应用多元统计分析习题解答_聚类分析..-共20页
应用多元统计分析课后答案_暴强整理

第二章2.1 试述多元联合分布和边缘分布之间的关系。
设X =(X 1,X 2,⋯X p )′是p 维随机向量,称由它的q (<p )个分量组成的子向量X(i)=(X i1,X i2,⋯X iq )′的分布为X 的边缘分布,相对地把X 的分布称为联合分布。
当X 的分布函数为F (x 1,x 2,⋯x p )时,X (1)的分布函数即边缘分布函数为F (x 1,x 2,⋯x p )=P(X 1≤x 1,⋯X q ≤x q ,X q+1≤∞,⋯X p ≤∞) = F (x 1,x 2,⋯x q ,∞,⋯∞)当X 有分布密度f (x 1,x 2,⋯x p )则X (1)也有分布密度,即边缘密度函数为:f (x 1,x 2,⋯x q )=∫⋯+∞−∞∫f (x 1,x 2,⋯x p )dx q+1⋯d +∞−∞x p 2.2 设随机向量X =(X 1,X 2)′服从二元正态分布,写出其联合分布密度函数和X 1,X 2各自的边缘密度函数。
联合分布密度函数12πσ1σ2(1−ρ2)1/2exp{−12(1−ρ2)[(x 1−μ1)2σ12−2ρ(x 1−μ1)(x 2−μ2)σ1σ2+f (x 1,x 2)=(x 2−μ2)2σ22]} , x 1>0,x 2>00 , 其他(x 1−μ1)2σ12−2ρ(x 1−μ1)(x 2−μ2)σ1σ2+(x 2−μ2)2σ22=(x 1−μ1)2σ12−2ρ(x 1−μ1)(x 2−μ2)σ1σ2+(x 2−μ2)2σ22+ρ2(x 1−μ1)2σ12−ρ2(x 1−μ1)2σ12=[ρ(x 1−μ1)σ1−(x 2−μ2)σ2]2+(1−ρ2)(x 1−μ1)2σ12所以指数部分变为−12{[11√1−ρ2σ1−22√1−ρ2σ2]2+(x 1−μ1)2σ12}令t=22√1−ρ2σ2−11√1−ρ2σ1 ∴dt =√1−ρ2σ22∴f (x 1)=∫f (x 1,x 2)+∞−∞dx 2=12πσ1σ2(1−ρ2)1/2exp{−(x 1−μ1)22σ12∫exp(+∞−∞−12t 2√1−ρ22dt =√2πσexp[−(x 1−μ1)22σ12] √2πσexp[−(x 1−μ1)22σ12] , x 1>0f (x 1)=0 ,其他 同理, √2πσ2exp[−(x 2−μ2)22σ22] , x 2>0f (x 2)=0 ,其他2.3 已知随机向量X =(X 1,X 2)′的联合分布密度函数为f (x 1,x 2)=2[(d−c )(x 1−a )+(b−a )(x 2−c )−2(x 1−a)(x 2−c)(b−a)2(d−c)2,其中,a ≤x 1≤b,c ≤x 2≤d 。
多元统计分析课后练习答案

第1章 多元正态分布1、在数据处理时,为什么通常要进行标准化处理?数据的标准化是将数据按比例缩放,使之落入一个小的特定区间。
在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。
其中最典型的就是0-1标准化和Z 标准化。
2、欧氏距离与马氏距离的优缺点是什么?欧氏距离也称欧几里得度量、欧几里得度量,是一个通常采用的距离定义,它是在m 维空间中两个点之间的真实距离。
在二维和三维空间中的欧氏距离的就是两点之间的距离。
缺点:就大部分统计问题而言,欧氏距离是不能令人满意的。
每个坐标对欧氏距离的贡献是同等的。
当坐标表示测量值时,它们往往带有大小不等的随机波动,在这种情况下,合理的方法是对坐标加权,使变化较大的坐标比变化较小的坐标有较小的权系数,这就产生了各种距离。
当各个分量为不同性质的量时,“距离”的大小与指标的单位有关。
它将样品的不同属性之间的差别等同看待,这一点有时不能满足实际要求。
没有考虑到总体变异对距离远近的影响。
马氏距离表示数据的协方差距离。
为两个服从同一分布并且其协方差矩阵为Σ的随机变量与的差异程度:如果协方差矩阵为单位矩阵,那么马氏距离就简化为欧氏距离,如果协方差矩阵为对角阵,则其也可称为正规化的欧氏距离。
优点:它不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关。
由标准化数据和中心化数据计算出的二点之间的马氏距离相同。
马氏距离还可以排除变量之间的相关性的干扰。
缺点:夸大了变化微小的变量的作用。
受协方差矩阵不稳定的影响,马氏距离并不总是能顺利计算出。
3、当变量X1和X2方向上的变差相等,且与互相独立时,采用欧氏距离与统计距离是否一致?统计距离区别于欧式距离,此距离要依赖样本的方差和协方差,能够体现各变量在变差大小上的不同,以及优势存在的相关性,还要求距离与各变量所用的单位无关。
如果各变量之间相互独立,即观测变量的协方差矩阵是对角矩阵, 则马氏距离就退化为用各个观测指标的标准差的倒数作为权数的加权欧氏距离。
应用多元统计分析课后答案 .doc

2.1.试叙述多元联合分布和边际分布之间的关系。
解:多元联合分布讨论多个随机变量联合到一起的概率分布状况,12(,,)p X X X X '=L 的联合分布密度函数是一个p 维的函数,而边际分布讨论是12(,,)p X X X X '=L 的子向量的概率分布,其概率密度函数的维数小于p 。
2.2设二维随机向量12()X X '服从二元正态分布,写出其联合分布。
解:设12()X X '的均值向量为()12μμ'=μ,协方差矩阵为21122212σσσσ⎛⎫ ⎪⎝⎭,则其联合分布密度函数为1/21222112112222122121()exp ()()2f σσσσσσσσ--⎧⎫⎛⎫⎛⎫⎪⎪'=---⎨⎬ ⎪⎪⎝⎭⎝⎭⎪⎪⎩⎭x x μx μ。
2.3已知随机向量12()X X '的联合密度函数为121212222[()()()()2()()](,)()()d c x a b a x c x a x c f x x b a d c --+-----=--其中1ax b ≤≤,2c x d ≤≤。
求(1)随机变量1X 和2X 的边缘密度函数、均值和方差; (2)随机变量1X 和2X 的协方差和相关系数;(3)判断1X 和2X 是否相互独立。
(1)解:随机变量1X 和2X 的边缘密度函数、均值和方差;112121222[()()()()2()()]()()()dx cd c x a b a x c x a x c f x dx b a d c --+-----=--⎰12212222222()()2[()()2()()]()()()()dd c c d c x a x b a x c x a x c dx b a d c b a d c -------=+----⎰ 121222202()()2[()2()]()()()()dd c c d c x a x b a t x a t dt b a d c b a d c ------=+----⎰ 2212122222()()[()2()]1()()()()d cdc d c x a x b a t x a t b a d c b a d c b a------=+=----- 所以 由于1X 服从均匀分布,则均值为2b a+,方差为()212b a -。
应用多元统计分析课后题答案

c) c)2
2( x1
a)( x2
c)]
其中 a x1 b , c x2 d 。求 (1)随机变量 X1 和 X 2 的边缘密度函数、均值和方差; (2)随机变量 X1 和 X 2 的协方差和相关系数; (3)判断 X1 和 X 2 是否相互独立。
(1)解:随机变量 X1 和 X 2 的边缘密度函数、均值和方差;
12
2 2
1/
2
exp
1 2
(x
μ)
12 21
12
2 2
1
(x
μ)
。
2.3 已知随机向量 ( X1 X 2 ) 的联合密度函数为
f
( x1 ,
x2 )
2[(d
c)( x1
a)
(b a)(x2 (b a)2 (d
μ)
1 n 1
n i 1
E(Xi
-
μ)(
X i
-
μ)
nE(X
μ)(X
μ)
Σ
。
故 S 为 Σ 的无偏估计。 n 1
2.9.设 X(1) , X(2) , ..., X(n) 是从多元正态分布 X ~ N p (μ, Σ) 抽出的一个简单随机样本,试求 S
c) 2(x1 a)(x2 a)2(d c)2
c)]
dx2
2(d c)(x1 a)x2 d dc 2[(b a)t 2(x1 a)t] dt
(b a)2 (d c)2
应用多元统计分析课后习题答案详解北大高惠璇习题解答公开课一等奖优质课大赛微课获奖课件

0 8
X (2)
X
(3)
0
X (5) CL4
第11页 11
第六章 聚类分析
② 合并{X(2),X(5)}=CL3,并类距离 D2=3.
0 D(3) 10
9
0 8
0
X (3)
CL4 CL3
③ 合并{CL3,CL4}=CL2,并类距离 D3=8.
D(4) 100
0
X (3) CL2
④ 所有样品合并为一类CL1,并类距离 D4=10.
n p nq nr2
(X
(k)
X
(q) )'( X
(k)
X
( p) )
n2p nr2
D
2 pk
nq2 nr2
Dq2k
n p nq nr2
(X
(k)
X
( p) )'( X
(k)
X
( p)
X
( p)
X
(q) )
n p nq nr2
(X
(k)
X
(q) )'( X
(k)
X
(q)
X
(q)
X
( p) )
第26页 26
故d*是一个距离.
第5页
5
第六章 聚类分析
(4) 设d (1)和d (2)是距离, 令d * d (1) • d (2).
d *虽满足前2个条件,但不一定满足三角不等式.
下面用反例来说明d *不一定是距离.
设di(j1)
d (2) ij
X (i) X ( j) (m 1), 则di*j
X (i) X ( j)
D
2 pk
nq nr
多元统计分析课后练习答案

2 p
1
2 1
1
Σ1
2 2
1
2 p
则 f ( x1,..., xp )
p
1
Σ
2
22 12
2 p
1/2
exp
1 (x
μ) Σ1
2
1
2 1
1
2 2
( x μ)
1
2 p
p
1
12
2
1
p exp
1 (x1 1 )2
2
2 1
1 ( x2 2
3) 2
2 2
...
1 (xp 2
p )2
2 p
p
1
exp
i1 i 2
( xi
计算: 边远及少数民族聚居区社会经济发展水平的指标数据 .xls
T 2 =9* (-2003.23 2.25 -1006.11 2.71 12.01)*s^-1* (-2003.23 2.25
-1006.11 2.71 12.01)’=9*50.11793817=451,06144353 F 统计量 =45.2>6.2 拒绝零假设,边缘及少数民族聚居区的社会经济发展水平与 全国平均水平有显著差异。
4、什么是逐步判别分析? 答:具有筛选变量能力的判别方法称为逐步判别分析法。 逐步判别分析法就是先 从所有因子中挑选一个具有最显著判别能力的因子, 然后再挑选第二个因子, 这 因子是在第一因子的基础上具有最显著判别能力的因子, 即第一个和第二个因子 联合起来有显著判别能力的因子; 接着挑选第三个因子, 这因子是在第一、 第二 因子的基础上具有最显著判别能力的因子。 由于因子之间的相互关系, 当引进了 新的因子之后, 会使原来已引入的因子失去显著判别能力。 因此, 在引入第三个 因子之后就要先检验已经引入的因子是否还具有显著判别能力, 如果有就要剔除 这个不显著的因子;接着再继续引入,直到再没有显著能力的因子可剔除为止, 最后利用已选中的变量建立判别函数。
应用多元统计分析课后习题答案高惠璇三部分习题解答公开课一等奖优质课大赛微课获奖课件

max
0
L(0,0 )
max
L(
,
0
)
分子
|
1
20
|n/ 2
exp
1 2
n
( X ( )
1
0 )01( X ( )
0 )
|
1
20
|n/ 2
exp
1 2
n
tr[01
1
( X ( )
0 )( X ( )
0 )]
第17页 17
第三章 多元正态总体参数检查
Yr1
X BX
Y Γ BΓΓ
Y HY
(Yr
1
,,
Yn
)
H
22
Yn
由于Y1, …,Yr ,Yr+1 ,…,Yn互相独立,
故X′AX与X′BX互相独立.
第9页
9
第三章 多元正态总体参数检查
3-3 设X~Np(μ,Σ),Σ>0,A和B为p阶对称阵, 试证实 (X-μ)′A(X-μ)与(X-μ)′B(X-μ)互相独立
Np(μ,Σ)随机样本, X和Ax分别表示正态总体X样 本均值向量和离差阵,则由性质1有
Tx2 n(n 1)( X ) Ax1( X )
~ T 2 ( p, n 1).
令 Y(i) CX (i) d (i 1,..., n)
其中C是p p非退化常数矩阵, d是p 1常向量。
则 Y(i) ~ N p (C d,CC) (i 1,2,..., n)
max L(
, 0 )
max L(, ) ,
分子当ˆ X达最大,且最大值
L( X
, 0 )
应用多元统计分析课后答案

第二章2.1.试叙述多元联合分布和边际分布之间的关系。
解:多元联合分布讨论多个随机变量联合到一起的概率分布状况,12(,,)p X X X X '=的联合分布密度函数是一个p 维的函数,而边际分布讨论是12(,,)p X X X X '=的子向量的概率分布,其概率密度函数的维数小于p 。
2.2设二维随机向量12()X X '服从二元正态分布,写出其联合分布。
解:设12()X X '的均值向量为()12μμ'=μ,协方差矩阵为21122212σσσσ⎛⎫ ⎪⎝⎭,则其联合分布密度函数为1/21222112112222122121()exp ()()2f σσσσσσσσ--⎧⎫⎛⎫⎛⎫⎪⎪'=---⎨⎬ ⎪⎪⎝⎭⎝⎭⎪⎪⎩⎭x x μx μ。
2.3已知随机向量12()X X '的联合密度函数为121212222[()()()()2()()](,)()()d c x a b a x c x a x c f x x b a d c --+-----=--其中1a x b ≤≤,2c x d ≤≤。
求(1)随机变量1X 和2X 的边缘密度函数、均值和方差; (2)随机变量1X 和2X 的协方差和相关系数; (3)判断1X 和2X 是否相互独立。
(1)解:随机变量1X 和2X 的边缘密度函数、均值和方差;112121222[()()()()2()()]()()()dx cd c x a b a x c x a x c f x dx b a d c --+-----=--⎰12212222222()()2[()()2()()]()()()()dd cc d c x a x b a x c x a x c dx b a d c b a d c -------=+----⎰ 12122222()()2[()2()]()()()()dd cc d c x a x b a t x a t dt b a d c b a d c ------=+----⎰2212122222()()[()2()]1()()()()d cdcd c x a x b a t x a t b a d c b a d c b a------=+=----- 所以由于1X 服从均匀分布,则均值为2b a +,方差为()212b a -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 聚类分析5.1 判别分析和聚类分析有何区别?答:即根据一定的判别准则,判定一个样本归属于哪一类。
具体而言,设有n 个样本,对每个样本测得p 项指标(变量)的数据,已知每个样本属于k 个类别(或总体)中的某一类,通过找出一个最优的划分,使得不同类别的样本尽可能地区别开,并判别该样本属于哪个总体。
聚类分析是分析如何对样品(或变量)进行量化分类的问题。
在聚类之前,我们并不知道总体,而是通过一次次的聚类,使相近的样品(或变量)聚合形成总体。
通俗来讲,判别分析是在已知有多少类及是什么类的情况下进行分类,而聚类分析是在不知道类的情况下进行分类。
5.2 试述系统聚类的基本思想。
答:系统聚类的基本思想是:距离相近的样品(或变量)先聚成类,距离相远的后聚成类,过程一直进行下去,每个样品(或变量)总能聚到合适的类中。
5.3 对样品和变量进行聚类分析时, 所构造的统计量分别是什么?简要说明为什么这样构造?答:对样品进行聚类分析时,用距离来测定样品之间的相似程度。
因为我们把n 个样本看作p 维空间的n 个点。
点之间的距离即可代表样品间的相似度。
常用的距离为 (一)闵可夫斯基距离:1/1()()pq qij ik jk k d q X X ==-∑q 取不同值,分为 (1)绝对距离(1q =)1(1)pij ik jk k d X X ==-∑(2)欧氏距离(2q =)21/21(2)()pi j i k j kk d X X==-∑(3)切比雪夫距离(q =∞)1()max ij ik jkk pd X X ≤≤∞=-(二)马氏距离(三)兰氏距离对变量的相似性,我们更多地要了解变量的变化趋势或变化方向,因此用相关性进行衡量。
21()()()ij i j i j d M -'=--X X ΣX X 11()p ik jkij k ik jk X X d L p X X =-=+∑将变量看作p 维空间的向量,一般用(一)夹角余弦(二)相关系数5.4 在进行系统聚类时,不同类间距离计算方法有何区别?选择距离公式应遵循哪些原则?答: 设d ij 表示样品X i 与X j 之间距离,用D ij 表示类G i 与G j 之间的距离。
(1). 最短距离法,mini k j rkr ij X G X G D d ∈∈=min{,}kp kq D D =(2)最长距离法,maxi p j qpq ij X G X G D d ∈∈=,maxi k j rkr ij X G X G D d ∈∈=max{,}kp kq D D =(3)中间距离法其中(4)重心法2()()pq p q p q D X X X X '=-- )(1q q p p rrX n X n n X +=cos pik jkij X X θ=∑()()pik i jk j ij X X X X r --=∑ij G X G X ij d D jj i i ∈∈=,min22222121pq kq kp kr D D D D β++=22222p q p q krkpkqpq rrr n n n n D D D D n n n =+-(5)类平均法221i p j jpq ij X G X G p qD d n n ∈∈=∑∑221i k j rkr ijX G X G k rD d n n ∈∈=∑∑22p q kp kqrrn n D D n n =+(6)可变类平均法其中β是可变的且β <1(7)可变法22221()2kr kp kq pq D D D D ββ-=++ 其中β是可变的且β <1 (8)离差平方和法1()()tn t it t it t t S X X X X ='=--∑2222k p k q k krkpkq pq r kr kr kn n n n n D D D D n n n n n n ++=+-+++通常选择距离公式应注意遵循以下的基本原则:(1)要考虑所选择的距离公式在实际应用中有明确的意义。
如欧氏距离就有非常明确的空间距离概念。
马氏距离有消除量纲影响的作用。
(2)要综合考虑对样本观测数据的预处理和将要采用的聚类分析方法。
如在进行聚类分析之前已经对变量作了标准化处理,则通常就可采用欧氏距离。
(3)要考虑研究对象的特点和计算量的大小。
样品间距离公式的选择是一个比较复杂且带有一定主观性的问题,我们应根据研究对象的特点不同做出具体分折。
实际中,聚类分析前不妨试探性地多选择几个距离公式分别进行聚类,然后对聚类分析的结果进行对比分析,以确定最合适的距离测度方法。
5.5试述K 均值法与系统聚类法的异同。
2222(1)()pq kr kpkq pqrrn n D D D D n n ββ=-++答:相同:K —均值法和系统聚类法一样,都是以距离的远近亲疏为标准进行聚类的。
不同:系统聚类对不同的类数产生一系列的聚类结果,而K —均值法只能产生指定类数的聚类结果。
具体类数的确定,离不开实践经验的积累;有时也可以借助系统聚类法以一部分样品为对象进行聚类,其结果作为K —均值法确定类数的参考。
5.6 试述K 均值法与系统聚类有何区别?试述有序聚类法的基本思想。
答:K 均值法的基本思想是将每一个样品分配给最近中心(均值)的类中。
系统聚类对不同的类数产生一系列的聚类结果,而K —均值法只能产生指定类数的聚类结果。
具体类数的确定,有时也可以借助系统聚类法以一部分样品为对象进行聚类,其结果作为K 均值法确定类数的参考。
有序聚类就是解决样品的次序不能变动时的聚类分析问题。
如果用)()2()1(,,,n X X X 表示n 个有序的样品,则每一类必须是这样的形式,即)()1()(,,,j i i X X X +,其中,1n i ≤≤且n j ≤,简记为},,1,{j i i G i +=。
在同一类中的样品是次序相邻的。
一般的步骤是(1)计算直径{D (i,j )}。
(2)计算最小分类损失函数{L[p(l,k)]}。
(3)确定分类个数k 。
(4)最优分类。
5.7 检测某类产品的重量, 抽了六个样品, 每个样品只测了一个指标,分别为1,2,3,6,9,11.试用最短距离法,重心法进行聚类分析。
(1)用最短距离法进行聚类分析。
采用绝对值距离,计算样品间距离阵1 02 1 05 4 3 08 7 6 3 010 9 8 5 2 0由上表易知 中最小元素是 于是将,,聚为一类,记为计算距离阵3 06 3 08 5 2 0中最小元素是=2 于是将,聚为一类,记为计算样本距离阵3 06 3 0中最小元素是于是将,聚为一类,记为因此,(2)用重心法进行聚类分析计算样品间平方距离阵1 04 1 025 16 9 064 49 36 9 0100 81 64 25 4 0易知中最小元素是于是将,,聚为一类,记为计算距离阵16 049 9 081 25 4 0注:计算方法,其他以此类推。
中最小元素是=4 于是将,聚为一类,记为计算样本距离阵16 064 16 0中最小元素是于是将,聚为一类,记为因此,5.8 下表是15个上市公司2019年的一些主要财务指标,使用系统聚类法和K-均值法分别对这些公司进行聚类,并对结果进行比较分析。
解:令净资产收益率为X1,每股净利润X2,总资产周转率为X3,资产负债率为X4,流动负债比率为X5,每股净资产为X6,净利润增长率为X7,总资产增长率为X8,用spss对公司聚类分析的步骤如下:a)系统聚类法:1.在SPSS窗口中选择Analyze→Classify→Hierachical Cluster,调出系统聚类分析主界面,并将变量X8X1移入Variables框中。
在Cluster-栏中选择Cases单选按钮,即对样品进行聚类(若选择Variables,则对变量进行聚类)。
在Display栏中选择Statistics和Plots复选框,这样在结果输出窗口中可以同时得到聚类结果统计量和统计图。
图5.1 系统分析法主界面2.点击Statistics按钮,设置在结果输出窗口中给出的聚类分析统计量。
我们选择Agglomeration schedule与Cluster Membership中的Range of solution 2-4,如图5.2所示,点击Continue按钮,返回主界面。
(其中,Agglomeration schedule表示在结果中给出聚类过程表,显示系统聚类的详细步骤;Proximity matrix 表示输出各个体之间的距离矩阵;Cluster Membership 表示在结果中输出一个表,表中显示每个个体被分配到的类别,Range of solution 2-4即将所有个体分为2至4类。
)3.点击Plots按钮,设置结果输出窗口中给出的聚类分析统计图。
选中Dendrogram复选框和Icicle栏中的None单选按钮,如图5.3,即只给出聚类树形图,而不给出冰柱图。
单击Continue按钮,返回主界面。
图5.2 Statistics子对话框图5.3 Plots子对话框4.点击Method按钮,设置系统聚类的方法选项。
Cluster Method下拉列表用于指定聚类的方法,这里选择Between-group inkage(组间平均数连接距离);Measure栏用于选择对距离和相似性的测度方法,选择Squared Euclidean distance(欧氏距离);单击Continue按钮,返回主界面。
图5.4 Method子对话框图5.5 Save子对话框5.点击Save按钮,指定保存在数据文件中的用于表明聚类结果的新变量。
None表示不保存任何新变量;Single solution表示生成一个分类变量,在其后的矩形框中输入要分成的类数;Range of solutions表示生成多个分类变量。
这里我们选择Range of solutions,并在后面的两个矩形框中分别输入2和4,即生成三个新的分类变量,分别表明将样品分为2类、3类和4类时的聚类结果,如图5.5。
点击Continue,返回主界面。
6.点击OK按钮,运行系统聚类过程。
聚类结果分析:下面的群集成员表给出了把公司分为2类,3类,4类时各个样本所属类别的情况,另外,从右边的树形图也可以直观地看到,若将15个公司分为2类,则13独自为一类,其余的为一类;若分为3类,则公司8分离出来,自成一类。
以此类推。
表5.1 各样品所属类别表图5.6 聚类树形图b)K均值法的步骤如下:1.在SPSS窗口中选择Analyze→Classify→K-Means Cluster,调出K均值聚类分析主界面,并将变量X1-X8移入Variables框中。