰三角形的某个内角的外角是130°,那么这个三角形的三个内角的大小是()A、50°,50°,80°B、50°,50°,80°或130°,25°,25°C、50°,65°,65°D、50°,50°,80°或50°,65°,65°7、已知:△中,∠66°,△的高、所在直线相交于点G,则∠()度。
A、123°B、66°C、114°D、66°或114°8、如图,已知△中,∠∠,∠和∠的角平分线交于D点,∠130°,那么∠是()A、80°B、50°C、40°D、209、如图,∠60°,线段、把∠三等分,线段、把∠三等分,那么∠()度。
A、40°B、50°C、60°D、70°AB GHF ABC NM第8题 第9题 第10题第11题10、已知∠1 =∠2,∠3 =∠4,∠5 =∠6,∠7 =∠8,若∠1 =16°,则∠9 =( ) A 、64° B 、80°C 、96°D 、112°11、如图,△中,是高,、是角平分线,交、于G 、H ,∠C >∠,下列结论正确的是( )①∠90°+12∠C ②∠C -∠2∠③∠∠180° ④∠∠-∠180°A 、①②B 、③④C 、①②③④D 、①②④12、如图,已知∠为定角,点B 、C 分别是∠的边、上的动点,213 456 789∠∠,∠12∠,则下列四个结论,其中正确的是( ) ①∠∠∠180° ②∠∠∠A 为定值③∠2∠D 为定值 ④△的周长为定值A 、①②B 、①③C 、①②③D 、①②③④13、△中,∠∠10°,∠∠20°,那么∠ 度。
14、若三角形的三个外角的比2︰3︰4,则它的三个内角的比为 。
15、在△中,∠∠2∠A ,是边上的高,平分∠,则∠ 度。
16、如图,、分别是∠、∠的平分线,与交于G ,若∠140°,∠110°,则∠ 度。
17、如图,△中,∠66°,∠45°,平分∠,平分∠交于E ,则∠ 度.18、如图,∠27.5°,∠38.5°,∠95°,则∠ .A BC DG EF第16题第17题第18题19、如图岛在A岛的北偏东50°方向岛在A岛的北偏东80°方向岛在B岛的北偏西40°方向,从C岛看A、B两岛的视角∠是多少度?20、如图,在△中,∠∠,D为边上一点,E 为直线上一点,且∠∠.(1)求证:∠2∠;(2)如图,若D在的反向延长线上,其它条件不变,(1)中的结论是否仍然成立?证明你的结论.E D CBA21、△中,是△的角平分线,∠C —∠20°,平分∠,∠110°,求∠的度数。
22、如图(1),在△中,平分∠, 是边上的高,∠C >∠B. ①试说明)(21B C DAE ∠-∠=∠成立的理由. ②如图(2),当高在△外时,上述结论是否发生变化?23、如图,已知∠50°,点A ,B 分别在射线,上移动(不与O 重合),平分∠,平分∠,直线、交于点C ,试问:点A 、B 移AB DC E BCM321H I F E D CB A 动过程中,∠的大小是否也随之变化?若不改变,求出其值、24、如图,在四边形中,分别是两组对边延长线的交点、分别平分∠、∠,若∠60°,∠80°,求∠的度数。
喲观鸢铪禪廄駔歡針鏨筚藎枫攝惫殁韙軸盘饋烴篓师鏈熱复阔挟块禎糧阁颡餒夢娛苌盜嗩观锱鲨癇嚴觀鉬25、如图,△中,三条内角的平分线、、相交于I ,⊥,求证:①∠1+∠2+∠3=90°②∠∠③∠∠3—∠1F B AG D EC专题3 多边形的内角和与镶嵌一、知识点:(1)叫多边形。
(2)n边形内角和为;n边形外角和为。
鑭繡帧缴渑縲機銚磧義燜蚁納娆憒囂顫错踬怼专蟄屿蘇阴鳎麩當锢竞腻静挛毁骝槧頜鈷携饴帻誄葉嬰愠妫沤钒斕秘奂羁頂觑鏢櫟泽譎谨瑷。
(3)n边形对角线的条数为。
(4)叫正多边形。
二、巩固练习:1、若一个多边形每个内角都等于150°,则这个多边形是()A、12边形B、正12边形C、13边形D、14边形2、如果一个多边形的内角和是外角和的3倍,那么这个多边形是()A、八边形B、九边形C、十边形D、十二边形3、一n边形有3个内角为钝角,则n的最大值为多少()A、4B、5C、6D、74、下列命题:①五边形至少有两个钝角;②十二边形共有54条对角线;③内角和等于外角和的多边形边数为4;④三角形的高都在三角形内。
说法正确的有()个A、1个B、2个C、3个D、4个5、已知一个多边形的每一个外角都等于相邻内角的一半,则这个多边形的边数是()A、3B、4C、6D、126、一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数为( ).A、9B、8C、7D、67、下列组合中,不能铺满地面的是()A、正五边形和正十边形地砖B、正八边形和正方形地砖C、正方形和正三角形地砖D、正方形和正六边形地砖8、下列多边形中,不能进行平面镶嵌的是()A、三角形B、四边形C、正五边形D、正六边形9、一个多边形最多有个锐角()FED CB AA、1个B、2个C、3个D、4个10、如图,在四边形中,∠∠90°,平分∠,平分∠,与有怎样的位置关系,为什么?最新文件仅供参考已改成word文本。
方便更改。