PWM控制芯片SG原理及应用

合集下载

PWM控制芯片SG3525原理及应用

PWM控制芯片SG3525原理及应用

PWM控制芯片SG3525原理及应用SG3525是一种常用的PWM(脉宽调制)控制芯片,广泛应用于交流电源、逆变器、电机调速等领域。

本文将从原理、功能以及应用方面对SG3525进行详细介绍。

一、原理SG3525是一种集成电路芯片,通过调整其内部电路的工作状态来实现对输出信号的脉宽调制。

脉宽调制是一种调制技术,可以通过改变信号的脉冲宽度来改变信号的平均值。

在SG3525中,通过比较器和内部参考电压源实现了对输入信号进行比较和控制,从而实现对输出信号的脉宽调制。

SG3525的内部电路主要包括一个比较器、一个误差放大器、一个频率振荡器和一个输出驱动器。

误差放大器用于比较输入信号和反馈信号的差异,并生成一个误差信号,然后将误差信号传递给频率振荡器。

频率振荡器将误差信号转换为一系列的方波信号,并通过比较器进行比较。

比较器将方波信号与一个三角波信号进行比较,并生成一个PWM信号。

PWM信号经过输出驱动器放大后,可以用于驱动负载。

二、功能1.脉宽调制:SG3525可以实现对输出信号的脉宽调制,通过调整输入信号的脉冲宽度来改变输出信号的平均值。

这种技术可以用于实现直流至交流逆变器、交流电源等应用。

2.频率控制:SG3525内部集成一个可调的频率振荡器,可以通过外部电阻和电容调整振荡频率,从而适应不同应用的需求。

3.正反馈电流限制:SG3525具有一个正反馈电流限制功能,可以保护输出级的功率晶体管免受电流过大而损坏。

4.死区时间控制:SG3525可以通过外部电阻和电容调整死区时间,从而控制开关器件的切换时间,减少开关过渡过程中的损失。

三、应用1.交流电源:SG3525可以用于交流电源的脉宽调制,通过将直流电转换为交流电,从而实现对交流电源输出电压和频率的控制。

2.逆变器:SG3525可以通过脉宽调制技术实现对逆变器输出电压和频率的控制,将直流电转换为交流电,广泛应用于太阳能和风能转换系统。

3.电机调速:SG3525可以通过脉宽调制技术实现对电机转速的控制,通过调整脉冲宽度来改变电机的平均输出电压,从而实现电机的调速功能。

脉宽调制(PWM)集成电路SG3525原理及应用

脉宽调制(PWM)集成电路SG3525原理及应用

麻省理工大学集成电路应用课程论文论文题目:脉宽调制(PWM)集成电路SG3525原理及应用学院、系:电信学院电气系专业班级:电气11学生姓名:葉晓龍任课教师:***2014 年 6 月8日脉宽调制(PWM)集成电路SG3525的工作原理及应用摘要:随着电能变换技术的发展,功率MOSFET在开关变换器中开始广泛使用,为此美国硅通用半导体公司(Silicon General)推出SG3525。

SG3525是用于驱动N沟道功率MOSFET。

其产品一推出就受到广泛好评。

SG3525系列PWM控制器分军品、工业品、民品三个等级。

下面就SG3525的工作原理、管脚排列、主要特点以及应用领域等进行介绍。

关键词:PWM控制器MOSFET SG3525 开关变换器一、概述SG3525是电流控制型PWM控制器,所谓电流控制型脉宽调制器是按照接反馈电流来调节脉宽的。

在脉宽比较器的输入端直接用流过输出电感线圈的信号与误差放大器输出信号进行比较,从而调节占空比使输出的电感峰值电流跟随误差电压变化而变化。

由于结构上有电压环和电流环双环系统,因此,无论开关电源的电压调整率、负载调整率和瞬态响应特性都有提高,是目前比较理想的新型控制器。

二、管教排列及定义SG3525芯片引脚排列如下图所示:引脚的功能及含义如下:引脚1:误差放大器反向输入端。

在闭环系统中,该引脚接反馈信号。

在开环系统中,该端与补偿信号输入端(引脚9)相连,可构成跟随器。

引脚2:误差放大器同向输入端。

在闭环系统和开环系统中,该端接给定信号。

根据需要,在该端与补偿信号输入端(引脚9)之间接入不同类型的反馈网络,可以构成比例、比例积分和积分等类型的调节器。

引脚3:振荡器外接同步信号输入端。

该端接外部同步脉冲信号可实现与外电路同步。

引脚4:振荡器输出端。

引脚5:振荡器定时电容接入端。

引脚6:振荡器定时电阻接入端。

引脚7:振荡器放电端。

该端与引脚5之间外接一只放电电阻,构成放电回路。

PWM控制芯片SG3525原理及应用

PWM控制芯片SG3525原理及应用

PWM控制芯片SG3525原理及应用SG3525是一款经典的PWM控制芯片,具有广泛的应用领域。

本文将从原理和应用两个方面进行探讨,详细介绍SG3525的工作原理及在各个领域中的应用。

一、SG3525的工作原理SG3525是一款双路可调节PWM控制器芯片,由一对对称反馈比较器、三角波发生器、误差放大器、电压调节电路、电平移位电路和PWM输出级组成。

其工作原理如下:1.错误放大器:SG3525通过与输入信号进行比较,产生误差放大器输出的控制信号,以实现对输出波形的控制。

2.三角波发生器:通过内部电容和电阻的组合,生成一定幅值和频率的三角波信号,用于与错误放大器输出信号进行比较。

3.反馈比较器:SG3525具有一对对称的反馈比较器,将错误放大器输出信号与三角波信号进行比较,产生相应的控制信号。

4.电平移位电路:对反馈比较器的控制信号进行电平移位处理,以适应各种应用场景的控制要求。

5.PWM输出级:将经过电平移位的控制信号,经过输出级放大、滤波处理后,形成PWM信号。

二、SG3525的应用领域SG3525因其可靠性、稳定性以及功能强大而在电子领域应用广泛,以下是常见的应用领域及应用案例:1.开关电源:SG3525可以广泛应用于开关电源中,通过控制MOSFET等开关管的导通时间,实现对开关电源输出电压的稳定控制。

例如,SG3525可以用于UPS(不间断电源)的开关电源控制电路。

2.电动机驱动系统:SG3525可以用于电动机的速度和方向控制,通过控制PWM输出信号的占空比,实现电动机的转速和转向的控制。

例如,SG3525可以实现永磁直流电机的调速。

3.照明控制:SG3525可用于照明领域中的调光控制,通过控制PWM输出信号的占空比,实现对LED灯或者灯泡等照明设备的亮度调节。

4.变频调速系统:SG3525可以应用于交流电机的变频调速系统中,通过控制PWM输出信号的频率和占空比,实现对交流电机转速的精确控制。

PWM控制芯片SG3525功能简介

PWM控制芯片SG3525功能简介

PWM控制芯片SG3525功能简介1.1 PWM控制芯片SG3525功能简介随着电能变换技术的发展,功率MOSFET在开关变换器中开始广泛使用,为此美国硅通用半导体公司(Silicon General)推出SG3525。

SG3525是用于驱动N沟道功率MOSFET。

其产品一推出就受到广泛好评。

SG3525系列PWM控制器分军品、工业品、民品三个等级。

下面我们对SG3525特点、引脚功能、电气参数、工作原理以及典型应用进行介绍。

SG3525是电流控制型PWM控制器,所谓电流控制型脉宽调制器是按照接反馈电流来调节脉宽的。

在脉宽比较器的输入端直接用流过输出电感线圈的信号与误差放大器输出信号进行比较,从而调节占空比使输出的电感峰值电流跟随误差电压变化而变化。

由于结构上有电压环和电流环双环系统,因此,无论开关电源的电压调整率、负载调整率和瞬态响应特性都有提高,是目前比较理想的新型控制器。

1.1.1 SG3525引脚功能及特点简介其原理图如图4.13下:1.Inv.input(引脚1):误差放大器反向输入端。

在闭环系统中,该引脚接反馈信号。

在开环系统中,该端与补偿信号输入端(引脚9)相连,可构成跟随器。

2.Noninv.input(引脚2):误差放大器同向输入端。

在闭环系统和开环系统中,该端接给定信号。

根据需要,在该端与补偿信号输入端(引脚9)之间接入不同类型的反馈网络,可以构成比例、比例积分和积分等类型的调节器。

3.Sync(引脚3):振荡器外接同步信号输入端。

该端接外部同步脉冲信号可实现与外电路同步。

4.OSC.Output(引脚4):振荡器输出端。

5.CT(引脚5):振荡器定时电容接入端。

6.RT(引脚6):振荡器定时电阻接入端。

7.Discharge(引脚7):振荡器放电端。

该端与引脚5之间外接一只放电电阻,构成放电回路。

8.Soft-Start(引脚8):软启动电容接入端。

该端通常接一只5 的软启动电容。

SG3525工作原理与应用技巧

SG3525工作原理与应用技巧

SG3525工作原理与应用技巧SG3525是一款常用的双电源开关模式控制芯片,广泛应用于交流-直流转换器、逆变器、电动机驱动器等领域。

其工作原理基于PWM(脉宽调制)技术,能够提供稳定的输出电压和电流,有效控制电压波动和系统发热等问题。

本文将详细介绍SG3525的工作原理及应用技巧。

一、SG3525的工作原理1.输入信号:SG3525的输入信号是由控制电压(CV)和同步信号(SYN)组成的。

控制电压用于控制输出电压的大小,同步信号用来同步控制选通开关的开关频率。

2.内部参考信号:SG3525内部有一个基准电压源,用于产生参考信号。

参考信号与输入信号进行比较,得出一个比较结果。

3.错误放大器:SG3525内部还有一个错误放大器,用于放大比较结果。

如果比较结果是正的,则输出高电平;如果比较结果是负的,则输出低电平。

4.PWM发生器:SG3525内部还有一个PWM发生器,用于产生PWM信号。

PWM信号的占空比可由控制电压调节,从而控制输出电压的大小。

5.选通开关:PWM信号经过选通开关后,形成输出波形。

选通开关的频率可以由同步信号控制。

6.输出滤波:SG3525的输出经过输出滤波电路,可以得到稳定的输出电压和电流。

以上就是SG3525的基本工作原理,通过控制输入信号和内部参考信号的比较结果和PWM发生器的调节,可以得到所需的稳定输出。

二、SG3525的应用技巧1.控制电压调节:SG3525的控制电压可以通过外部电阻与电容调节。

电阻的值越大,输出电压越大;电阻与电容并联时,可以实现更精确的调节。

2.输出滤波:为了获得更稳定的输出电压和电流,可以在SG3525的输出端接入输出滤波电路,使用滤波电感和电容等元件进行滤波。

3.过流保护:在SG3525的输出电路中加入过流保护电路,可以实现对输出电流的保护。

一般可以使用电流变压器和比较电路等来实现。

4.温度保护:SG3525在高温环境下可能会出现过热的问题,为了保护芯片不受损坏,可以设置温度保护电路。

PWM控制芯片SG3525功能简介

PWM控制芯片SG3525功能简介

PWM控制芯片SG3525功能简介1.1 PWM控制芯片SG3525功能简介SG3525是电流控制型PWM控制器,所谓电流控制型脉宽调制器是按照接反馈电流来调节脉宽的。

在脉宽比较器的输入端直接用流过输出电感线圈的信号与误差放大器输出信号进行比较,从而调节占空比使输出的电感峰值电流跟随误差电压变化而变化。

由于结构上有电压环和电流环双环系统,因此,无论开关电源的电压调整率、负载调整率和瞬态响应特性都有提高,是目前比较理想的新型控制器。

1.1.1 SG3525引脚功能及特点简介其原理图如图4.13下:1.Inv.input(引脚1):误差放大器反向输入端。

在闭环系统中,该引脚接反馈信号。

在开环系统中,该端与补偿信号输入端(引脚9)相连,可构成跟随器。

2.Noninv.input(引脚2):误差放大器同向输入端。

在闭环系统和开环系统中,该端接给定信号。

根据需要,在该端与补偿信号输入端(引脚9)之间接入不同类型的反馈网络,可以构成比例、比例积分和积分等类型的调节器。

3.Sync(引脚3):振荡器外接同步信号输入端。

该端接外部同步脉冲信号可实现与外电路同步。

4.OSC.Output(引脚4):振荡器输出端。

5.CT(引脚5):振荡器定时电容接入端。

6.RT(引脚6):振荡器定时电阻接入端。

7.Discharge(引脚7):振荡器放电端。

该端与引脚5之间外接一只放电电阻,构成放电回路。

8.Soft-Start(引脚8):软启动电容接入端。

该端通常接一只5 的软启动电容。

pensation(引脚9):PWM比较器补偿信号输入端。

在该端与引脚2之间接入不同类型的反馈网络,可以构成比例、比例积分和积分等类型调节器。

10.Shutdown(引脚10):外部关断信号输入端。

该端接高电平时控制器输出被禁止。

该端可与保护电路相连,以实现故障保护。

11.Output A(引脚11):输出端A。

引脚11和引脚14是两路互补输出端。

PWM控制芯片SG3525功能简介

PWM控制芯片SG3525功能简介

PWM控制芯片SG3525功能简介1.1 PWM控制芯片SG3525功能简介SG3525是电流控制型PWM控制器,所谓电流控制型脉宽调制器是按照接反馈电流来调节脉宽的。

在脉宽比较器的输入端直接用流过输出电感线圈的信号与误差放大器输出信号进行比较,从而调节占空比使输出的电感峰值电流跟随误差电压变化而变化。

由于结构上有电压环和电流环双环系统,因此,无论开关电源的电压调整率、负载调整率和瞬态响应特性都有提高,是目前比较理想的新型控制器。

1.1.1 SG3525引脚功能及特点简介其原理图如图4.13下:1.Inv.input(引脚1):误差放大器反向输入端。

在闭环系统中,该引脚接反馈信号。

在开环系统中,该端与补偿信号输入端(引脚9)相连,可构成跟随器。

2.Noninv.input(引脚2):误差放大器同向输入端。

在闭环系统和开环系统中,该端接给定信号。

根据需要,在该端与补偿信号输入端(引脚9)之间接入不同类型的反馈网络,可以构成比例、比例积分和积分等类型的调节器。

3.Sync(引脚3):振荡器外接同步信号输入端。

该端接外部同步脉冲信号可实现与外电路同步。

4.OSC.Output(引脚4):振荡器输出端。

5.CT(引脚5):振荡器定时电容接入端。

6.RT(引脚6):振荡器定时电阻接入端。

7.Discharge(引脚7):振荡器放电端。

该端与引脚5之间外接一只放电电阻,构成放电回路。

8.Soft-Start(引脚8):软启动电容接入端。

该端通常接一只5 的软启动电容。

pensation(引脚9):PWM比较器补偿信号输入端。

在该端与引脚2之间接入不同类型的反馈网络,可以构成比例、比例积分和积分等类型调节器。

10.Shutdown(引脚10):外部关断信号输入端。

该端接高电平时控制器输出被禁止。

该端可与保护电路相连,以实现故障保护。

11.Output A(引脚11):输出端A。

引脚11和引脚14是两路互补输出端。

PWM控制器SG3525的调频原理

PWM控制器SG3525的调频原理

PWM控制器SG3525的调频原理SG3525是一种常用的PWM(Pulse Width Modulation)控制器,它可以用于调节或控制电路中的电压或电流,广泛应用于各种电力电子和开关电源控制电路中。

调频是SG3525实现PWM的一个重要原理,通过调整脉宽的频率来控制输出信号的频率和幅度。

调频原理的基本思想是改变PWM脉冲的宽度,从而改变输出信号的频率。

SG3525通过内部的电压比较器和计数器来实现这个功能。

在SG3525中,通过外部电容和电阻构成一个RC网络,来控制频率的调节范围。

当RC电路充电到一定电压后,与内部锯齿波发生器的比较器进行比较,触发计数器进行计数。

当计数器的数值达到预设值时,计数器复位并产生一个PWM脉冲。

调频原理的详细步骤如下:1.根据需求设计RC网络:调频的范围决定了RC网络的取值范围,通过调节RC网络的电容和电阻值来控制频率调节的范围。

2.设置参考电压:SG3525内部有一个参考电压,通过调节这个参考电压来改变输出信号的幅度。

3.锯齿波发生器:SG3525内部有一个由电流源和比较器组成的锯齿波发生器,通过调节电流源的大小来改变锯齿波的斜率和频率。

4.锯齿波与RC网络比较器:SG3525内部的锯齿波与RC网络的比较器进行比较。

当锯齿波的幅度超过RC网络所设定的电压时,比较器将会触发。

5.计数器:当比较器触发后,计数器开始计数。

计数器的计数范围决定了PWM的脉冲宽度范围。

6.输出脉冲:当计数器的值达到预设的脉冲宽度时,计数器将会复位并产生一个PWM脉冲。

通过以上步骤,SG3525就可以实现PWM输出信号的调频功能。

通过调节RC网络的值、参考电压和锯齿波发生器的参数,可以改变PWM脉冲的频率和幅度,从而实现对电路中电压或电流的调节或控制。

调频原理能够使SG3525在不同应用中灵活地调节输入和输出波形的频率和幅度,从而适应不同的电力电子和开关电源控制需求。

而且,SG3525在实际应用中还可以通过外部反馈电路来实现更加精确的调频控制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PWM控制芯片SG3525原理及应用第一章引言脉冲宽度调制(PWM),是英文“Pulse Width Modulation”的缩写,简称脉宽调制,脉冲宽度调制是一种模拟控制方式,根据相应载荷的变化来调制晶体管栅极或基极的偏置,实现开关稳压电源输出晶体管或晶体管导通时间的改变,这种方式能使电源的输出电压在工作条件变化时保持恒定,PWM控制技术以其控制简单,灵活和动态响应好的优点而成为电力电子技术最广泛应用的控制方式,也是人们研究的热点.本文介绍的SG3525芯片主要应用于华为ONU4820,艾默生HD4825-3 HD4830-3 .第二章PWM控制芯片SG3525功能简介随着电能变换技术的发展,功率MOSFET在开关变换器中开始广泛使用,为此美国硅通用半导体公司(Silicon General)推出SG3525。

SG3525是用于驱动N沟道功率M OSFET。

下面我们对SG3525特点、引脚功能、电气参数、工作原理以及典型应用进行介绍。

SG3525是电流控制型PWM控制器,所谓电流控制型脉宽调制器是按照反馈电流调节脉宽。

在脉宽比较器的输入端直接用流过输出电感线圈的信号与误差放大器输出信号进行比较,从而调节占空比使输出的电感峰值电流跟随误差电压变化而变化。

由于结构上有电压环和电流环双环系统,因此,无论开关电源的电压调整率、负载调整率和瞬态响应特性都有提高,是目前比较理想的新型控制器。

一、SG3525引脚功能及特点简介SG3525功能框图如图1所示:图1 典型功能框图1.(脚1):误差放大器反向输入端。

在闭环系统中,该引脚接反馈信号。

在开环系统中,该端与补偿信号输入端(脚9)相连,可构成跟随器。

2.(脚2):误差放大器同向输入端。

在闭环系统和开环系统中,该端接给定信号。

根据需要,在该端与补偿信号输入端(脚9)之间接入不同类型的反馈网络,可以构成比例、比例积分和积分等类型的调节器。

3.Sync(脚3):振荡器外接同步信号输入端。

该端接外部同步脉冲信号可实现与外电路同步。

4.(脚4):振荡器输出端。

5.CT(脚5):振荡器定时电容接入端。

6.RT(脚6):振荡器定时电阻接入端。

7.Discharge(脚7):振荡器放电端。

该端与引脚5之间外接一只放电电阻,构成放电回路。

8.Soft-Start(脚8):软启动电容接入端。

该端通常接一只5 的软启动电容。

9.Compensation(脚9):PWM比较器补偿信号输入端。

在该端与引脚2之间接入不同类型的反馈网络,可以构成比例、比例积分和积分等类型调节器。

10.Shutdown(脚10):外部关断信号输入端。

该端接高电平时控制器输出被禁止。

该端可与保护电路相连,以实现故障保护。

11.Output A(脚11):输出端A。

引脚11和引脚14是两路互补输出端。

12.Ground(脚12):信号地。

13.Vc(脚13):输出级偏置电压接入端。

14.Output B(脚14):输出端B。

引脚14和引脚11是两路互补输出端。

15.Vcc(脚15):偏置电源接入端。

16.Vref(脚16):基准电源输出端。

该端输出一温度稳定性极好的基准电压。

17.二、SG3525特点:1.工作电压范围宽:8—35V。

2.(%)V微调基准电源。

3.振荡器工作频率范围宽:100Hz—400KHz。

4.具有振荡器外部同步功能。

5.死区时间可调。

6.内置软启动电路。

7.具有输入欠电压锁定功能。

8.具有PWM琐存功能,禁止多脉冲,逐个脉冲关断。

9.双路输出(灌电流/拉电流): mA(峰值)。

三、主要单元电路1.基准电压调整器。

基准电压调整器是输出为、50mA,有短路保护的电压调整器。

它供电给所有内部电路,同时又可作为外部基准参考电压。

2.振荡器。

振荡器电路结构如图2所示,振荡器脚5外接电容CT ,脚6外接电阻RT。

振荡器频率由外接电阻RT和电容CT决定,f=1/CT +3RD)此电路中,Rd放电电阻较小,所以形成的锯齿波波形后沿较陡。

振荡器的输出分为两路,一路以时钟脉冲形式送至双稳态触发器及两个或非门;另一路以锯齿波形式送至比较器的同相输入端,比较器的反向输入端接误差放大器的输出。

图2 振荡器电原理图3.误差放大器及补偿输入。

误差放大器是差动输入的放大器,其电原理结构图如图3所示。

误差放大器的输出与锯齿波电压在比较器中进行比较,输出一个随误差放大器输出电压高低而改变宽度的方波脉冲,再将此方波脉冲送到或非门的一个输入端。

或非门的另两个输入端分别为双稳态触发器和振荡器锯齿波。

图3 误差放大器电原理图4.锁存器。

比较器的输出送到PWM锁存器。

锁存器由关闭电路置位,由振荡器输出时间脉冲复位。

这样,当关闭电路动作,即使过流信号立即消失,锁存器也可维持一个周期的关闭控制,直到下一周期时钟信号使锁存器复位为止。

另外,由于PW M 锁存器对比较器来的置位信号进行锁存,将系统所有的跳动和振荡信号消除了。

只有在下一个时钟周期才能重新置位,有利于提高可靠性。

5.输出。

电原理图如图4所示。

11、12、14端连结在一起,由13端输出信号。

这样,能保证13端的输出与锁存器的输出一致。

此外,SG3525还有欠压锁定电路,闭锁控制电路,软起动电路。

图4 输出电原理图1/2部分图第三章SG3525的工作原理一、SPWM波的产生及传输脉宽调制器SG3525的振荡器产生的锯齿波信号如图5所示,锯齿波的顶点约为,谷点约为,锯齿波的频率可通过改变外接电容来改变。

锯齿波信号加在比较器的同相输入端,来自误差放大器的信号加在比较器的反相输入端,通过比较器进行比较,获得SPWM波。

触发器在CP脉冲控制下输出Q和Q,分别控制2个与非门,CP脉冲出现的时刻与锯齿波峰点对齐,CP脉冲下跳时刻与谷点对齐,这样可保证CP脉冲与锯齿波同步同频率变化。

经过与非门电路后输出生的波形,其频率是CP脉冲频率的1/2。

2个功率场效管的驱动信号是互补的,这样能够保证在任何时刻一个导通,另一个截止。

图5 锯齿波信号二、工作过程SG3525的软启动接入端(引脚8)上通常接一个5 F的软启动电容。

上电过程中,由于电容两端的电压不能突变,因此与软启动电容接入端相连的PWM比较器反向输入端处于低电平,PWM比较器输出高电平。

此时,PWM琐存器的输出也为高电平,该高电平通过两个或非门加到输出晶体管上,使之无法导通。

当软启动电容充电至使引脚8处于高电平时,SG3525才开始工作。

实际工作中,基准电压接误差放大器的同相输入端,输出电压的采样电压加在误差放大器的反相输入端上,当输出电压因输入电压的升高或负载的变化而升高时,误差放大器的输出将减小,这将导致PWM比较器输出高电平的时间变长,PWM琐存器输出高电平的时间也变长,因此输出晶体管的导通时间将最终变短,从而使输出电压回调到额定值,实现了稳定输出。

反之亦然。

外接关断信号对输出级和软启动电路都起作用。

当 Shutdown(引脚10)上的信号为高电平时,PWM琐存器将立即动作,禁止SG3525的输出,同时,软启动电容将开始放电。

如果该高电平持续,软启动电容将充分放电,直到关断信号结束,才重新进入软启动过程。

注意,Shutdown引脚不能悬空,应通过接地电阻可靠接地,以防止外部干扰信号耦合而影响SG3525的正常工作。

欠电压锁定功能同样作用于输出级和软启动电路。

如果输入电压过低,在SG 3525的输出被关断同时,软启动电容将开始放电。

此外,SG3525还具有以下功能,即无论因为什么原因造成PWM脉冲中止,输出都将被中止,直到下一个时钟信号到来,PWM琐存器才被复位。

第四章应用电路一、单端变换电路SG3525的输出级采用图腾柱式结构,其灌电流/拉电流能力超过200mA。

在单端变换器应用中,SG3525的两个输出端应接地,如图6所示,当输出晶体管开通时,R1上会有电流流过,R1上的压降将使VT1导通。

因此VT1是在SG3525内部的输出晶体管导通时间内导通的,因此其开关频率等于SG3525内部振荡器的频率。

图6 单端变换电路二、推挽输出电路当采用推挽式输出时,应采用如下结构,如图7所示。

VT1和VT2分别由SG3525的输出端A和输出端B输出的正向驱动电流驱动。

电阻R2和R3是限流电阻,是为了防止注入VT1和VT2的正向基极电流超出控制器所允许的输出电流。

C1和C2是加速电容,起到加速VT1和VT2导通的作用。

图7 推挽输出电路三、直接推动功率MOSFET电路由于SG3525的输出驱动电路是低阻抗的,而功率MOSFET的输入阻抗很高,因此输出端A和输出端B与VT1和VT2栅极之间无须串接限流电阻和加速电容,就可以直接推动功率MOSFET,如图8所示。

图8 直接推动功率MOSFET电路图四、小功率半桥式变压器驱动电路SG3525能够直接驱动半桥变换器中的小功率变压器。

变压器一次绕组的两端分别直接接到SG3525的两个输出端上,在死区时间内可以实现变压器的自动复位,如图9所示。

图9 小功率变压器直接驱动电路图第五章DC—DC直流变换电源设计一、性能指标输入电压为DC24~35V可调,输入额定电压为30V,输出为5V/1A。

二、系统设计图10 DC—DC直流电源原理图选用SG3525设计DC—DC直流变换器电源脉宽调制器,SG3525产生的两路互补方波控制MOSFET功率管的导通与截止,MOSFET驱动采用推挽连接结构,采用带中心抽头的变压器,在中心抽头处加入30V直流电压,输出部分采用全波整流,采用2.5~36V 可调式精密并联稳压器TL43l作为稳压反馈器件,在输出端采用分压电阻给TL431提供参考电压,并通过光电隔离方式反馈到SG3525误差放大器输入端,以调节控制输出方波占空比来稳定输出电压。

1.控制及驱动电路设计锯齿波生成电路由RT、CT和内部电路组成,因为是降压变换器,可采用较低频率的时钟,同时考虑到减小功耗,设计中取:CT=4700pF,RT=Ω,RD=100Ω,计算的振荡器输出频率:f=90kHz因此,PWM输出频率定为45kHz。

软启动电容接入端(引脚8)接一个1μF的软启动电容。

只有软启动电容充电使引脚8处于高电平时,SG3525才开始工作。

和同相输入端及外围电阻构成。

2脚系统中的基准比较调节电路则由基准引脚Vref的固定电压值接近5V。

SG3525的l、2、9脚及其外围电路构成PI调节电路,它的输出与5脚锯齿波和软启动电容一起控制PWM控制器以产生方波。

它的输出级11、14脚输出两路互补的PWM波,采用图腾柱式结构,灌拉电流能力超过200mA,可以直接驱动MOSFET功率管,在这里选用的是IR公司生产的IRF630。

2.反馈补偿电路设计为了确保输出的稳定,在+5V输出端引出反馈电压,采用~36V可调式精密并联稳压器TL43l作为稳压器件,TL43l是德州仪器公司生产的一款有良好热稳定性的三端可调分流基准源。

相关文档
最新文档