七下期末数学试卷一

合集下载

青岛版七年级下册数学期末试卷 (1)

青岛版七年级下册数学期末试卷 (1)

青岛版七年级下册数学期末试卷一、选择题(共12小题,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求)1.(3分)在平面直角坐标系中,点P(﹣3,1)所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限2.(3分)已知是方程x+ay=3的一个解,那么a的值为( )A.1B.﹣1C.2D.﹣23.(3分)2020年1月12日,世界卫生组织正式将2019新型冠状病毒命名为2019﹣nCoV.该病毒的直径约0.00000006米﹣0.00000012米,将0.00000012用科学记数法表示为a×10n 的形式,则n为( )A.﹣8B.﹣7C.7D.84.(3分)如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,∠1=27°40′,则∠2的度数是( )A.27°40′B.62°20′C.57°40′D.58°205.(3分)已知a=(﹣3)0,b=,c=(﹣2)﹣2,那么a,b,c的大小关系为( )A.a>b>c B.c>b>a C.b>a>c D.c>a>b6.(3分)(﹣5a2+4b2)( )=25a4﹣16b4,括号内应填( )A.5a2+4b2B.5a2﹣4b2C.﹣5a2﹣4b2D.﹣5a2+4b2 7.(3分)下列计算中正确的是( )A.2a6÷a3=2a3B.(2ab2)2=2a2b4C.2a2+3a2=5a4D.(a2)3=a58.(3分)《孙子算经》中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问长木多少尺?如果设长木长x尺,绳长y尺,则可以列方程组( )A.B.C.D.9.(3分)如图,△ABC中,D,E分别是BC,AD的中点,若△ABC的面积是10,则△ABE的面积是( )A.B.3C.D.510.(3分)已知a=2b﹣5,则代数式a2﹣4ab+4b2﹣5的值是( )A.20B.0C.﹣10D.﹣3011.(3分)如图,五边形ABCDE是正五边形,若l1∥l2,则∠1﹣∠2的值为( )A.120°B.108°C.90°D.72°12.(3分)如图,在平面直角坐标系中,放置半径为1的圆,圆心到两坐标轴的距离都等于半径,若该圆向x轴正方向滚动2017圈(滚动时在x轴上不滑动),此时该圆圆心的坐标为( )A.(2018,1)B.(4034π+1,1)C.(2017,1)D.(4034π,1)二、填空题(本题共5个小题,每小题3分,共15分,只要求写出最后结果13.(3分)已知方程3x+2y=6,用关于y的代数式表示x,则x= .14.(3分)在平面直角坐标系中,已知点A(2,﹣1),过点A作AB∥x轴,且AB=3,则点B的坐标是 .15.(3分)已知二次三项式x2+px+q因式分解的结果是(x﹣3)(x﹣5),则p+q= .16.(3分)已知点A(0,0),B(4,2),C(2,5),则△ABC的面积是.17.(3分)一机器人在平地上按如图设置的程序行走,则该机器人从开始到停止所行走的路程为 .三、解答题(本大题共8小题,共69分.解答要写出必要的文字说明、证明过程或演算步骤.)18.(5分)解方程组:.19.(12分)计算:(1)(﹣x)5•x÷(﹣x2);(2)(﹣2x)3(x2﹣12x+1);(3)﹣x(2x+1)﹣(2x+3)(1﹣x).20.(12分)分解因式:(1)(m+n)2﹣6(m+n)+9;(2)x3﹣x;(3)(a﹣b)(5a+2b)﹣(a+6b)(a﹣b).21.(8分)如图,在△ABC中,D是BC边上的一点,∠B=45°,∠BAD=30°,将△ABD 沿AD折叠得到△AED,AE与BC交于点F.(1)求∠AFC和∠EDF的度数;(2)若∠E:∠C=3:2,问:DE∥AC吗,请说明理由.22.(6分)如图所示,小刚家门口的商店在装修,他发现工人正在一块半径为R的圆形板材上,冲去半径为r的四个小圆,小刚测得R=6.8dm,r=1.6dm,他想知道剩余阴影部分的面积,你能利用所学过的因式分解的知识帮助小刚计算吗?请写出求解过程(结果保留π).23.(8分)已知:a﹣b=6,a2+b2=20,求下列代数式的值:(1)ab;(2)﹣a3b﹣2a2b2﹣ab3.24.(8分)阅读例题的解答过程,并解答(1)(2)两个问题.例:计算(a﹣2b+3)(a+2b﹣3)=[a﹣(2b﹣3)][a+(2b﹣3)]①=a2﹣(2b﹣3)2②=a2﹣4b2+12b﹣9③(1)例题求解过程中,利用了整体思想,其中①→②的变形依据是,②→③的变形依据是.(填整式乘法公式的名称)(2)用此方法计算:(a+2x﹣y﹣b)(a﹣2x+y﹣b).25.(10分)某中学七年级数学课外兴趣小组在探究:“n边形(n>3)共有多少条对角线”这一问题时,设计了如下表格,请在表格中的横线上填上相应的结果:应用得到的结果解决以下问题:①求十二边形有多少条对角线?②过多边形的一个顶点的所有对角线条数与这些对角线分多边形所得的三角形个数的和可能为2016吗?若能,请求出这个多边形的边数;若不能,请说明理由.参考答案与试题解析一、选择题(共12小题,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求)1.【分析】根据点的横纵坐标的符号可得所在象限.【解答】解:∵﹣3<0,1>0,∴点P(﹣3,1)所在的象限是第二象限,故选:B.2.【分析】把x=2,y=﹣1代入方程x+ay=3得出方程2﹣a=3,再求出方程的解即可.【解答】解:∵x=2,y=﹣1是方程x+ay=3的一个解,∴2﹣a=3,解得:a=﹣1,故选:B.3.【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000012=1.2×10﹣7,∴n=﹣7.故选:B.4.【分析】根据∠BAC=60°,∠1=27°40′,求出∠EAC的度数,再根据∠2=90°﹣∠EAC,即可求出∠2的度数.【解答】解:∵∠BAC=60°,∠1=27°40′,∴∠EAC=32°20′,∵∠EAD=90°,∴∠2=90°﹣∠EAC=90°﹣32°20′=57°40′;故选:C.5.【分析】根据负整数幂的意义以及零指数幂的意义即可求出答案.【解答】解:a=1,b=3,c=,∴c<a<b,故选:C.6.【分析】根据平方差公式的逆用找出这两个数写出即可.【解答】解:∵(﹣5a2+4b2)(﹣5a2﹣4b2)=25a4﹣16b4,∴应填:﹣5a2﹣4b2.故选:C.7.【分析】直接利用整式的除法运算法则以及积的乘方运算法则、合并同类项法则、幂的乘方运算法则分别计算得出答案.【解答】解:A.2a6÷a3=2a3,故此选项符合题意;B.(2ab2)2=4a2b4,故此选项不合题意;C.2a2+3a2=5a2,故此选项不合题意;D.(a2)3=a6,故此选项不合题意;故选:A.8.【分析】直接利用“绳长=木条+4.5;绳子=木条﹣1”分别得出等式求出答案.【解答】解:设木条长x尺,绳子长y尺,那么可列方程组为.故选:D.9.【分析】设△ABE的面积为x.利用三角形中线的性质推出△ABC的面积为4x,由此构建方程,可得结论.【解答】解:设△ABE的面积为x.∵E是AD的中点,∴AE=DE,∴S△ABE=S△BDE=x,∵D是BC的中点,∴BD=CD,∴S△ABD=S△ADC=2x,∴S△ABC=4x=10,∴x=,故选:C.10.【分析】首先根据a=2b﹣5,可得:a﹣2b=﹣5;然后把代数式a2﹣4ab+4b2﹣5化成(a﹣2b)2﹣5,求出算式的值即可.【解答】解:∵a=2b﹣5,∴a﹣2b=﹣5,∴a2﹣4ab+4b2﹣5=(a﹣2b)2﹣5=(﹣5)2﹣5=25﹣5=20.故选:A.11.【分析】过点B作直线BF∥l1,利用平行线的性质推导出∠1+∠3=180°,∠2+∠3=108°,两个式子相减即可.【解答】解:过点B作直线BF∥l1,∵l1∥l2,∴BF∥l2,∴∠2=∠4,∠1+∠3=180°①,∵正五边形的内角度数为:=108°,∴∠3+∠4=∠ABC=108°,∴∠2+∠3=108°②,①﹣②得∠1﹣∠2=180°﹣108°=72°.故选:D.12.【分析】由已知可得开始时该圆的圆心坐标为(1,1),在圆向右滚动时纵坐标不变,当该圆向x轴正方向滚动2017圈后,横坐标增加2017×2π,从而得到该圆向x轴正方向滚动2017圈后的圆心坐标.【解答】解:∵半径为1的圆,与两坐标轴相切,∴开始时该圆的圆心坐标为(1,1),∵圆的周长为2π,该圆向x轴正方向滚动2017圈,∴圆心的横坐标为1+2π×2017,纵坐标为1,即该圆的圆心坐标为(4034π+1,1).故选:B.二、填空题(本题共5个小题,每小题3分,共15分,只要求写出最后结果13.【分析】将y看作已知数,求出x即可.【解答】解:3x+2y=6,解得:x=.故答案为:.14.【分析】在平面直角坐标系中与x轴平行,则它上面的点纵坐标相同,可求B点纵坐标;与x轴平行,相当于点A左右平移,可求B点横坐标.【解答】解:∵AB∥x轴,∴点B纵坐标与点A纵坐标相同,为﹣1,又∵AB=3,可能右移,横坐标为2+3=5;可能左移横坐标为2﹣3=﹣1,∴B点坐标为(5,﹣1)或(﹣1,﹣1),故答案为:(5,﹣1)或(﹣1,﹣1).15.【分析】直接利用多项式乘多项式运算法则得出p,q的值,进而得出答案.【解答】解:∵x2+px+q=(x﹣3)(x﹣5),∴x2+px+q=x2﹣8x+15,故p=﹣8,q=15,则p+q=﹣8+15=7.故答案为:7.16.【分析】利用分割法把三角形面积看成矩形面积减去周围三个三角形面积即可.【解答】解:如图,S△ABC=4×5﹣×2×4﹣×2×3﹣×2×5=8,故答案为:8.17.【分析】该机器人所经过的路径是一个正多边形,利用360°除以45°,即可求得正多边形的边数,即可求得周长,即所行走的路程.【解答】解:该机器人所经过的路径是一个正多边形,360°÷45°=8,则所走的路程是:4×8=32(m).故答案为:32m.三、解答题(本大题共8小题,共69分.解答要写出必要的文字说明、证明过程或演算步骤.)18.【分析】方程组整理后,利用加减消元法求出解即可.【解答】解:方程组整理得:,①+②得:﹣6y=6,解得:y=﹣1,把y=﹣1代入②得:x﹣2=1,解得:x=3,则方程组的解为.19.【分析】(1)原式利用幂的乘方与积的乘方运算法则,以及单项式乘除单项式法则计算即可得到结果;(2)原式利用幂的乘方与积的乘方运算法则,以及单项式乘多项式法则计算即可得到结果;(3)原式利用单项式乘多项式法则,以及多项式乘多项式法则计算即可得到结果.【解答】解:(1)原式=﹣x5•x÷(﹣x2)=﹣x6÷(﹣x2)=x4;(2)原式=﹣8x3(x2﹣12x+1)=﹣8x5+96x4﹣8x3;(3)原式=(﹣2x2﹣x)﹣(2x﹣2x2+3﹣3x)=﹣2x2+x﹣2x+2x2﹣3+3x=2x﹣3.20.【分析】(1)把(m+n)看成一个整体,运用完全平方公式;(2)先提取公因式x,再用平方差公式;(3)先提取公因式,再写成幂的形式.【解答】解:(1)原式=[(m+n)﹣3]2=(m+n﹣3)2;(2)原式=x(x2﹣1)=x(x+1)(x﹣1);(3)原式=(a﹣b)(5a+2b﹣a﹣6b)=(a﹣b)(4a﹣4b)=4(a﹣b)2.21.【分析】(1)根据折叠求出∠BAD=∠DAF,根据三角形外角性质求出∠AFC的度数,由三角形内角和定理求出∠ADB,求出∠ADE,根据三角形外角性质求出∠ADF,即可求∠EDF的度数;(2)由题意可得∠C=∠EDF=30°,即可证DE∥AC.【解答】解:(1)∵△ABD沿AD折叠得到△AED,∴∠BAD=∠DAF,∵∠B=45°,∠BAD=30°,∴∠AFC=∠B+∠BAD+∠DAF=105°;∵∠B=45°,∠BAD=30°,∴∠ADB=180°﹣45°﹣30°=105°,∠ADC=45°+30°=75°,∵△ABD沿AD折叠得到△AED,∴∠ADE=∠ADB=105°,∴∠EDF=∠ADE﹣∠ADC=105°﹣75°=30°.(2)DE∥AC理由如下:∵△ABD沿AD折叠得到△AED,∴∠B=∠E=45°∵∠E:∠C=3:2∴∠C=30°∴∠C=∠EDF=30°∴DE∥AC22.【分析】根据剩余部分的面积=圆形板材的面积﹣四个小圆的面积,即可求解【解答】解:根据题意有:剩余部分的面积=圆形板材的面积﹣四个小圆的面积.剩余部分的面积=πR2﹣4πr2=π(R2﹣4r2)=π(R+2r)(R﹣2r),将R=6.8dm,r=1.6dm代入上式得:剩余部分的面积=π(R+2r)(R﹣2r)=π(6.8+3.2)(6.8﹣3.2)=36π(dm2).答:剩余部分的面积为:36πdm223.【分析】(1)把a﹣b=6两边平方,展开,即可求出ab的值;(2)先分解因式,再整体代入求出即可.【解答】解:(1)∵a﹣b=6,a2+b2=20,∴(a﹣b)2=36,∴a2﹣2ab+b2=36,∴﹣2ab=36﹣20=16,∴ab=﹣8;(2)∵a2+b2=20,ab=﹣8,∴﹣a3b﹣2a2b2﹣ab3=﹣ab(a2+2ab+b2)=﹣(﹣8)×(20﹣16)=32.24.【分析】(1)利用平方差公式,以及完全平方公式判断即可;(2)原式结合后,利用平方差公式,以及完全平方公式化简即可.【解答】解:(1)例题求解过程中,利用了整体思想,其中①→②的变形依据是平方差公式,②→③的变形依据是完全平方公式;(2)原式=(a﹣b)2﹣(2x﹣y)2=a2﹣2ab+b2﹣4x2+4xy﹣y2.故答案为:(1)平方差公式,完全平方公式.25.【分析】①由表格探求的n边形对角线的总条数:得出最终结果;②根据从n边形的一个顶点出发可引(n﹣3)条对角线,这些对角线分多边形所得的三角形个数为(n﹣2).【解答】解:①把n=12代入得,=54.∴十二边形有54条对角线.②不能.由题意得,n﹣3+n﹣2=2016,解得n=.∵多边形的边数必须是正整数,∴过多边形的一个顶点的所有对角线条数与这些对角线分多边形所得的三角形个数的和不可能为2016.。

初中数学精品试题:2022-2023学年七年级(下)期末数学测试卷(一)及答案

初中数学精品试题:2022-2023学年七年级(下)期末数学测试卷(一)及答案

2022-2023学年七年级(下)期末数学测试卷(一)班级姓名考生须知:1.本试卷分试题卷和答题卡两部分. 满分120分,考试时间100分钟.2.答题前,必须在答题卡填写校名、班级、姓名,正确涂写考试号.3.不允许使用计算器进行计算,凡题目中没有要求取精确值的,结果中应保留根号或π.一、选择题(共10小题,每小题3分,满分30分)1、要了解全校学生的课外作业负担情况,你认为以下抽样方法中比较合理的是()A.调查全体女生B.调查全体男生C.调查九年级全体学生D.调查七、八、九年级各50名学生2、下列式子从左到右变形是因式分解的是()A.a2+4a﹣21=a(a+4)﹣21 B.a2+4a﹣21=(a﹣3)(a+7)C.(a﹣3)(a+7)=a2+4a﹣21 D.a2+4a﹣21=(a+2)2﹣253、如图所示,在图形B到图形A的变化过程中,下列描述正确的是()A.向上平移2个单位,向左平移4个单位B.向上平移1个单位,向左平移4个单位C.向上平移2个单位,向左平移5个单位D.向上平移1个单位,向左平移5个单位(第3题) (第4题)4、从图1到图2的变化过程可以发现的代数结论是()A.(a+b)(a﹣b)=a2﹣b2B.a2﹣b2=(a+b)(a﹣b)C.(a+b)2=a2+2ab+b2D.a2+2ab+b2=(a+b)2A.∠1=∠2 B.∠1=∠5 C.∠1+∠3=180°D.∠3=∠5(第5题) (第8题)6、某停车场的收费标准如下:中型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆.现在停车场中共有中、小型汽车50辆,这些车共缴纳停车费230元.四名同学都设未知数x,y,并根据题意,分别列出以下四个方程组,其中不正确的是()A.B.C.D.7、已知﹣=4,则的值等于()A.6 B.﹣6 C.D.﹣8、如图,将△ABC沿AC方向平移1cm得到△DEF,若△ABC的周长为10cm.则四边形ABEF的周长为()A.10cm B.11cm C.12cm D.14cm9、若方程组的解x与y的和为3,则a的值为()A.7 B.4 C.0 D.﹣410、某公司员工分别在A、B、C三个住宅区,A区有30人,B区有30人,C区有10人,三个区在同一条直线上,如图所示,该公司的接送车打算在此间只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在()A.A区B.B区C.C区D.A、B两区之间二、填空题(共6小题,每小题4分,满分24分)11、在,﹣π,0,3.14,,0.3,,中,是无理数的有.422413、给出以下调查方式:(1)调查某批次汽车的搞撞击能力用全面调查;(2)了解某班学生的身高情况用全面调查;(3)调查春节联欢晚会的收视率用抽样调查;(4)调查市场上某种食品的色素含量是否合乎国家标准用抽样调查.你认为以上调查比较科学的是.(填序号)14、如图,点E在AC的延长线上,对于给出的四个条件:(1)∠3=∠4;(2)∠1=∠2;(3)∠A=∠DCE;(4)∠D+∠ABD=180°.能判断AB∥CD的有个.(第14题) (第16题)15、已知方程组有无数多解,则a=,m=.16、一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则大正方形的边长为,小正方形边长为,(用a、b的代数式表示),图②的大正方形中未被小正方形覆盖部分的面积是(用a,b的代数式表示).三、解答题(本题有7个小题,共66分)解答应写出证明过程或推演步骤.17、(6分)先化简,再求值:(+)÷,其中x=4.18、(8分)我们把选取二次三项式ax2+bx+c(a≠0)中的两项,配成完全平方式的过程叫配方.例如x2﹣4x+2=x2﹣4x+4﹣2=(x﹣2)2﹣2,根据上述材料,解决下面问题:(1)写出x2﹣8x+4的配方过程;(2)求出x2+y2﹣4x+8y+25的最小值.19、(8分)如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=60°,求∠ACB的度数.20、(10分)为丰富学生的课余生活,陶冶学生的情趣和爱好,某校开展可学生社团活动,为了解学生各类活动的参加情况,该校对2014-2015学年七年级学生社团活动进行了抽样调查,制作出如下的统计图.根据上述统计图,完成以下问题:(1)这次共调查了名学生;子啊扇形统计图中,表示“书法类”部分子啊扇形的圆心角是度.(2)请把统计图1补充完整.(3)已知该校2014-2015学年七年级共有学生1000名参加社团活动,请根据样本估算该校2014-2015学年七年级学生参加文学类社团的人数.21、(10分)已知关于x、y的方程组,给出下列结论:①当a=1时,方程组的解也是方程x+y=2的解;②当x=y时,a=﹣;③不论a取什么实数,2x+y的值始终不变;④若z=﹣xy,则z的最小值为﹣1.请判断以上结论是否正确,并说明理由.22、(12分)某超市用300元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?解:小明找到可第二次购进干果数量是第一次的2倍好多300千克这个等量关系,设该种干果第一次进价是每千克x元,则第二次进价是每千克(1+20%)x元,根据题意(请你接着完成本题的解答).23、(12分)一张如图1的长方形铁皮,四个角都剪去边长为30厘米的正方形,再四周折起,做成一个有底无盖的铁盒如图2,铁盒底面长方形的长是4a(cm),宽是3a(cm),这个无盖铁盒各个面的面积之和称为铁盒的全面积.(1)请用a的代数式表示图1中原长方形铁皮的面积;(2)若要在铁盒的各个外表面漆上某种油漆,每元钱可漆的面积为(cm2),则油漆这个铁盒需要多少钱(用a的代数式表示)?(3)铁盒的底面积是全面积的几分之几(用a的代数式表示)?若铁盒的底面积是全面积的,求a的值;(4)是否存在一个正整数a,使得铁盒的全面积是底面积的正整数倍?若存在,请求出这个a,若不存在,请说明理由.参考答案一、选择题1.D;2.B3、如图所示,在图形B到图形A的变化过程中,下列描述正确的是()A.向上平移2个单位,向左平移4个单位B.向上平移1个单位,向左平移4个单位C.向上平移2个单位,向左平移5个单位D.向上平移1个单位,向左平移5个单位解:观察图形可得:将图形A向下平移1个单位,再向右平移4个单位或先向右平移4个单位,再向下平移1个单位得到图形B.只有B符合.故选B.4、从图1到图2的变化过程可以发现的代数结论是()A.(a+b)(a﹣b)=a2﹣b2B.a2﹣b2=(a+b)(a﹣b)C.(a+b)2=a2+2ab+b2D.a2+2ab+b2=(a+b)2解:图1的面积为:(a+b)(a﹣b),图2的面积为:a2﹣(a﹣b+b)2=a2﹣b2,根据面积相等,可得:(a+b)(a﹣b)=a2﹣b2.故选:A.5、如图,下列条件中能判定直线l1∥l2的是()A.∠1=∠2 B.∠1=∠5 C.∠1+∠3=180°D.∠3=∠5解:A、根据∠1=∠2不能推出l1∥l2,故A选项错误;B、∵∠5=∠3,∠1=∠5,∴∠1=∠3,即根据∠1=∠5不能推出l1∥l2,故B选项错误;C、∵∠1+∠3=180°,∴l1∥l2,故C选项正确;D、根据∠3=∠5不能推出l1∥l2,故D选项错误;故选:C.6、某停车场的收费标准如下:中型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆.现在停车场中共有中、小型汽车50辆,这些车共缴纳停车费230元.四名同学都设未知数x,y,并根据题意,分别列出以下四个方程组,其中不正确的是()A.B.C.D.解:设中型汽车缴纳停车费x元,小型汽车缴纳停车费y元,由题意得,;设有x辆中型汽车,y辆小型汽车,由题意得,;设有x辆小型汽车,y辆中型汽车,由题意得,.则错误的为B.7、已知﹣=4,则的值等于()A.6 B.﹣6 C.D.﹣解:∵﹣=4,∴a﹣b=﹣4ab,∴原式====6.故选A.8、如图,将△ABC沿AC方向平移1cm得到△DEF,若△ABC的周长为10cm.则四边形ABEF的周长为()A.10cm B.11cm C.12cm D.14cm解:根据题意,将周长为10cm的△ABC沿AC向右平移1cm得到△DEF,∴BE=1cm,AF=AC+CF=AC+1cm,EF=BC;又∵AB+AC+BC=10cm,∴四边形ABEF的周长=BE+AB+AF+EF=1+AB+AC+1+BC=12cm.故选C.9、若方程组的解x与y的和为3,则a的值为()A.7 B. 4 C.0 D.﹣4解:由题意得:x+y=3①,将方程2x+3y=a代入方程3x+5y=a+4得:x+2y=4②,将①,②联立方程组:,解得:,将,代入方程2x+3y=a得:a=4+3=7.故选:A.10、某公司员工分别在A、B、C三个住宅区,A区有30人,B区有30人,C区有10人,三个区在同一条直线上,如图所示,该公司的接送车打算在此间只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在()A.A区B.B区C.C区D.A、B两区之间解:①设在A区、B区之间时,设距离A区x米,则所有员工步行路程之和=30x+30(100﹣x)+10(100+200﹣x),=30x+3000﹣30x+3000﹣10x,=﹣10x+6000,∴当x最大为100时,即在B区时,路程之和最小,为5000米;②设在B区、C区之间时,设距离B区x米,则所有员工步行路程之和=30(100+x)+30x+10=3000+30x+30x+2000﹣10x=50x+5000,∴当x最大为0时,即在B区时,路程之和最小,为5000米;综上所述,停靠点的位置应设在B区.故选B.二、填空题(共6小题,每小题4分,满分24分)11、在,﹣π,0,3.14,,0.3,,中,是无理数的有﹣π,﹣.解:是分数,故是有理数;﹣π是无限不循环小数,故是无理数;0是整数,故是有理数;3.14是小数,故是有理数;是开方开不尽的数,故是无理数;0.3是小数,故是有理数;=﹣7,﹣7是整数,故是有理数;是分数,故是有理数.故答案为:﹣π,﹣.12、因式分解:16m4﹣8m2n2+n4=(2m﹣n)2(2m+n)2.解:16m4﹣8m2n2+n4=(4m2﹣n2)2=(2m﹣n)2(2m+n)2.故答案为:(2m﹣n)2(2m+n)2.13、给出以下调查方式:(1)调查某批次汽车的搞撞击能力用全面调查;(2)了解某班学生的身高情况用全面调查;(3)调查春节联欢晚会的收视率用抽样调查;(4)调查市场上某种食品的色素含量是否合乎国家标准用抽样调查.你认为以上调查比较科学的是(2)(3)(4).(填序号)解:(1)调查具有破坏性,只能进行抽样调查,故(1)错误;(2)了解某班学生的身高情况用全面调查,调查对象容量小,进行全面调查较科学,故(2)正确;(3)调查春节联欢晚会的收视率用抽样调查,调查对象容量大,进行抽样调查较科学,故(3)正确;(4)调查市场上某种食品的色素含量是否合乎国家标准用抽样调查,具有破坏性,调查对象容量大,进行抽样调查较科学,故(4)正确.故答案为:(2)(3)(4).14、如图,点E在AC的延长线上,对于给出的四个条件:(1)∠3=∠4;(2)∠1=∠2;(3)∠A=∠DCE;(4)∠D+∠ABD=180°.能判断AB∥CD的有3个.解:(1)如果∠3=∠4,那么AC∥BD,故(1)错误;(2)∠1=∠2,那么AB∥CD;内错角相等,两直线平行,故(2)正确;(3)∠A=∠DCE,那么AB∥CD;同位角相等,两直线平行,故(3)正确;(4)∠D+∠ABD=180°,那么AB∥CD;同旁内角互补,两直线平行,故(4)正确.即正确的有(2)(3)(4).故答案为:3.15、已知方程组有无数多解,则a=3,m=﹣4.解:根据题意得:a=3,=3,解得:a=3,m=﹣4.故答案为:3;﹣416、一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则大正方形的边长为,小正方形边长为,(用a、b的代数式表示),图②的大正方形中未被小正方形覆盖部分的面积是ab(用a,b的代数式表示).解:根据图示可得:大正方形的边长为,小正方形边长为,大正方形中未被小正方形覆盖部分的面积是=()2﹣4×()2=a b.故答案为:;;a b.四、解答题(本题有7个小题,共66分)解答应写出证明过程或推演步骤.17、(6分)先化简,再求值:(+)÷,其中x=4.解:原式=[+]•=•=,当x=4时,原式==.18、(8分)我们把选取二次三项式ax2+bx+c(a≠0)中的两项,配成完全平方式的过程叫配方.例如x2﹣4x+2=x2﹣4x+4﹣2=(x﹣2)2﹣2,根据上述材料,解决下面问题:(1)写出x2﹣8x+4的配方过程;(2)求出x2+y2﹣4x+8y+25的最小值.解:(1)原式=x2﹣8x+16﹣12=(x﹣4)2﹣12;(2)原式=(x2﹣4x+4)+(y2+8y+16)+5=(x﹣2)2+(y+4)2+5,∵(x﹣2)2≥0,(y+4)2≥0,∴当x=2,y=﹣4时,原式最小值为5.19、(8分)如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=60°,求∠ACB的度数.解:(1)证明:∵CD⊥AB,EF⊥AB,∴∠CDB=∠EFB=90°,∴CD∥EF;(2)解:∵CD∥EF,∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC,∴∠3=∠ACB=60°.20、(10分)为丰富学生的课余生活,陶冶学生的情趣和爱好,某校开展可学生社团活动,为了解学生各类活动的参加情况,该校对2014-2015学年七年级学生社团活动进行了抽样调查,制作出如下的统计图.根据上述统计图,完成以下问题:(1)这次共调查了100名学生;子啊扇形统计图中,表示“书法类”部分子啊扇形的圆心角是72度.(2)请把统计图1补充完整.(3)已知该校2014-2015学年七年级共有学生1000名参加社团活动,请根据样本估算该校2014-2015学年七年级学生参加文学类社团的人数.解:(1)根据题意得:40÷40%=100(名);×360°=72°,故答案为:100;72;(2)艺术的人数为100﹣(40+20+30)=10(名),补全统计图,如图所示:(3)1000×=300(人),该校2014-2015学年七年级学生参加文学类社团的人数为300人.21、(10分)已知关于x、y的方程组,给出下列结论:①当a=1时,方程组的解也是方程x+y=2的解;②当x=y时,a=﹣;③不论a取什么实数,2x+y的值始终不变;④若z=﹣xy,则z的最小值为﹣1.请判断以上结论是否正确,并说明理由.解:关于x、y的方程组,解得:.①将a=1代入,得:,将x=4,y=﹣4代入方程左边得:x+y=0,右边=2,左边≠右边,本选项错误;②将x=y代入,得:,即当x=y时,a=﹣,本选项正确;③将原方程组中第一个方程×3,加第二个方程得:4x+2y=8,即2x+y=4,不论a取什么实数,2x+y的值始终不变,本选项正确;④z=﹣xy=﹣(a+3)(﹣2a﹣2)=a2+4a+3=(a+2)2﹣1≥﹣1,即若z=﹣xy,则z的最小值为﹣1,此选项正确.故正确的选项有:②、③、④.22、(12分)某超市用300元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?解:小明找到可第二次购进干果数量是第一次的2倍好多300千克这个等量关系,设该种干果第一次进价是每千克x元,则第二次进价是每千克(1+20%)x元,根据题意(请你接着完成本题的解答).解:(1)设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x 元,由题意,得=2×+300,解得x=5,经检验x=5是方程的解.答:该种干果的第一次进价是每千克5元;(2)[+﹣600]×9+600×9×80%﹣(3000+9000)=(600+1500﹣600)×9+4320﹣12000=1500×9+4320﹣12000=13500+4320﹣12000=5820(元).答:超市销售这种干果共盈利5820元.23、(12分)一张如图1的长方形铁皮,四个角都剪去边长为30厘米的正方形,再四周折起,做成一个有底无盖的铁盒如图2,铁盒底面长方形的长是4a(cm),宽是3a(cm),这个无盖铁盒各个面的面积之和称为铁盒的全面积.(1)请用a的代数式表示图1中原长方形铁皮的面积;(2)若要在铁盒的各个外表面漆上某种油漆,每元钱可漆的面积为(cm2),则油漆这个铁盒需要多少钱(用a的代数式表示)?(3)铁盒的底面积是全面积的几分之几(用a的代数式表示)?若铁盒的底面积是全面积的,求a的值;(4)是否存在一个正整数a,使得铁盒的全面积是底面积的正整数倍?若存在,请求出这个a,若不存在,请说明理由.解:(1)原铁皮的面积是(4a+60)(3a+60)=12a2+420a+3600;(2)油漆这个铁盒的表面积是:12a2+2×30×4a+2×30×3a=12a2+420a,则油漆这个铁盒需要的钱数是:(12a2+420a)÷=(12a2+420a)×=600a+21000(元);(3)铁盒的底面积是全面积的=;根据题意得:=,解得a=105;(4)铁盒的全面积是4a×3a+4a×30×2+3a×30×2=12a2+420a,底面积是12a2,假设存在正整数n,使12a2+420a=n(12a2)则(n﹣1)a=35,由题意可知a>>10,则a只能为35,n=2.所以存在铁盒的全面积是底面积的正整数倍,这时a=35.。

数学七年级下学期《期末测试卷》含答案

数学七年级下学期《期末测试卷》含答案

人 教 版 数 学 七 年 级 下 学 期期 末 测 试 卷学校________ 班级________ 姓名________ 成绩________本试卷满分为150分,考试时间为120分钟.卷Ⅰ选择题一、选择题(本大题共12个小题每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列实数中,最小的数是( ) A. 2- B. 0 C. 1 D. 382. 若x y >,则下列式子错误..的是( ). A. 33x y ->- B. 33x y > C. 22x y -<- D. 33x y ->- 3. 在下列四项调查中,方式正确的是( )A. 了解本市中学生每天学习所用的时间,采用全面调查的方式B. 为保证运载火箭的成功发射,对其所有的零部件采用抽样调查的方式C. 了解某市每天的流动人口数,采用全面调查的方式D. 了解全市中学生视力情况,采用抽样调查的方式4. 如图,将△ABC 平移后得到△DEF ,若∠A =44°,∠EGC =70°,则∠ACB 的度数是( )A. 26°B. 44°C. 46°D. 66°5. 若(m –2018)x |m|–2017+(n+4)y |n|–3=2018是关于x ,y 的二元一次方程,则( )A. m=±2018,n=±4B. m=–2018,n=±4C. m=±2018,n=–4D. m=–2018,n=46. 对于任意实数m,点P(m-2,9-3m)不可能()A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD交于点M,若∠B′MD=50°,则∠BEF的度数为()A. 50°B. 60°C. 70°D. 80°8. 若满足方程组33221x y mx y m+=+⎧⎨-=-⎩的x与y互为相反数,则m的值为()A. 11B. -1C. 1D. -119. 若关于x的不等式组式1332(1)3xax x-⎧-≥⎪⎨⎪--<⎩在实数范围内有解,则a的取值范围为()A. a>0B. a≥0C. a<0D. a≤010. 如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A. 132°B. 134°C. 136°D. 138°11. 某超市销售一批节能台灯,先以55元/个的价格售出60个,然后调低价格,以50元/个的价格将剩下的台灯全部售出,销售总额超过了5500元,这批台灯至少有( )A. 44个B. 45个C. 104个D. 105个12. 如图,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),…,则A2017的坐标为()A. (505,504)B. (505,-504)C. (-504,504)D. (-504,-504)卷Ⅱ非选择题二、填空题(本大题有6个小题,共24分.) 13. 3-7的相反数是____;|2-3|=____.14. 如图,直线//a b ,直线c 分别交a ,b 于点A ,C ,BAC∠的平分线交直线b 于点D ,若150∠=,则2∠的度数是_________.15. 3213{2312a b a b +=+=求3100()()a b a b ++-=___________. 16. 当x ____时,代数式-53x +1的值不大于12x +-1的值. 17. 若点A (-3,m +1)在第二象限的角平分线上,则m =_______.18. 111()P x y ,,222()P x y ,是平面直角坐标系中的任意两点,我们把1212x x y y +--叫做P 1,P 2两点间的“直角距离”,记作d (P 1,P 2);比如:点P (2,-4),Q (1,0),则d (P ,Q )=21405+-=--,已知Q (2,1),动点P (x ,y )满足d (P ,Q )=3,且x ,y 均为整数,则满足条件的点P 有________个.三、解答题:(本大题有7小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19. (1)2(32)32--(2)25{342x y x y -=+= 20. 解不等式组323(1){12123x x x x x +≥---+->-,并把解集数轴上表示出来. 21. 随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A (0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B (5001~10000步),C (10001~15000步),D (15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?22. 如图,已知BC∥GE,AF∥DE,∠1=50°.(1)求∠AFG的度数;(2)若AQ平分∠FAC,交BC于点Q,且∠Q=15°,求∠ACB的度数.23. 已知在平面直角坐标系中有A(-2,1), B(3, 1),C(2, 3)三点,请回答下列问题:(1)在坐标系内描出点A, B, C 的位置. (2)画出ABC关于直线x=-1对称的111A B C∆,并写出111A B C∆各点坐标. (3)在y轴上是否存在点P,使以A,B, P三点为顶点的三角形的面积为10?若存在,请直接写出点P的坐标:若不存在,请说明理由.24. “绿水青山就是金山银山”.为保护生态环境,A、B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元?(2)在人均支出费用不变的情况下,为节约开支,两村准备协调40人共同清理养鱼网箱和捕鱼网箱.要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?25. 已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系___;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E. F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.参考答案本试卷满分为150分,考试时间为120分钟.卷Ⅰ选择题一、选择题(本大题共12个小题每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列实数中,最小的数是( ) A.B. 0C. 1D. 【答案】A【解析】【分析】根据各项数字的大小排列顺序,找出最小的数即可.【详解】由题意得:01<<<最小的数为:故选A.【点睛】本题考查了实数大小的比较,解题的关键是理解正数大于0,0大于负数的知识.2. 若x y >,则下列式子错误..的是( ). A. 33x y ->- B. 33x y > C. 22x y -<- D. 33x y ->- 【答案】D【解析】【分析】利用不等式的性质判断即可得到结果.【详解】解:若x >y ,则有x-3>y-3;33x y >;-2x <-2y ; 3-x <3-y 故选D .【点睛】本题考查不等式的性质,熟练掌握不等式的性质是解本题的关键.3. 在下列四项调查中,方式正确的是( )A. 了解本市中学生每天学习所用的时间,采用全面调查的方式B. 为保证运载火箭的成功发射,对其所有的零部件采用抽样调查的方式C. 了解某市每天的流动人口数,采用全面调查的方式D. 了解全市中学生的视力情况,采用抽样调查的方式【详解】分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.详解:A、了解本市中学生每天学习所用的时间,调查范围广适合抽样调查,故A不符合题意;B、为保证运载火箭的成功发射,对其所有的零部件采用全面调查的方式,故B不符合题意;C、了解某市每天的流动人口数,无法普查,故C不符合题意;D、了解全市中学生的视力情况,采用抽样调查的方式,故D符合题意;故选D.点睛:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4. 如图,将△ABC平移后得到△DEF,若∠A=44°,∠EGC=70°,则∠ACB 的度数是()A. 26° B. 44° C. 46° D. 66°【答案】A【解析】【分析】由平移前后对应角相等及三角形的一个外角等于与它不相邻的两个内角的和得出.【详解】∵△ABC平移后得到△DEF,∴∠EDF=∠A=44°,∴∠ACB=∠EGC−∠EDF=26°.故选:A.【点睛】本题主要考查了平移的基本性质:①平移不改变图形的形状、大小和方向;②经过平移,对应点所连的线段平行或在同一直线上,对应线段平行且相等,对应角相等.同时考查了三角形的外角性质.5. 若(m–2018)x|m|–2017+(n+4)y|n|–3=2018是关于x,y的二元一次方程,则()A. m=±2018,n=±4B. m=–2018,n=±4C. m=±2018,n=–4D. m=–2018,n=4【分析】依据二元一次方程的定义求解即可.【详解】解:()()m 2017n 3m 2018x n 4y 2018---++=是关于x ,y 的二元一次方程,20180201714031m m n n -≠⎧⎪-=⎪∴⎨+≠⎪⎪-=⎩, 解得:m 2018=-、n 4=,故选D .【点睛】本题主要考查的是二元一次方程的定义,掌握二元一次方程的定义是解题的关键.依据二元一次方程的定义求解即可.6. 对于任意实数m ,点P (m -2,9-3m )不可能在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】【分析】根据点所在象限中横纵坐标的符号即可列不等式组,若不等式组无解,则不能在这个象限.【详解】A 、当点在第一象限时 20930m m -⎧⎨-⎩>>,解得2<m <3,故选项不符合题意; B 、当点第二象限时20930m m -⎧⎨-⎩<>,解得m <3,故选项不符合题意; C 、当点在第三象限时,20930m m -⎧⎨-⎩<<,不等式组无解,故选项符合题意; D 、当点在第四象限时20930m m -⎧⎨-⎩><,解得m >0,故选项不符合题意. 故选:C .【点睛】本题考查了点的坐标,理解每个象限中点的坐标的符号是关键.7. 如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD交于点M,若∠B′MD=50°,则∠BEF的度数为()A. 50°B. 60°C. 70°D. 80°【答案】C【解析】【分析】先由对顶角及直角三角形两锐角互余求出∠CFM=40°,再由折叠的性质求出∠EFC′的度数,进而求出∠EFD的度数,然后根据两直线平行内错角相等即可求出结论.【详解】∵∠B′MD=50°,∴∠C′FM=40°,∴∠EFC=∠EFC′=(180°+40°) ÷2=110°,∴∠EFD=110°-40°=70°.∵AB∥CD,∴∠BEF=∠EFD=70°.故选C.【点睛】本题主要考查了矩形性质,折叠的性质,及平行线的性质,熟练掌握相关的性质是解题的关键.8. 若满足方程组33221x y mx y m+=+⎧⎨-=-⎩的x与y互为相反数,则m的值为()A. 11B. -1C. 1D. -11 【答案】A【解析】【分析】由x与y互为相反数,得到y=-x,代入方程组计算即可求出m的值.【详解】解:由题意得:y= -x,代入方程组得:33221x x mx x m-++⎧⎨-⎩=①=②,消去x得:32123m m+-=,即3m+9=4m-2,解得:m=11.故选A.【点睛】本题考查解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.9. 若关于x的不等式组式1332(1)3xax x-⎧-≥⎪⎨⎪--<⎩在实数范围内有解,则a的取值范围为()A. a>0B. a≥0C. a<0D. a≤0【答案】A【解析】【分析】首先解关于x的不等式,不等式在实数范围内有解,则两个不等式的解集有公共部分,据此即可列出关于a的不等式,从而求得a的范围.【详解】解1332(1)3xax x-⎧-≥⎪⎨⎪--<⎩①②,解①得:x≤3a+1,解②得:x>1.根据题意得:3a+1>1,解得:a>0.故选:A.【点睛】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x大于较小的数、小于较大的数,那么解集为x介于两数之间.10. 如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A. 132°B. 134°C. 136°D. 138°【答案】B【解析】【详解】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.11. 某超市销售一批节能台灯,先以55元/个的价格售出60个,然后调低价格,以50元/个的价格将剩下的台灯全部售出,销售总额超过了5500元,这批台灯至少有( )A. 44个B. 45个C. 104个D. 105个【答案】D【解析】【分析】根据题意设出未知数,找出不等关系列出相应的不等式即可.【详解】设这批闹钟至少有x个,根据题意得5500×60+5000(x-60)>550000∴5000(x-60)>5500×40x-60>44∴x>104答:这批闹钟最少有105个.故选D.【点睛】本题考查了实际问题与一元一次不等式,解题的关键是理解题意,根据不等关系列出相应的不等式.12. 如图,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),…,则A2017的坐标为()A. (505,504)B. (505,-504)C. (-504,504)D. (-504,-504)【答案】B【解析】【分析】根据题意可得各个点分别位于象限的角平分线上(A1和第四象限内的点除外),逐步探索出下标和个点坐标之间的关系,总结出规律,根据规律推理点A2017的坐标.【详解】通过观察可得数字是4的倍数的点在第三象限,数字是4的倍数余1的点在第四象限,数字是4的倍数余2的点在第一象限,数字是4的倍数的点在第二象限,且各个点分别位于象限的角平分线上(A1和第四象限内的点除外),∵2017÷4=504…1,∴点A2017在第四象限,点A2016在第三象限,∵20164=504,∴A2016是第三象限的第504个点,∴A2016的坐标为(−504,−504),∴点A2017的坐标为(505,-504).故选:B.【点睛】此题主要考查了点的坐标,属于规律型题目,解答此类题目一定要先注意观察,本题第三象限的点的坐标特点比较好判断,我们可以利用这一点达到简化步骤的效果.卷Ⅱ非选择题二、填空题(本大题有6个小题,共24分.)13. 3-7的相反数是____;2____.【答案】(1). 37(2). 2【解析】【详解】分析:根据相反数的定义,绝对值的性质和立方根的定义分别计算即可求解. 详解:3-7的相反数是37;因为2 1.4143≈< ,所以|2-3|=-(2-3),故答案为 (1).37 (2). 3-2. 点睛:本题考查了实数的性质,主要利用了绝对值的性质,相反数的定义,属于基础题.14. 如图,直线//a b ,直线c 分别交a ,b 于点A ,C ,BAC ∠的平分线交直线b 于点D ,若150∠=,则2∠的度数是_________.【答案】80°【解析】【分析】直接利用角平分线的定义结合平行线的性质得出∠BAD =∠CAD =50︒,进而得出答案.【详解】∵∠BAC 的平分线交直线b 于点D ,∴∠BAD =∠CAD ,∵直线a ∥b ,∠1=50︒,∴∠BAD =∠CAD =50︒,∴∠2=180︒−50︒−50︒=80︒故答案为:80︒.【点睛】此题主要考查了平行线的性质,正确得出∠BAD =∠CAD =50︒是解题关键.15. 3213{2312a b a b +=+=求3100()()a b a b ++-=___________. 【答案】126【解析】【分析】两式相加求出+a b =5,两式相减求出-a b =1,代入即可求解.【详解】解32132312a b a b +=⎧⎨+=⎩①②,①+②得5a+5b=25 ∴+a b =5,①-②得-a b =1∴3100()()a b a b ++-=53+1100=126.【点睛】此题主要考查二元一次方程的求解,解题的关键是熟知加减消元法的运用.16. 当x ____时,代数式-53x +1的值不大于12x +-1的值. 【答案】≥-1【解析】 【详解】分析:根据题意中的不等关系,列不等式可求解.详解:由题意可得-53x +1≤12x +-1 解不等式可得x≥-1故答案为≥-1.点睛:此题主要考查了一元一次不等式的应用,解不等式即可求出x 的范围,关键是根据题目的不等关系列不等式.17. 若点A (-3,m +1)在第二象限的角平分线上,则m =_______.【答案】2【解析】【分析】根据第二象限角平分线上的点的横坐标与纵坐标互为相反数,可得答案.【详解】由题意,得-3+m+1=0,解得m =2,故答案为:2.【点睛】本题考查了点的坐标,利用第二象限角平分线上的点的横坐标与纵坐标互为相反数得出方程是解题关键.18. 111()P x y ,,222()P x y ,是平面直角坐标系中的任意两点,我们把1212x x y y +--叫做P 1,P 2两点间的“直角距离”,记作d (P 1,P 2);比如:点P (2,-4),Q (1,0),则d (P ,Q )=21405+-=--,已知Q (2,1),动点P (x ,y )满足d (P ,Q )=3,且x ,y 均为整数,则满足条件的点P 有________个.【答案】12【解析】【分析】由条件可得到|x−2|+|y−1|=3,分四种情况:①x−2=±3,y−1=0,②x−2=±2,y−1=±1,③x−2=±1,y−1=±2,④x−2=0,y−1=±3,进行讨论即可求解.【详解】依题意有|x−2|+|y−1|=3,①x−2=±3,y−1=0,解得11xy-⎧⎨⎩==,51xy⎧⎨⎩==;②x−2=±2,y−1=±1,解得xy⎧⎨⎩==,2xy⎧⎨⎩==,4xy⎧⎨⎩==,42xy⎧⎨⎩==;③x−2=±1,y−1=±2,解得11xy⎧⎨-⎩==,13xy⎧⎨⎩==,31xy⎧⎨-⎩==,33xy⎧⎨⎩==;④x−2=0,y−1=±3,解得22xy⎧⎨-⎩==,24xy⎧⎨⎩==.故满足条件的点P有12个.故答案为:12.【点睛】考查了两点间的距离公式,本题为新概念题目,理解题目中所给新定义是解题的关键,注意分类讨论思想的应用.三、解答题:(本大题有7小题,共78分.解答应写出文字说明、证明过程或演算步骤)19. (1)2-(2)25 {342 x yx y-=+=【答案】(1)2(2)21 xy=⎧⎨=-⎩【解析】【分析】(1)根据实数的性质进行化简即可求解;(2)根据加减消元法即可求解.【详解】(1)2-2=2(2)解:25 342 x yx y-=⎧⎨+=⎩①②①×4,得:8x-4y=20③③+②,得11x=22,x=2将x=2代入①,得y=-1所以方程组的解是21 xy=⎧⎨=-⎩.【点睛】此题主要考查实数的运算及二元一次方程的求解,解题的关键是熟知实数的运算及二元一次方程的求解方法.20. 解不等式组323(1) {12 123x xx xx+≥---+->-,并把解集数轴上表示出来.【答案】x≥0;作图见解析【解析】【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【详解】解:323(1)12123x xx xx+≥--⎧⎪⎨-+->-⎪⎩①②解不等式①,得:x≥0解不等式②,得x>-5把不等式组的解集在数轴上表示如下:∴不等式组的解集为x≥0.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21. 随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?【答案】(1)30;(2)①补图见解析;②120;③70人.【解析】【详解】分析:(1)由B类别人数及其所占百分比可得总人数;(2)①设D类人数为a,则A类人数为5a,根据总人数列方程求得a的值,从而补全图形;②用360°乘以A类别人数所占比例可得;③总人数乘以样本中C、D类别人数和所占比例.详解:(1)本次调查的好友人数为6÷20%=30人,故答案为30;(2)①设D类人数为a,则A类人数为5a,根据题意,得:a+6+12+5a=30,解得:a=2,即A类人数为10、D类人数为2,补全图形如下:②扇形图中,“A”对应扇形的圆心角为360°×1030=120°, 故答案为120; ③估计大约6月1日这天行走的步数超过10000步的好友人数为150×12230 =70人. 点睛:此题主要考查了条形统计图、扇形统计图的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22. 如图,已知BC∥GE ,AF∥DE ,∠1=50°.(1)求∠AFG 的度数;(2)若AQ 平分∠FAC ,交BC 于点Q,且∠Q=15°,求∠ACB 的度数.【答案】(1)50°;(2)80°.【解析】【分析】(1)先根据BC ∥EG 得出∠E=∠1=50°,再由AF ∥DE 可知∠AFG=∠E=50°;(2)作AM ∥BC ,由平行线的传递性可知AM ∥EG ,故∠FAM=∠AFG ,再根据AM ∥BC 可知∠QAM=∠Q ,故∠FAQ=∠AFM+∠FAQ ,再根据AQ 平分∠FAC 可知∠MAC=∠QAC+∠QAM=80°,根据AM ∥BC 即可得出结论.【详解】(1)∵BC ∥EG ,∴∠E=∠1=50°.∵AF ∥DE ,∴∠AFG=∠E=50°;(2)作AM ∥BC ,∵BC ∥EG ,∴AM ∥EG ,∴∠FAM=∠AFG=50°.∵AM ∥BC ,∴∠QAM=∠Q=15°,∴∠FAQ=∠AFM+∠MAQ=65°.∵AQ 平分∠FAC ,∴∠QAC=∠FAQ=65°,∴∠M AC=∠QAC+∠QAM=80°.∵AM ∥BC ,∴∠ACB=∠MAC=80°.考点:平行线的性质.23. 已知在平面直角坐标系中有 A(-2,1), B(3, 1),C(2, 3)三点,请回答下列问题:(1)在坐标系内描出点A , B , C 的位置.(2)画出ABC 关于直线x=-1对称的111A B C ∆,并写出111A B C ∆各点坐标.(3)在y 轴上是否存在点P ,使以A ,B , P 三点为顶点的三角形的面积为10?若存在,请直接写出点P 的坐标:若不存在,请说明理由.【答案】(1)画图见解析;(2)画图见解析;(3)存在,P 点为(0,5)或(0,-3);【解析】【分析】(1)首先在坐标系中确定A 、B 、C 三点位置,然后再连接即可;(2)首先确定A 、B 、C 三点关于x=-1的对称点位置,然后再连接即可;(3)详细见解析;【详解】解:(1)如图:△ABC 即为所求;(2)如图:111A B C ∆即为所求;各点坐标分别为:1A (0,1),1B (-51),,1C (43)-,; (3)解:设P (0,y ),∵A(-2,1),B(3,1),∴AB=5, ∴151=122ABP S AB y y ∆=⨯--, ∵ABP S ∆=10, ∴51=102y -, ∴1=4y -,∴y=5或y=-3;∴P(0,5)或(0,-3);【点睛】本题主要考查了作图-轴对称变换,掌握作图-轴对称变换是解题的关键.24. “绿水青山就是金山银山”.为保护生态环境,A、B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元?(2)在人均支出费用不变的情况下,为节约开支,两村准备协调40人共同清理养鱼网箱和捕鱼网箱.要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?【答案】(1)清理养鱼网箱和捕鱼网箱的人均支出费用分别为2000元,3000元(2)方案一:分配18人清理养鱼网箱,22人清理捕鱼网箱;方案二:分配19人清理养鱼网箱,21人清理捕鱼网箱.【解析】【分析】(1)设清理养鱼网箱的人均费用为x元,清理捕鱼网箱的人均费用为y元,根据A、B两村庄总支出列出关于x、y的方程组,解之可得;(2)设m人清理养鱼网箱,则(40−m)人清理捕鱼网箱,根据“总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数”列不等式组求解可得.【详解】解:(1)设清理养鱼网箱和捕鱼网箱的人均支出费用分别为x元、y元.根据题意,得15957000 101668000x yx y+=⎧⎨+=⎩解得20003000 xy=⎧⎨=⎩答:清理养鱼网箱和捕鱼网箱的人均支出费用分别为2000元,3000元.(2)设分配a人清理养鱼网箱,则分配(40-a)人清理捕鱼网箱.根据题意,得20003000(40)102000 40a aa a+-⎧⎨<-⎩解得18≤a<20.∵a为正整数,∴a=18或19∴一共有2种分配方案,分别为:方案一:分配18人清理养鱼网箱,22人清理捕鱼网箱;方案二:分配19人清理养鱼网箱,21人清理捕鱼网箱.【点睛】本题主要考查二元一次方程组和一元一次不等式组的应用,解题的关键是理解题意,找到题目蕴含的相等关系或不等关系,并据此列出方程或不等式组.25. 已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系___;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E. F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.【答案】(1)∠A+∠C=90°;(2)见解析;(3)105°.【解析】【分析】(1)根据平行线的性质以及直角三角形的性质进行解答即可;(2)先过点B作BG∥DM,根据同角的余角相等,得出∠ABD=∠CBG,再根据平行线的性质,得出∠C=∠CBG,即可得到∠ABD=∠C;(3)先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.【详解】(1)如图1,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°,故答案为∠A+∠C=90°;(2)如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,即∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN∥BG,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α, ∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,在△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=15°,∴∠ABE=15°, ∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【点睛】此题考查平行线的判定与性质,余角和补角,解题关键在于作出辅助线,灵活运用所学知识进行求解.。

【必考题】七年级数学下期末试题带答案(1)

【必考题】七年级数学下期末试题带答案(1)

【必考题】七年级数学下期末试题带答案(1)一、选择题1.如图,直线BC 与MN 相交于点O ,AO ⊥BC ,OE 平分∠BON ,若∠EON =20°,则∠AOM 的度数为( )A .40°B .50°C .60°D .70° 2.已知实数x ,y 满足254()0x y x y +-+-=,则实数x ,y 的值是( )A .22x y =-⎧⎨=-⎩B .00x y =⎧⎨=⎩C .22x y =⎧⎨=⎩D .33x y =⎧⎨=⎩3.《九章算术》中记载一问题如下:“今有共买鸡,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数、物价各多少?设有x 人,买鸡的钱数为y ,依题意可列方程组为( )A .8374x y x y +=⎧⎨+=⎩B .8374x y x y-=⎧⎨-=⎩ C .8374x y x y +=⎧⎨-=⎩ D .8374x y x y -=⎧⎨+=⎩4.已知关于x 的方程2x+a-9=0的解是x=2,则a 的值为 A .2 B .3 C .4D .5 5.方程组23x y a x y +=⎧⎨-=⎩的解为5x y b =⎧⎨=⎩,则a 、b 分别为( ) A .a=8,b=﹣2 B .a=8,b=2 C .a=12,b=2 D .a=18,b=86.已知4<m <5,则关于x 的不等式组0420x m x -<⎧⎨-<⎩的整数解共有( ) A .1个 B .2个 C .3个 D .4个7.如图,如果AB ∥CD ,那么下面说法错误的是( )A .∠3=∠7B .∠2=∠6C .∠3+∠4+∠5+∠6=180°D .∠4=∠88.下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有( )A .1个B .2个C .3个D .4个9.已知两个不等式的解集在数轴上如右图表示,那么这个解集为( )A .≥-1B .>1C .-3<≤-1D .>-310.用反证法证明命题“在三角形中,至多有一个内角是直角”时,应先假设( ) A .至少有一个内角是直角B .至少有两个内角是直角C .至多有一个内角是直角D .至多有两个内角是直角11.若点(),1P a a -在x 轴上,则点()2,1Q a a -+在第( )象限.A .一B .二C .三D .四12.已知a ,b 为两个连续整数,且a<191-<b,则这两个整数是( ) A .1和2 B .2和3 C .3和4 D .4和5 二、填空题13.已知不等式231x a -<<-的整数解有四个,则a 的范围是___________.14.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为_____.15.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问安排______名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套.16.若a ,b 均为正整数,且a 7,b 32a +b 的最小值是_______________.17.已知a 、b 满足(a ﹣1)22b +,则a+b=_____.18.关于x 的不等式组352223x x x a-≤-⎧⎨+>⎩有且仅有4个整数解,则a 的整数值是______________. 19.现有2019条直线1232019a a a a ,,,,,⋯且有12233445a a a a a a a a ⊥⊥P P ,,,,…,则直线1a 与2019a 的位置关系是___________.20.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是________________________三、解答题21.某校为了了解学生家长对孩子使用手机的态度情况,随机抽取部分学生家长进行问卷调查,发出问卷140份,每位学生的家长1份,每份问卷仅表明一种态度.将回收的问卷进行整理(假设回收的问卷都有效),并绘制了如下两幅不完整的统计图.学生家长对孩子使用手机的态度情况统计图根据以上信息回答下列问题:(1)回收的问卷数为份,“严加干涉”部分对应扇形的圆心角度数为;(2)把条形统计图补充完整;(3)若将“稍加询问”和“从来不管”视为“管理不严”,已知全校共1500名学生,请估计该校对孩子使用手机“管理不严”的家长大约有多少人?AB CD,点E在直线AB与CD之间,连接AE、CE,22.(1)(感知)如图①,//∠=∠+∠.下面给出了这道题的解题过程,请完成下面的解题过程试说明AEC A DCE(填恰当的理由).EF AB.证明:如图①过点E作//∴∠=∠(),A1Q(已知),EF//AB(辅助线作法),//AB CD∴(),EF CD//∴∠=∠(),2DCE12AEC ∠=∠+∠Q ,AEC A DCE ∴∠=∠+∠ ( ).(2)(探究)当点E 在如图②的位置时,其他条件不变,试说明360A AEC C ∠+∠+∠=︒.(3)(应用)如图③,延长线段AE 交直线CD 于点M ,已知130A ∠=︒,120DCE ∠=︒,则MEC ∠的度数为 .(请直接写出答案)23.问题情境在综合与实践课上,老师让同学们以“两条平行线AB ,CD 和一块含60°角的直角三角尺EFG(∠EFG =90°,∠EGF =60°)”为主题开展数学活动.操作发现(1)如图(1),小明把三角尺的60°角的顶点G 放在CD 上,若∠2=2∠1,求∠1的度数;(2)如图(2),小颖把三角尺的两个锐角的顶点E 、G 分别放在AB 和CD 上,请你探索并说明∠AEF 与∠FGC 之间的数量关系;结论应用(3)如图(3),小亮把三角尺的直角顶点F 放在CD 上,30°角的顶点E 落在AB 上.若∠AEG =α,则∠CFG 等于______(用含α的式子表示).24.一个工程队原定在10天内至少要挖土600m 3,在前两天一共完成了120m 3,由于整个工程调整工期,要求提前两天完成挖土任务.问以后几天内,平均每天至少要挖土多少m 3?25.已知关于,x y 的方程组354522x y ax by -=⎧⎨+=-⎩和2348x y ax by +=-⎧⎨-=⎩有相同解,求(a)b -值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】首先根据角的平分线的定义求得∠BON ,然后根据对顶角相等求得∠MOC ,然后根据∠AOM =90°﹣∠COM 即可求解.【详解】∵OE 平分∠BON ,∴∠BON =2∠EON =40°,∴∠COM =∠BON =40°,∵AO ⊥BC ,∴∠AOC =90°,∴∠AOM =90°﹣∠COM =90°﹣40°=50°.故选B .【点睛】本题考查了垂直的定义、角平分线的定义以及对顶角的性质,正确求得∠MOC 的度数是关键.2.C解析:C【解析】【分析】根据绝对值和平方的非负性,得到二元一次方程粗,求解即可得到答案.【详解】解:∵实数x ,y 满足254()0x y x y +-+-=, ∴40x y +-=且2()0x y -=,即400x y x y +-=⎧⎨-=⎩, 解得:22x y =⎧⎨=⎩,故选C.【点睛】本题只要考查了绝对值和平方的非负性,知道一个数的绝对值不可能为负数和平方后所得的数非负数是解题的关键.3.D解析:D【解析】【分析】一方面买鸡的钱数=8人出的总钱数-3钱,另一方面买鸡的钱数=7人出的总钱数+4钱,据此即可列出方程组.【详解】解:设有x人,买鸡的钱数为y,根据题意,得:8374x y x y-=⎧⎨+=⎩.【点睛】本题考查的是二元一次方程组的应用,正确理解题意、根据买鸡的总钱数不变列出方程组是解题关键.4.D解析:D【解析】∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,解得a=5.故选D.5.C解析:C【解析】试题解析:将x=5,y=b代入方程组得:10{53b ab+=-=,解得:a=12,b=2,故选C.考点:二元一次方程组的解.6.B解析:B【解析】【分析】先求解不等式组得到关于m的不等式解集,再根据m的取值范围即可判定整数解.【详解】不等式组0 420 x mx-<⎧⎨-<⎩①②由①得x<m;由②得x>2;∵m的取值范围是4<m<5,∴不等式组420x mx-<⎧⎨-<⎩的整数解有:3,4两个.故选B.【点睛】本题考查了一元一次不等式组的整数解,用到的知识点是一元一次不等式组的解法,m的取值范围是本题的关键.7.D解析:D【解析】【分析】【详解】根据两直线平行,内错角相等得到∠3=∠7,∠2=∠6;根据两直线平行,同旁内角互补得到∠3+∠4+∠5+∠6=180°.而∠4与∠8是AD和BC被BD所截形成得内错角,则∠4=∠8错误,故选D.8.C解析:C【解析】【分析】根据线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识一一判断即可.【详解】解:①两点之间,线段最短,正确.②连接两点之间的线段叫做这两点间的距离,错误,应该是连接两点之间的线段的距离叫做这两点间的距离.③经过直线外一点,有且只有一条直线与这条直线平行,正确.④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.正确.故选C.【点睛】本题考查线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.A解析:A【解析】>-3 ,≥-1,大大取大,所以选A10.B解析:B【解析】【分析】本题只需根据在反证法的步骤中,第一步是假设结论不成立,可据此进行分析,得出答案.【详解】根据反证法的步骤,则可假设为三角形中有两个或三个角是直角.故选B.【点睛】本题考查的知识点是反证法,解此题关键要懂得反证法的意义及步骤,反证法的步骤是:1.假设结论不成立;2.从假设出发推出矛盾;3.假设不成立,则结论成立.11.B解析:B【解析】【分析】由点P在x轴上求出a的值,从而得出点Q的坐标,继而得出答案.【详解】∵点P(a,a-1)在x轴上,∴a-1=0,即a=1,则点Q坐标为(-1,2),∴点Q在第二象限,故选:B.【点睛】此题考查点的坐标,解题的关键是掌握各象限及坐标轴上点的横纵坐标特点.12.C解析:C【解析】试题解析:∵45,∴3<4,∴这两个连续整数是3和4,故选C.二、填空题13.【解析】【分析】根据不等式2<x<3a-1的整数解有四个得出关于a的不等式组求解即可得出a的取值范围【详解】∵不等式2<x<3a-1的整数解有四个∴整数解为3456∴6<3a-1≤7∴故答案为:【点解析:78 33a <.【解析】【分析】根据不等式2<x<3a-1的整数解有四个,得出关于a的不等式组,求解即可得出a的取值范围.【详解】∵不等式2<x<3a-1的整数解有四个,∴整数解为3,4,5,6,∴6<3a-1≤7,∴78 33a≤<.故答案为:78 33a≤<.【点睛】本题考查了一元一次不等式组的整数解.关键是根据整数解的个数,确定含a的代数式的取值范围.14.(-2-2)【解析】【分析】先根据相和兵的坐标确定原点位置然后建立坐标系进而可得卒的坐标【详解】卒的坐标为(﹣2﹣2)故答案是:(﹣2﹣2)【点睛】考查了坐标确定位置关键是正确确定原点位置解析:(-2,-2)【解析】【分析】先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“卒”的坐标.【详解】“卒”的坐标为(﹣2,﹣2),故答案是:(﹣2,﹣2).【点睛】考查了坐标确定位置,关键是正确确定原点位置.15.25【解析】【分析】【详解】设需安排x名工人加工大齿轮安排y名工人加工小齿轮由题意得:解得:即安排25名工人加工大齿轮才能使每天加工的大小齿轮刚好配套故答案为25【点睛】本题考查理解题意能力关键是能解析:25【解析】【分析】【详解】设需安排x名工人加工大齿轮,安排y名工人加工小齿轮,由题意得:85316210x y x y +=⎧⎨⨯=⨯⎩,解得:2560x y =⎧⎨=⎩. 即安排25名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套.故答案为25.【点睛】本题考查理解题意能力,关键是能准确得知2个大齿轮和3个小齿轮配成一套,根据此正确列出方程.16.4【解析】【分析】先估算的范围然后确定ab 的最小值即可计算a+b 的最小值【详解】∵<<∴2<<3∵a>a 为正整数∴a 的最小值为3∵<<∴1<<2∵b<b 为正整数∴b 的最小值为1∴a+b 的最小值为3+解析:4【解析】【分析】的范围,然后确定a 、b 的最小值,即可计算a+b 的最小值.【详解】∴2<3,∵a ,a 为正整数,∴a 的最小值为3,∴1<2,∵b ,b 为正整数,∴b 的最小值为1,∴a+b 的最小值为3+1=4.故答案为:4.【点睛】此题考查了估算无理数的大小,解题的关键是:确定a 、b 的最小值.17.﹣1【解析】【分析】利用非负数的性质可得a-1=0b+2=0解方程即可求得ab 的值进而得出答案【详解】∵(a ﹣1)2+=0∴a=1b=﹣2∴a+b=﹣1故答案为﹣1【点睛】本题考查了非负数的性质熟知解析:﹣1【解析】【分析】利用非负数的性质可得a-1=0,b+2=0,解方程即可求得a ,b 的值,进而得出答案.【详解】∵(a ﹣1)2=0,∴a=1,b=﹣2,∴a+b=﹣1,故答案为﹣1.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.18.12【解析】【分析】求出每个不等式的解集根据已知得出不等式组的解集根据不等式组的整数解即可得出关于a的不等式组求出即可【详解】解不等式3x -5≤2x-2得:x≤3解不能等式2x+3>a得:x>∵不等解析:1,2【解析】【分析】求出每个不等式的解集,根据已知得出不等式组的解集,根据不等式组的整数解即可得出关于a的不等式组,求出即可.【详解】解不等式3x-5≤2x-2,得:x≤3,解不能等式2x+3>a,得:x>32a-,∵不等式组有且仅有4个整数解,∴-1≤32a-<0,解得:1≤a<3,∴整数a的值为1和2,故答案为:1,2.【点睛】本题考查了一元一次不等式组的整数解,解答本题的关键应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.垂直【解析】【分析】根据两直线平行同位角相等得出相等的角再根据垂直的定义解答进而得出规律:a1与其它直线的位置关系为每4个一循环垂直垂直平行平行根据此规律即可判断【详解】先判断直线a1与a3的位置关解析:垂直.【解析】【分析】根据两直线平行,同位角相等得出相等的角,再根据垂直的定义解答,进而得出规律:a1与其它直线的位置关系为每4个一循环,垂直、垂直、平行、平行,根据此规律即可判断.【详解】先判断直线a1与a3的位置关系是:a1⊥a3.理由如下:如图1,∵a1⊥a2,∴∠1=90°,∵a2∥a3,∴∠2=∠1=90°,∴a1⊥a3;再判断直线a1与a4的位置关系是:a1∥a4,如图2;∵直线a1与a3的位置关系是:a1⊥a3,直线a1与a4的位置关系是:a1∥a4,∵2019÷4=504…3,∴直线a1与a2015的位置关系是:垂直.故答案为:垂直.【点睛】本题考查了平行公理的推导,作出图形更有利于规律的发现以及规律的推导,解题的关键是:结合图形先判断几组直线的关系,然后找出规律.20.【解析】【分析】设绳索长为x尺竿子长为y尺根据索比竿子长一托折回索子却量竿却比竿子短一托即可得出关于xy的二元一次方程组【详解】解:根据题意得:故答案为:【点睛】本题考查了二元一次方程组的应用找准等解析:5 15 2x yx y+⎧⎪⎨-⎪⎩==【解析】【分析】设绳索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】解:根据题意得:515 2x yx y+⎧⎪⎨-⎪⎩==.故答案为:515 2x yx y+⎧⎪⎨-⎪⎩==.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.三、解答题21.(1)120,30°;(2)答案见解析;(3)1375人.【解析】【分析】(1)根据“从来不管”的人数和百分比求出总份数,根据总份数和严加干涉的分数求出百分比,然后计算圆心角的度数;(2)根据总分数求出稍加询问的人数,然后补全统计图;(3)根据题意求出“从来不管”和“稍加询问”的百分比求出全校的人数.【详解】解:(1)30÷25%=120(人)10÷120×360°=30°故答案为:120,30°(2)如图所示:(3)1500×3080120=1375(人)则估计该校对孩子使用手机“管理不严”的家长大约有1375人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了利用样本估计总体.22.(1)见解析;(2)证明见解析;(3)70°.【解析】【分析】(1)根据平行线的性质、平行公理的推论和等量代换依次解答即可;(2)如图④,过点E作//EF AB,根据平行线的性质、平行公理的推论解答即可;(3)由(2)题的结论可求出∠AEC的度数,进而可得答案.【详解】解:(1)证明:如图①,过点E作//EF AB,1A ∴∠=∠(两直线平行,内错角相等), //AB CD Q (已知),EF //AB (辅助线作法),//EF CD ∴(平行于同一条直线的两直线互相平行),2DCE ∴∠=∠(两直线平行,内错角相等),12AEC ∠=∠+∠Q ,AEC A DCE ∴∠=∠+∠ (等量代换);(2)证明:如图④,过点E 作//EF AB ,180A AEF ∴∠+∠=︒(两直线平行,同旁内角互补),//AB CD Q (已知),//EF AB (辅助线作法),//EF CD ∴(平行于同一条直线的两直线互相平行),180C CEF ∴∠+∠=︒(两直线平行,同旁内角互补),180180360A AEC C A AEF CEF C ∴∠+∠+∠=∠+∠+∠+∠=︒+=︒;(3)解:由(2)题的结论知:360A AEC C ∠+∠+∠=︒,∴360360*********AEC A C ∠=︒-∠-∠=︒-︒-︒=︒,∴∠MEC =180AEC ︒-∠=70°. 故答案为:70°. 【点睛】本题主要考查了平行线的性质、平行公理的推论等知识,属于常考题型,熟练掌握平行线的性质是解题关键.23.(1)∠1=40°;(2)∠AEF+∠GFC =90°;(3)60°﹣α.【解析】【分析】(1)依据AB ∥CD ,可得∠1=∠EGD ,再根据∠2=2∠1,∠FGE =60°,即可得出∠EGD 13=(180°﹣60°)=40°,进而得到∠1=40°; (2)根据AB ∥CD ,可得∠AEG +∠CGE =180°,再根据∠FEG +∠EGF =90°,即可得到∠AEF +∠GFC =90°;(3)根据AB ∥CD ,可得∠AEF +∠CFE =180°,再根据∠GFE =90°,∠GEF =30°,∠AEG =α,即可得到∠GFC =180°﹣90°﹣30°﹣α=60°﹣α.【详解】(1)如图1.∵AB ∥CD ,∴∠1=∠EGD .又∵∠2=2∠1,∴∠2=2∠EGD.又∵∠FGE=60°,∴∠EGD13=(180°﹣60°)=40°,∴∠1=40°;(2)如图2.∵AB∥CD,∴∠AEG+∠CGE=180°,即∠AEF+∠FEG+∠EGF+∠FGC=180°.又∵∠FEG+∠EGF=90°,∴∠AEF+∠GFC=90°;(3)如图3.∵AB∥CD,∴∠AEF+∠CFE=180°,即∠AEG+∠FEG+∠EFG+∠GFC=180°.又∵∠GFE=90°,∠GEF=30°,∠AEG=α,∴∠GFC=180°﹣90°﹣30°﹣α=60°﹣α.故答案为:60°﹣α.【点睛】本题考查了平行线的性质的运用,解决问题的关键是掌握:两直线平行,同旁内角互补.24.80m3【解析】试题分析:设以后几天内,平均每天要挖掘xm3土方,根据题意可知原定在10天,已经干了两天,还要求提前2天,即为要6天至少挖掘(600-120)m3的土方,根据题意可得不等式,解不等式即可.试题解析:设平均每天挖土x m3,由题意得:(10﹣2﹣2)x≥600﹣120,解得:x≥80.答:平均每天至少挖土80m3.点睛:本题考查了一元一次不等式的应用,关键是弄清题意,清楚600m3的土方到底要用几天干完.25.-8.【解析】试题分析:因为两个方程组有相同的解,故只要将两个方程组中不含有a,b的两个方程联立,组成新的方程组,求出x和y的值,再代入含有a,b的两个方程中,解关于a,b的方程组即可得出a,b的值.试题解析:因为两组方程组有相同的解,所以原方程组可化为方程组①35234x yx y-=⎧⎨+=-⎩和方程组②45228ax byax by+=-⎧⎨-=⎩,解方程组①,得12 xy=⎧⎨=-⎩,代入②得4102228a ba b-=-⎧⎨+=⎩,解得23ab=⎧⎨=⎩,所以(-a)b=(-2)3=-8.【点睛】本题考查了同解方程组,考查了学生对方程组有公共解定义的理解能力及应用能力,解题的关键是将所给的两个方程组进行重新组合.。

人教版七年级数学下册期末测试题+答案解析(共四套)

人教版七年级数学下册期末测试题+答案解析(共四套)

⼈教版七年级数学下册期末测试题+答案解析(共四套)B ′C ′D ′O ′A ′O DC BA(第8题图)⼀、选择题(每⼩题3分,计24分,请把各⼩题答案填到表格内)题号 1 2 3 4 5 6 78 总分答案1.如图所⽰,下列条件中,不能..判断l 1∥l 2的是 A .∠1=∠3 B .∠2=∠3 C.∠4=∠5 D.∠2+∠4=180° 2.为了了解某市5万名初中毕业⽣的中考数学成绩,从中抽取500名学⽣的数学成绩进⾏统计分析,那么样本是 A .某市5万名初中毕业⽣的中考数学成绩 B .被抽取500名学⽣(第1题图)C .被抽取500名学⽣的数学成绩D .5万名初中毕业⽣ 5.有⼀个两位数,它的⼗位数数字与个位数字之和为5,则符合条件的数有 A .4个 B .5个 C .6个D .⽆数个 7.下列事件属于不确定事件的是A .太阳从东⽅升起B .2010年世博会在上海举⾏C .在标准⼤⽓压下,温度低于0摄⽒度时冰会融化D .某班级⾥有2⼈⽣⽇相同 8.请仔细观察⽤直尺和圆规.....作⼀个⾓∠A ′O ′B ′等于已知⾓∠AOB 的⽰意图,请你根据所学的图形的全等这⼀章的知识,说明画出∠A ′O ′B ′=∠AOB 的依据是 A .SAS B .ASA C .AASD .SSS⼆、填空题(每⼩题3分,计24分)9.⽣物具有遗传多样性,遗传信息⼤多储存在DNA 分⼦上.⼀个DNA 分⼦的直径约为0.0000002cm .这个数量⽤科学记数法可表⽰为 cm . 10.将⽅程2x+y=25写成⽤含x 的代数式表⽰y 的形式,则y= . 11.如图,AB∥CD,∠1=110°,∠ECD=70°,∠E 的⼤⼩是 °. 12.三⾓形的三个内⾓的⽐是1:2:3,则其中最⼤⼀个内⾓的度数是 °.13.掷⼀枚硬币30次,有12次正⾯朝上,则正⾯朝上的频率为 .14.不透明的袋⼦中装有4个红球、3个黄球和5个蓝球,每个球除颜⾊不同外其它都相同,从中任意摸出⼀个球,则摸出球的可能性最⼩. 15.下表是⾃18世纪以来⼀些统计学家进⾏抛硬币试验所得的数据:试验者试验次数n 正⾯朝上的次数m正⾯朝上的频率nm布丰 4040 2048 0.5069 德·摩根 4092 2048 0.5005 费勤1000049790.4979那么估计抛硬币正⾯朝上的概率的估计值是 . 16.如图,已知点C 是∠AOB 平分线上的点,点P 、P′分别在OA 、OB 上,如果要得到OP =OP′,需要添加以下条件中的某⼀个即可:①PC=P′C;②∠OPC=∠OP′C;③∠OCP=∠OCP′;④PP′⊥OC.请你写出⼀个正确结果的序号:.三、解答题(计72分)17.(本题共8分)如图,⽅格纸中的△ABC 的三个顶点分别在⼩正⽅形的顶点(格点)上,称为格点三⾓形.请在⽅格纸上按下列要求画图.在图①中画出与△ABC 全等且有⼀个公共顶点的格点△C B A ''';在图②中画出与△ABC 全等且有⼀条公共边的格点△C B A ''''''.20.解⽅程组:(每⼩题5分,本题共10分)(1)=+-=300342150y x yx (2)=+=+300%25%53%5300y x y x 21.(本题共8分)已知关于x 、y 的⽅程组=+=+73ay bx by ax 的解是==12y x ,求a b +的值.OAC P P′(第16题图)(第16题图)22.(本题共9分)如图,AB=EB ,BC=BF ,CBF ABE ∠=∠.EF 和AC 相等吗?为什么?23.(本题9分)⼩王某⽉⼿机话费中的各项费⽤统计情况见下列图表,请你根据图表信息完成下列各题:(2)请将条形统计图补充完整. (3)扇形统计图中,表⽰短信费的扇形的圆⼼⾓是多少度?24.(本题4+8=12分)上海世博会会期为2010年5⽉1⽇⾄2010年10⽉31⽇。

2022-2023学年七年级(下)期末数学试卷 解析版

2022-2023学年七年级(下)期末数学试卷  解析版

七年级(下)期末数学试卷一、选择题(每小题3分,共42分)1.(3分)下列各式中,正确的是()A.=±5 B.=﹣6 C.=﹣3 D.﹣=3 2.(3分)下列调查,样本具有代表性的是()A.了解全校同学对课程的喜欢情况,对某班男同学进行调查B.了解观众对所看电影的评价情况,对座号是奇数号的观众进行调查C.了解商场的平均日营业额,选在周末进行调查D.了解某小区居民的防火意识,对你们班同学进行调查3.(3分)已知实数a、b,若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.2+a<2+b C.﹣>﹣D.3a>3b4.(3分)下列说法:①;②数轴上的点与实数成一一对应关系;③﹣2是的平方根;④任何实数不是有理数就是无理数;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,正确的个数有()A.2个B.3个C.4个D.5个5.(3分)如图,OA⊥OB,∠BOC=50°,OD平分∠AOC,则∠BOD 的度数是()A.20o B.30o C.40o D.50o 6.(3分)如图,把长方形ABCD沿EF按图那样折叠后,A、B分别落在G、H点处,若∠1=50°,则∠AEF=()A.110°B.115°C.120°D.125°7.(3分)如图,已知a∥b,直角三角板的直角顶点在直线a上,若∠1=30°,则∠2等于()A.30°B.40°C.50°D.60°8.(3分)如果方程组与有相同的解,则a,b的值是()A.B.C.D.9.(3分)用加减法解方程组时,如果消去y,最简捷的方法是()A.①×4﹣②×3 B.①×4+②×3 C.②×2﹣①D.②×2+①10.(3分)如图,A,B的坐标为(1,0),(0,2),若将线段AB 平移至A1B1,则a﹣b的值为()A.1 B.﹣1 C.0 D.2 11.(3分)对于非零的两个实数a,b,规定a⊕b=am﹣bn,若3⊕(﹣5)=15,4⊕(﹣7)=28,则(﹣1)⊕2的值为()A.﹣13 B.13 C.2 D.﹣2 12.(3分)已知,满足方程组,则n﹣m的值是()A.2 B.﹣1 C.﹣D.﹣2 13.(3分)若关于x的一元一次不等式组的解集是x <5,则m的取值范围是()A.m≥5 B.m>5 C.m≤5 D.m<5 14.(3分)如图,已知直线AB、CD被直线AC所截,AB∥CD,E 是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE =α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④二、填空题(本题5个小题,每小题3分,共15分)15.(3分)两个同样的直角三角板如图所示摆放,使点F,B,E,C 在一条直线上,则有DF∥AC,理由是.16.(3分)如图,两个直角三角形重叠在一起,将其中一个沿点B 到点C的方向平移到△DEF的位置,AB=10,DH=4,平移距离为6,则阴影部分的面积.17.(3分)已知AB∥x轴,A点的坐标为(3,2),并且AB=5,则B的坐标为.18.(3分)已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是5,10,6,7,第五组的频率是0.2,故第六组的频数是.19.(3分)如图,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2021秒时,点P的坐标是.三、解答题(本题7个小题,共63分)20.(12分)(1)计算2+++|﹣2|;(2)解方程组:;(3)解不等式组:,并把解集在数轴上表示出来.21.(8分)“校园手机”现象越来越受到社会的关注.“寒假”期间,某校小记者随机调查了某地区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:(1)求这次调查的家长人数,并补全图1;(2)求图2中表示家长“赞成”的圆心角的度数;(3)已知某地区共6500名家长,估计其中反对中学生带手机的大约有多少名家长?22.(10分)已知点P(2a﹣2,a+5),解答下列各题.(1)点P在x轴上,求出点P的坐标.(2)点Q的坐标为(4,5),直线PQ∥y轴;求出点P的坐标.(3)若点P在第二象限,且它到x轴、y轴的距离相等,求a2022+2022的值.23.(10分)如图:在四边形ABCD中,A、B、C、D四个点的坐标分别是:(﹣2,0)、(0,6)、(4,4)、(2,0)现将四边形ABCD 先向上平移1个单位,再向左平移2个单位,平移后的四边形是A'B'C′D'(1)请画出平移后的四边形A'B'C′D'(不写画法),并写出A'、B'、C′、D'四点的坐标.(2)若四边形内部有一点P的坐标为(a,b)写点P的对应点P′的坐标.(3)求四边形ABCD的面积.24.(11分)为积极响应政府提出的“绿色发展•低碳出行”号召,某社区决定购置一批共享单车.经市场调查得知,购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元.(1)求男式单车和女式单车的单价;(2)该社区要求男式单车比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费用不超过50000元,该社区有几种购置方案?怎样购置才能使所需总费用最低,最低费用是多少?25.(12分)已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.参考答案与试题解析一、选择题(每小题3分,共42分)1.(3分)下列各式中,正确的是()A.=±5 B.=﹣6 C.=﹣3 D.﹣=3 【分析】直接利用立方根以及算术平方根的定义分析得出答案.【解答】解:A、=5,故此选项错误;B、=6,故此选项错误;C、=﹣3,正确;D、﹣=﹣3,故此选项错误;故选:C.2.(3分)下列调查,样本具有代表性的是()A.了解全校同学对课程的喜欢情况,对某班男同学进行调查B.了解观众对所看电影的评价情况,对座号是奇数号的观众进行调查C.了解商场的平均日营业额,选在周末进行调查D.了解某小区居民的防火意识,对你们班同学进行调查【分析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.【解答】解:A、了解全校同学对课程的喜欢情况,对某班男同学进行调查,不具代表性、广泛性,故A错误;B、了解观众对所看电影的评价情况,对座号是奇数号的观众进行调查,调查具有代表性、广泛性,故B正确;C、了解商场的平均日营业额,选在周末进行调查,调查不具有代表性、广泛性,故C错误;D、了解某小区居民的防火意识,对你们班同学进行调查,调查不具代表性、广泛性,故D错误;故选:B.3.(3分)已知实数a、b,若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.2+a<2+b C.﹣>﹣D.3a>3b【分析】根据①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变进行分析即可.【解答】解:A、若a>b,则a﹣5>b﹣5,故原题计算错误;B、若a>b,则2+a>2+b,故原题计算错误;C、若a>b,则﹣<﹣,故原题计算错误;D、若a>b,则3a>3b,故原题计算正确;故选:D.4.(3分)下列说法:①;②数轴上的点与实数成一一对应关系;③﹣2是的平方根;④任何实数不是有理数就是无理数;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,正确的个数有()A.2个B.3个C.4个D.5个【分析】①根据算术平方根的性质即可判定;②根据实数与数轴上的点的对应关系即可判定;③根据平方根的定义即可判定;④根据实数的分类即可判定;⑤根据无理数的性质即可判定;⑥根据无理数的定义即可判断.【解答】解:①=10,故说法错误;②数轴上的点与实数成一一对应关系,故说法正确;③﹣2是的平方根,故说法正确;④任何实数不是有理数就是无理数,故说法正确;⑤两个无理数的和还是无理数,如与﹣的和是0,是有理数,故说法错误;⑥无理数都是无限小数,故说法正确.故正确的是②③④⑥共4个.故选:C.5.(3分)如图,OA⊥OB,∠BOC=50°,OD平分∠AOC,则∠BOD 的度数是()A.20o B.30o C.40o D.50o【分析】根据垂线的定义,可得∠AOB,根据角的和差,可得∠AOC,根据角平分线的定义,可得∠COD,根据角的和差,可得答案.【解答】解:∵OA⊥OB,∴∠AOB=90°,∵∠AOC=∠AOB+∠BOC,∠BOC=50°,∴∠AOC=50°+90°=140°.∵OD平分∠AOC,∴∠COD=∠AOC=×140°=70°.∵∠BOD=∠COD﹣∠BOC=70°﹣50°=20°,故选:A.6.(3分)如图,把长方形ABCD沿EF按图那样折叠后,A、B分别落在G、H点处,若∠1=50°,则∠AEF=()A.110°B.115°C.120°D.125°【分析】如图,证明∠AEF+∠BFE=180°;借助翻折变换的性质求出∠BFE,即可解决问题.【解答】解:如图,∵四边形ABCD为长方形,∴AE∥BF,∠AEF+∠BFE=180°;由折叠变换的性质得:∠BFE=∠HFE,而∠1=50°,∴∠BFE=(180°﹣50°)÷2=65°,∴∠AEF=180°﹣65°=115°.故选:B.7.(3分)如图,已知a∥b,直角三角板的直角顶点在直线a上,若∠1=30°,则∠2等于()A.30°B.40°C.50°D.60°【分析】先根据余角的定义求出∠3的度数,再由平行线的性质即可得出结论.【解答】解:∵直角三角板的直角顶点在直线a上,∠1=30°,∴∠3=60°,∵a∥b,∴∠2=∠3=60°,故选:D.8.(3分)如果方程组与有相同的解,则a,b的值是()A.B.C.D.【分析】因为两个方程组有相同的解,故只需把两个方程组中不含未知数和含未知数的方程分别组成方程组,求出未知数的值,再代入另一组方程组即可.【解答】解:由已知得方程组,解得,代入,得到,解得.故选:A.9.(3分)用加减法解方程组时,如果消去y,最简捷的方法是()A.①×4﹣②×3 B.①×4+②×3 C.②×2﹣①D.②×2+①【分析】利用加减消元法判断即可.【解答】解:用加减法解方程组时,如果消去y,最简捷的方法是②×2+①.故选:D.10.(3分)如图,A,B的坐标为(1,0),(0,2),若将线段AB 平移至A1B1,则a﹣b的值为()A.1 B.﹣1 C.0 D.2【分析】根据点A和A1的坐标确定出横向平移规律,点B和B1的坐标确定出纵向平移规律,然后求出a、b,再代入代数式进行计算即可得解.【解答】解:∵A(1,0),A1(3,b),B(0,2),B1(a,4),∴平移规律为向右3﹣1=2个单位,向上4﹣2=2个单位,∴a=0+2=2,b=0+2=2,∴a﹣b=2﹣2=0.故选:C.11.(3分)对于非零的两个实数a,b,规定a⊕b=am﹣bn,若3⊕(﹣5)=15,4⊕(﹣7)=28,则(﹣1)⊕2的值为()A.﹣13 B.13 C.2 D.﹣2【分析】根据已知规定及两式,确定出m、n的值,再利用新规定化简原式即可得到结果.【解答】解:根据题意得:3⊕(﹣5)=3m+5n=15,4⊕(﹣7)=4m+7n=28∴,解得:∴(﹣1)⊕2=﹣m﹣2n=35﹣48=﹣13故选:A.12.(3分)已知,满足方程组,则n﹣m的值是()A.2 B.﹣1 C.﹣D.﹣2【分析】把代入,再让两式相减,即可得出n﹣m的值,继而可得答案.【解答】解:根据题意知,①﹣②,得:﹣m+n=﹣2,即n﹣m=﹣2,∴n﹣m=(n﹣m)=﹣1,故选:B.13.(3分)若关于x的一元一次不等式组的解集是x <5,则m的取值范围是()A.m≥5 B.m>5 C.m≤5 D.m<5 【分析】求出第一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了即可确定m的范围.【解答】解:解不等式2x﹣1>3(x﹣2),得:x<5,∵不等式组的解集为x<5,∴m≥5,故选:A.14.(3分)如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE =α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④【分析】根据点E有6种可能位置,分情况进行讨论,依据平行线的性质以及三角形外角性质进行计算求解即可.【解答】解:(1)如图,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.∴∠AEC的度数可能为β﹣α,α+β,α﹣β,360°﹣α﹣β.(5)当点E在CD的下方时,同理可得,∠AEC=α﹣β或β﹣α.故选:D.二、填空题(本题5个小题,每小题3分,共15分)15.(3分)两个同样的直角三角板如图所示摆放,使点F,B,E,C 在一条直线上,则有DF∥AC,理由是内错角相等两直线平行或(垂直于同一条直线的两直线平行).【分析】根据平行线的判定定理填空即可.【解答】解:依题意得:∠DFE=∠ACB,则DF∥AC(内错角相等两直线平行.或(垂直于同一条直线的两直线平行))故答案是:内错角相等两直线平行.或(垂直于同一条直线的两直线平行)16.(3分)如图,两个直角三角形重叠在一起,将其中一个沿点B 到点C的方向平移到△DEF的位置,AB=10,DH=4,平移距离为6,则阴影部分的面积48 .【分析】根据平移的性质可知:AB=DE,BE=CF;由此可求出EH和CF的长.由于CH∥DF,根据平分线分线段成比例定理,可求出EC的长.已知了EH、EC,DE、EF的长,即可求出△ECH和△EFD的面积,进而可求出阴影部分的面积.【解答】解:根据题意得,DE=AB=10;BE=CF=6;CH∥DF.∴EH=10﹣4=6;EH:HD=EC:CF,即6:4=EC:6,∴EC=9.∴S△EFD=×10×(9+6)=75;S△ECH=×6×9=27.∴S阴影部分=75﹣27=48.故答案为48.17.(3分)已知AB∥x轴,A点的坐标为(3,2),并且AB=5,则B的坐标为(﹣2,2)或(8,2).【分析】根据B点位置分类讨论求解.【解答】解:已知AB∥x轴,点B的纵坐标与点A的纵坐标相同,都是2;在直线AB上,过点A向左5单位得(﹣2,2),过点A向右5单位得(8,2).∴满足条件的点有两个:(﹣2,2),(8,2).故答案填:(﹣2,2)或(8,2).18.(3分)已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是5,10,6,7,第五组的频率是0.2,故第六组的频数是 4 .【分析】首先根据频率的计算公式求得第五组的频数,然后利用总数减去其它组的频数即可求解.【解答】解:第五组的频数是40×0.2=8,则第六组的频数是40﹣5﹣10﹣6﹣7﹣8=4.故答案是:4.19.(3分)如图,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2021秒时,点P的坐标是(2021,1).【分析】根据图象可得移动4次图象完成一个循环,从而可得出点P的坐标.【解答】解:半径为1个单位长度的半圆的周长为×2π×1=π,∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,∴点P每秒走个半圆,当点P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,﹣1),当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0),…,∵2021÷4=505余1,∴P的坐标是(2021,1),故答案为:(2021,1).三、解答题(本题7个小题,共63分)20.(12分)(1)计算2+++|﹣2|;(2)解方程组:;(3)解不等式组:,并把解集在数轴上表示出来.【分析】(1)先计算算术平方根和立方根、去绝对值符号,再计算加减可得;(2)整理方程组,再利用加减消元法求解可得;(3)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:(1)原式=2+3﹣2+2﹣=3+;(2)方程组整理,得:,①+②,得:4x=12,解得x=3,将x=3代入①,得:3+4y=14,解得y=,∴方程组的解为;(3)解不等式x﹣3(x﹣1)<7,得:x>﹣2,解不等式x﹣2x<,得:x>0.6,则不等式组的解集为x>0.6,将不等式的解集表示在数轴上如下:21.(8分)“校园手机”现象越来越受到社会的关注.“寒假”期间,某校小记者随机调查了某地区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:(1)求这次调查的家长人数,并补全图1;(2)求图2中表示家长“赞成”的圆心角的度数;(3)已知某地区共6500名家长,估计其中反对中学生带手机的大约有多少名家长?【分析】(1)根据认为无所谓的家长是80人,占20%,据此即可求得总人数;(2)利用360乘以对应的比例即可求解;(3)利用总人数6500乘以对应的比例即可求解.【解答】解:(1)这次调查的家长人数为80÷20%=400人,反对人数是:400﹣40﹣80=280人,;(2)360°×=36°;(3)反对中学生带手机的大约有6500×=4550(名).22.(10分)已知点P(2a﹣2,a+5),解答下列各题.(1)点P在x轴上,求出点P的坐标.(2)点Q的坐标为(4,5),直线PQ∥y轴;求出点P的坐标.(3)若点P在第二象限,且它到x轴、y轴的距离相等,求a2022+2022的值.【分析】(1)根据x轴上的点的纵坐标为0,可得关于a的方程,解得a的值,再求得点P的横坐标即可得出答案.(2)根据平行于y轴的直线的横坐标相等,可得关于a的方程,解得a的值,再求得其纵坐标即可得出答案.(3)根据第二象限的点的横纵坐标的符号特点及它到x轴、y轴的距离相等,可得关于a的方程,解得a的值,再代入要求的式子计算即可.【解答】解:(1)∵点P在x轴上,∴a+5=0,∴a=﹣5,∴2a﹣2=2×(﹣5)﹣2=﹣12,∴点P的坐标为(﹣12,0).(2)点Q的坐标为(4,5),直线PQ∥y轴,∴2a﹣2=4,∴a=3,∴a+5=8,∴点P的坐标为(4,8).(3)∵点P在第二象限,且它到x轴、y轴的距离相等,∴2a﹣2=﹣(a+5),∴2a﹣2+a+5=0,∴a=﹣1,∴a2022+2022=(﹣1)2022+2022=2021.∴a2022+2022的值为2021.23.(10分)如图:在四边形ABCD中,A、B、C、D四个点的坐标分别是:(﹣2,0)、(0,6)、(4,4)、(2,0)现将四边形ABCD 先向上平移1个单位,再向左平移2个单位,平移后的四边形是A'B'C′D'(1)请画出平移后的四边形A'B'C′D'(不写画法),并写出A'、B'、C′、D'四点的坐标.(2)若四边形内部有一点P的坐标为(a,b)写点P的对应点P′的坐标.(3)求四边形ABCD的面积.【分析】(1)直接利用平移规律丰碑得出对应点位置进而得出答案;(2)利用平移规律进而得出对应点坐标的变化规律;(3)利用四边形ABCD所在矩形面积减去周围三角形面积进而得出答案.【解答】解:(1)如图所示:A′(﹣4,1),B′(﹣2,7),C′(2,5),D′(0,1);(2)若四边形内部有一点P的坐标为(a,b)写点P的对应点P′的坐标为:(a﹣2,b+1);(3)四边形ABCD的面积为:6×6﹣×2×6﹣×2×4﹣×2×4=22.24.(11分)为积极响应政府提出的“绿色发展•低碳出行”号召,某社区决定购置一批共享单车.经市场调查得知,购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元.(1)求男式单车和女式单车的单价;(2)该社区要求男式单车比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费用不超过50000元,该社区有几种购置方案?怎样购置才能使所需总费用最低,最低费用是多少?【分析】(1)设男式单车x元/辆,女式单车y元/辆,根据“购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元”列方程组求解可得;(2)设购置女式单车m辆,则购置男式单车(m+4)辆,根据“两种单车至少需要22辆、购置两种单车的费用不超过50000元”列不等式组求解,得出m的范围,即可确定购置方案;再列出购置总费用关于m的函数解析式,利用一次函数性质结合m的范围可得其最值情况.【解答】解:(1)设男式单车x元/辆,女式单车y元/辆,根据题意,得:,解得:,答:男式单车2000元/辆,女式单车1500元/辆;(2)设购置女式单车m辆,则购置男式单车(m+4)辆,根据题意,得:,解得:9≤m≤12,∵m为整数,∴m的值可以是9、10、11、12,即该社区有四种购置方案;设购置总费用为W,则W=2000(m+4)+1500m=3500m+8000,∵W随m的增大而增大,∴当m=9时,W取得最小值,最小值为39500,答:该社区共有4种购置方案,其中购置男式单车13辆、女式单车9辆时所需总费用最低,最低费用为39500元.25.(12分)已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系∠A+∠C=90°;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)先过点B作BG∥DM,根据同角的余角相等,得出∠ABD=∠CBG,再根据平行线的性质,得出∠C=∠CBG,即可得到∠ABD =∠C;(3)先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC =∠ABE+∠ABC=15°+90°=105°.【解答】解:(1)如图1,AM与BC的交点记作点O,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°,故答案为:∠A+∠C=90°;(2)如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,即∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥AM,∴CN∥BG,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.。

2023-2024学年安徽省安庆市桐城市七年级(下)期末数学试卷 (含详解)

2023-2024学年安徽省安庆市桐城市七年级(下)期末数学试卷  (含详解)

2023-2024学年安徽省安庆市桐城市七年级(下)期末数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的。

1.﹣8的立方根是( )A.2B.﹣2C.﹣4D.2.在显微镜下,人体内一种细胞的形状可以近似地看成圆,它的半径约为0.00000078m,这个数据用科学记数法表示为( )A.0.78×10﹣4m B.7.8×10﹣7mC.7.8×10﹣8m D.78×10﹣8m3.如图,这是关于x的不等式﹣x+a>﹣2的解集,则a的值是( )A.0B.﹣1C.﹣2D.﹣34.如图,这是利用量角器测量角的示意图,则图中∠1的度数为( )A.40°B.80°C.140°D.160°5.解方程,两边同乘(x﹣1)后得到的式子为( )A.2﹣3=﹣x B.2﹣3(x﹣1)=﹣xC.2﹣3(x﹣1)=x D.2+3(x﹣1)=﹣x6.某校举行防溺水知识竞赛,共有20道抢答题,答对一题得5分,答错或不答扣3分,要使总得分不少于90分,则至少应该答对几道题?设答对x道题,则可列不等式( )A.5x﹣3(20﹣x)>90B.5x﹣3(20﹣x)≤90C.5x﹣3x≥90D.5x﹣3(20﹣x)≥907.物理中有一种现象,叫折射现象,它指的是当光线从空气射入水中时,光线的传播方向会发生改变.如图,我们建立折射现象数学模型,MN表示水面,它与底面EF平行,光线AB从空气射入水里时发生了折射,变成光线BC射到水底的C处,射线BD是光线AB的延长线.若∠1=70°,∠DBC=28°,则∠2的度数为( )A.42°B.28°C.32°D.38°8.如图,小明制作了A类,B类,C类卡片各15张,其中A,B两类卡片都是正方形,C类卡片是长方形,若小明要拼出一个宽为(2a+3b),长为(3a+2b)的大长方形,则他准备的C类卡片( )A.够用,剩余0张B.够用,剩余2张C.不够用,还缺1张D.不够用,还缺2张9.如果一个数等于两个连续奇数的平方差,那么我们称这个数为“完美数”.例如:因为24=72﹣52,所以称24为“完美数”.下面4个数中为“完美数”的是( )A.200B.202C.210D.23010.如图,在锐角三角形ABC中,∠BAC=60°,将三角形ABC沿着射线BC方向平移得到三角形A′B ′C′(平移后点A,B,C的对应点分别是点A′,B′,C′),连接CA′.若在整个平移过程中,∠ACA′和∠CA′B的度数之间存在2倍关系,则∠ACA′的度数不可能为( )A.20°B.40°C.100°D.120°二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)比较大小: .12.(5分)因式分解:3a2﹣12= .13.(5分)关于x的分式方程的解是正数,则m的取值范围是 .14.(5分)把一块含60°角的直角三角尺EFG(其中∠EFG=90°,∠EGF=60°)按如图所示的方式摆放在两条平行线AB,CD之间.(1)如图1,若三角尺的60°角的顶点G落在CD上,且∠1=2∠2,则∠1的度数为 .(2)如图2,若把三角尺的直角顶点F落在AB上,60°角的顶点G落在CD上,则∠AFG与∠EGD 的数量关系为 .三、(本大题共2小题,每小题8分,满分16分)15.(8分)解不等式组,并列出该不等式组的所有的正整数解.16.(8分)先化简,再求值,其中a=3.四、(本大题共2小题,每小题8分,满分16分)17.(8分)已知实数a,b,c,d,e,若a,b互为倒数,c,d互为相反数,e的算术平方根为3,求的平方根.18.(8分)如图,直线AB,CD相交于点O,OF⊥AB,OE平分∠AOD.(1)若∠BOD=60°,求∠COE的度数.(2)若∠AOC:∠COF=2:1,求∠DOE的度数.五、(本大题共2小题,每小题10分,满分20分)19.(10分)观察以下等式.第1个等式:1×2×3×4+1=(12+3×1+1)2.第2个等式:2×3×4×5+1=(22+3×2+1)2.第3个等式:3×4×5×6+1=(32+3×3+1)2.第4个等式:4×5×6×7+1=(42+3×4+1)2.按照以上规律,解决下列问题.(1)写出第5个等式: .(2)写出你猜想的第n个等式.(用含n的式子表示)20.(10分)常用的分解因式方法有提公因式法、公式法等,但有的多项式只用上述方法无法分解、如:x2﹣4y2+2x﹣4y,细心观察这个式子会发现前两项符合平方差公式,后两项可提取公因式,分解过程如下:x2﹣4y2+2x﹣4y=(x2﹣4y2)+(2x﹣4y)…分组=(x+2y)(x﹣2y)+2(x﹣2y)…组内分解因式=(x﹣2y)(x+2y+2)…整体思想提公因式这种分解因式的方法叫分组分解法,利用这种方法解决下列问题.(1)分解因式:16x2﹣8x+2y﹣y2.(2)已知a,b,c满足a2﹣2ac+c2=ab﹣bc,且a≠c,试判断a,b,c之间的数量关系,并说明理由.六、(本题满分12分)21.(12分)怀远的石榴,砀山的梨,因品质优良,而享誉全国.某水果店老板用3600元购进石榴、1200元购进砀山梨,购进石榴的数量是购进砀山梨的数量的1.5倍,已知每斤砀山梨的进价比每斤石榴的进价便宜2元.(1)求石榴、砀山梨每斤的进价.(2)若石榴每斤的售价为7元,砀山梨每斤的售价为4元,水果店老板在售出200斤石榴和200斤梨后,为减少库存压力,打算将剩余的梨打折销售,石榴保持原价销售,两种水果全部售出后,要使总获利不低于3500元,则剩下的梨最低可以打几折?七、(本题满分12分)22.(12分)在一次数学活动课上,张老师准备了若干张如图1所示的甲、乙、丙三种纸片,其中甲种纸片是边长为x的正方形,乙种纸片是边长为y的正方形,丙种纸片是长为y、宽为x的长方形,并用甲种纸片一张,乙种纸片一张,丙种纸片两张拼成了如图2所示的一个大正方形.理解应用:(1)观察图2,用两种不同的方式表示阴影部分的面积可得到一个等式,请你直接写出这个等式.拓展升华:(2)①已知a2+b2=15,a+b=5,求ab的值.②已知(2026﹣c)(c﹣2024)=﹣1,求(2026﹣c)2+(c﹣2024)2的值.八、(本题14分)23.(14分)如图,AB∥CD,点E,G分别在直线AB,CD上,F是平面内任意一点,连接EF,FG.<(1)探究:如图1,当点F在直线EG的左侧时,试说明:∠EFG=∠AEF+∠FGC.(2)问题迁移:如图2,当点F在AB的上方时,∠EFG,∠AEF,∠CGF之间有何数量关系?请说明理由.(3)联想拓展:如图3,若∠EFG=β,∠FEB的平分线和∠FGD的平分线交于点P,用含β的式子表示∠EPG的度数.参考答案一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的。

【鲁教版】七年级数学下期末试题含答案(1)

【鲁教版】七年级数学下期末试题含答案(1)

一、选择题1.下列事件为随机事件的是()A.367人中至少有2人生日相同B.打开电视,正在播广告C.没有水分,种子发芽D.如果a、b都是实数,那么+=+a b b a 2.下列说法正确的是()A.“打开电视机,正在播放《新闻联播》”是不可能事件B.“两直线被第三条直线所截,同位角相等”是必然事件C.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨D.“篮球队员在罚球线上投篮一次,投中”为随机事件3.掷一枚质地均匀的硬币,前6次都是正面朝上,则掷第7次时正面朝上的概率是()A.1 B.67C.12D.04.如图,在33⨯的正方形格纸中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形,图中ABC是一个格点三角形,在这个33⨯的正方形格纸中,与ABC成轴对称的格点三角形最多有()A.3个B.4个C.5个D.6个5.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在D′处,则重叠部分AFC的面积是()A.8 B.10 C.20 D.326.以下是某中学初二年级的学生在学习了轴对称图形之后设计的.下面这四个图形中,不是轴对称图形的是()A.B.C.D.7.已知三角形的一边长为8,则它的另两边长分别可以是()A.2,9 B.17,29 C.3,12 D.4,48.如图,△ACB≌△A′C B′,∠ACB=70°,∠ACB′=100°,则∠BCA′度数是()A.40°B.35 C.30°D.45°9.将下列长度的三根木棒首尾顺次连接,不能组成三角形的是()A.4、5、6 B.3、4、5 C.2、3、4 D.1、2、310.李钰同学利用计算机设计了一个程序,输入和输出的数据如下表:输入…12345…输出…25101726…那么,当输入数据8时,输出的数据是()A.61 B.63 C.65 D.6711.如图,直线AB,CD被直线EF所截,与AB,CD分别交于点E,F,下列描述:①∠1和∠2互为同位角②∠3和∠4互为内错角③∠1=∠4 ④∠4+∠5=180°其中,正确的是()A.①③B.②④C.②③D.③④12.利用图形中面积的等量关系可以得到某些数学公式.根据如图能得到的数学公式是()A.(a+b)(a-b)=a2-b2B.(a-b)2=a2-2ab+b2C.a(a+b)=a2 +ab D.a(a-b)=a2-ab二、填空题13.八年级(4)班有男生24人,女生16人,从中任选1人恰是男生的事件是_______事件(填“必然”或“不可能”或“随机”).14.如图,平面内有16个格点,每个格点小正方形的边长为1,则图中阴影部分的面积为____.15.如图,∠AOB = 30°,点P 是∠AOB 内任意一点,且OP = 7,点E 和点F 分别是射线OA 和射线OB 上的动点,则△PEF 周长的最小值是______.16.如图,小章利用一张左、右两边已经破损的长方形纸片ABCD 做折纸游戏,他将纸片沿EF 折叠后,D 、C 两点分别落在'D 、'C 的位置,并利用量角器量得66EFB ∠=︒,则'AED ∠等于__________度.17.如图,ACD ∠是ABC 的外角,ABC ∠的平分线与ACD ∠的平分线交于点1A ,1A BC ∠的平分线与1ACD ∠的平分线交于点2A ,…,1n A BC -∠的平分线与1n A CD -∠的平分线交于点n A ,设=A θ∠,则2=A ∠___________,=n A ∠___________.18.烧一壶水,假设冷水的水温为20℃,烧水时每分钟可使水温提高8℃,烧了x 分钟后水壶的水温为y ℃,当水开时就不再烧了.(1)y 与x 的关系式为________,其中自变量是________,它应在________变化.(2)x=1时,y=________,x=5时,y=________.(3)x=________时,y=48.19.一个锐角的补角比它的余角的3倍少40︒,这个锐角的度数是______.20.将7张如图①所示的小长方形纸片按图②的方式不重叠地放在长方形ABCD 内,未被覆盖的部分恰好被分割为两个长方形,面积分别为1S ,2S .已知小长方形纸片的宽为a,长为4a,则21=S S______(结果用含a的代数式表示).三、解答题21.(本题满分8分)“PM2.5”是指大气中危害健康的直径小于2.5微米的颗粒物,它造成的雾霾天气对人体健康的危害甚至要比沙尘暴更大.环境检测中心在京津冀、长三角、珠三角等城市群以及直辖市和省会城市进行PM2.5检测,某日随机抽取25个监测点的研究性数据,并绘制成统计表和扇形统计图如下:根据图表中提供的信息解答下列问题:(1)统计表中的a= _ ,b= _ ,c= _ ;(2)在扇形统计图中,A类所对应的圆心角是 _ 度;(3)我国PM2.5安全值的标准采用世卫组织(WHO)设定的最宽限值:日平均浓度小于75微克/立方米.请你估计当日环保监测中心在检测100个城市中,PM2.5日平均浓度值符合安全值的城市约有多少个?22.如图,在网格中,每个小正方形的边长都为1,网格中有两个格点A、B和直线l,且AB长为3.6.(1)求作点A 关于直线l 的对称点1A .(2)P 为直线l 上一动点,在图中标出使AP BP +的值最小的P 点,且求出AP BP +的最小值?(3)求ABP ∆周长的最小值?23.如图,,AD BF 相交于点,//,O AB DF AB DF =,点E 与点C 在BF 上,且BE CF =.(1)求证:ABC DFE ∆≅∆;(2)求证:点О为BF 的中点.24.用一根长是20cm 的细绳围成一个长方形,这个长方形的一边的长为xcm ,它的面积为2ycm .(1)写出y 与x 之间的关系式,在这个关系式中,哪个是自变量?自变量的取值范围是怎样的?(2)在下面的表格中填上当x 从1变到9时(每次增加1),y 的相应值; ()x cm 1 2 3 4 5 6 7 8 9 ()2y cm (3)根据表格中的数据,请你猜想一下:怎样围才能使得到的长方形的面积最大?最大是多少?(4)请你估计一下:当围成的长方形的面积是222cm 时,x 的值应在哪两个相邻整数之间?25.如图,在线段MN 上求作一点P ,使∠APM =∠BPM ,(保留作图痕迹,不必写出作法与证明).26.阅读下面材料,完成任务.多项式除以多项式可以类比于多位数的除法进行计算,先把多项式按照某个字母的降幂进行排列,缺少的项可以看做系数为零,然后类比多位数的除法利用竖式进行计算.∴26445123215÷= ∴()()32223133x x x x x +-÷-=++ 请用以上方法解决下列问题:(计算过程要有竖式)(1)计算:()()3223102x x x x +--÷- (2)若关于x 的多项式43225x x ax b +++能被二项式2x +整除,且a ,b 均为自然数,求满足以上条件的a ,b 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A. 367人中至少有2人生日相同 ,是必然事件,故A 不符合题意;B. 打开电视,正在播广告,是随机事件,故B 符合题意;C. 没有水分,种子发芽, 是不可能事件,故C 不符合题意;D. 如果a 、b 都是实数,那么+=+a b b a ,是必然事件,故D 不符合题意. 故选B.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.D解析:D【解析】【分析】根据必然事件、不可能事件、随机事件的概念以及概率定义分别进行分析,即可得出答案.【详解】A、打开电视机,正在播放《新闻联播》,这个事件可能发生,也可能不发生,是不确定事件,故本选项错误;B、两直线被第三条直线所截,同位角相等是不确定事件,故本选项错误;C、天气预报说“明天的降水概率为40%只是反映了事件发生的机会的大小,不是发生的时长,故本项错误;D、“篮球队员在罚球线上投篮一次,投中”为随机事件,故本选项正确.故选D.【点睛】本题考查了随机事件、全面调查与抽样调查、概率定义,解题关键是根据事件包括必然事件和不可能事件以及概率定义进行分析.3.C解析:C【解析】【分析】根据大量重复试验事件发生的频率接近事件发生的可能性的大小(概率),时间确定了则概率是不变的,而频率是改变的,根据此特点可得答案.【详解】解:掷一枚质地均匀的硬币,前6次都是正面朝上,则掷第7次时正面朝上的概率是1 2 .故选C.【点睛】本题考查概率,大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).4.D解析:D【分析】根据网格结构分别确定出不同的对称轴,然后作出成轴对称的三角形即可得解.【详解】解:与ABC成轴对称的格点三角形最多有6个.故答案为:D.【点睛】本题考查了利用轴对称变换作图,熟练掌握网格结构并准确找出对应点的位置是解题的关键,本题难点在于确定出不同的对称轴.5.B解析:B【分析】解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.【详解】解:重叠部分△AFC的面积是矩形ABCD的面积减去△FBC与△AFD’的面积再除以2,矩形的面积是32,∵AB∥CD,∴∠ACD=∠CAB,∵△ACD′由△ACD翻折而成,∴∠ACD=∠ACD′,∴∠ACD′=∠CAB,∴AF=CF,∵BF=AB﹣AF=8﹣AF,∴CF2=BF2+BC2∴AF2=(8﹣AF)2+42∴AF=5,BF=3∴S△AFC=S△ABC﹣S△BFC=10.故选:B.【点睛】本题通过折叠变换考查学生的逻辑思维能力,解题关键是熟练掌握图形折叠的性质.6.C解析:C【分析】根据轴对称图形的概念判断即可.【详解】A、是轴对称图形;B、是轴对称图形;C、不是轴对称图形;D、是轴对称图形.故选:C.【点睛】本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7.A解析:A【分析】根据三角形三边关系判断即可;【详解】9211+=>8,927-=<8,故A正确;-=>8,故B错误;+=>8,291712172946-=>8,故C错误;12315+=>8,1239+=,故D错误;448故答案选A.【点睛】本题主要考查了三角形三边关系,准确分析判断是解题的关键.8.A解析:A【分析】根据已知ACB≌A′CB′,得到∠A′CB′=∠ACB=70︒,再通过∠ACB′=100︒,继而利用角的和差求得∠BCB′=30︒,进而利用∠BCA′=∠A′CB′-∠BCB′得到结论.【详解】解:∵ACB≌A′CB′,∴∠A′CB′=∠ACB=70︒,∵∠ACB′=100︒,∴∠BCB′=∠ACB′-∠ACB=30︒,∴∠BCA′=∠A′CB′-∠BCB′=40︒,故选:A.【点睛】本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解题的关键.9.D解析:D【分析】根据三角形三边关系定理:三角形两边之和大于第三边进行分析即可.【详解】D、4+5>6,能组成三角形,故此选项错误;B、3+4>5,能组成三角形,故此选项错误;A、2+3>4,能组成三角形,故此选项错误;D、1+2=3,不能组成三角形,故此选项正确;故选:D.【点睛】此题主要考查了三角形的三边关系定理,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.10.C解析:C【分析】观察表格发现,输入的数字是几,输出数就是输入数的平方加1+由此求解.【详解】输入8,输出数就是82+1=64+1=65;故选C.【点睛】解决本题关键是找出输入数据与输出的数据之间的关系,再由此进行求解.11.C解析:C【分析】根据同位角,内错角,同旁内角的定义判断即可.【详解】①∠1和∠2互为邻补角,故错误;②∠3和∠4互为内错角,故正确;③∠1=∠4,故正确;④∵AB不平行于CD,∴∠4+∠5≠180°故错误,故选:C.【点睛】本题考查了同位角,内错角,同旁内角的定义,熟记定义是解题的关键.12.B解析:B【分析】根据图形得出阴影部分的面积是(a-b)2和b2,剩余的矩形面积是(a-b)b和(a-b)b,即大阴影部分的面积是(a-b)2,即可得出选项.【详解】解:从图中可知:阴影部分的面积是(a-b)2和b2,剩余的矩形面积是(a-b)b和(a-b)b,即大阴影部分的面积是(a-b)2,∴(a-b)2=a2-2ab+b2,故选:B.【点睛】本题考查了完全平方公式的应用,主要考查学生的阅读能力和转化能力,题目比较好,有一定的难度.第II卷(非选择题)请点击修改第II卷的文字说明二、填空题13.随机【解析】【分析】根据必然事件不可能事件随机事件的概念必然事件指在一定条件下一定发生的事件可能事件是指在一定条件下一定不发生的事件不确定事件即随机事件是指在一定条件下可能发生也可能不发生的事件即可解析:随机【解析】【分析】根据必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.即可解答【详解】从中任选一人,可能选的是男生,也可能选的是女生,故为随机事件【点睛】此题考查随机事件,难度不大14.【分析】可运用相似三角形的性质求出GFMN从而求出OFOM进而可求出阴影部分的面积【详解】解:如图∵GF∥HC∴△AGF∽△AHC∴∴同理MN=则有OM=故答案为:【点睛】本题主要考查了相似三角形的解析:1112【分析】可运用相似三角形的性质求出GF 、MN ,从而求出OF 、OM ,进而可求出阴影部分的面积. 【详解】 解:如图,∵GF ∥HC ,∴△AGF ∽△AHC ,∴1,2GF AG HC AH ⋅== ∴13,22GF HC == 312.22OF OG GF =-=-= 同理MN=23,则有OM=13 1111,22312OFM S ∆=⨯⨯= 1111.1212S =-=阴影 故答案为:1112 【点睛】本题主要考查了相似三角形的判定与性质、三角形的面积公式,求得△OFM 的面积是解决本题的关键.15.7【分析】设点P 关于OA 的对称点为C 关于OB 的对称点为D 当点EF 在CD 上时△PEF 的周长最小【详解】分别作点P 关于OAOB 的对称点CD 连接CD 分别交OAOB 于点EF 连接OPOCODPEPF ∵点P 关于解析:7【分析】设点P 关于OA 的对称点为C ,关于OB 的对称点为D ,当点E 、F 在CD 上时,△PEF 的周长最小.【详解】分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点E、F,连接OP、OC、OD、PE、PF.∵点P关于OA的对称点为C,关于OB的对称点为D,∴PE=CE,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PF=DF,OP=OD,∠DOB=∠POB,∴OC=OD=OP=7,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD是等边三角形,∴CD=OC=OD=7.∴△PEF的周长的最小值=PE+EF+PF=CE+EF+DF≥CD=7.故答案为7.【点睛】此题主要考查轴对称−−最短路线问题,熟知两点之间线段最短是解答此题的关键.16.48【解析】【分析】首先由平行线的性质得到∠DEF=∠EFB=66°再由折叠的性质可得∠DEF=∠DEF=66°则∠DED=132°然后再由邻补角的定义求解即可【详解】解:∵AD∥BC∴∠DEF=∠解析:48【解析】【分析】首先由平行线的性质得到∠DEF=∠EFB=66°,再由折叠的性质可得∠D'EF=∠DEF=66°,则∠DED'=132°,然后再由邻补角的定义求解即可.【详解】解:∵AD∥BC,∴∠DEF=∠EFB=66°,由折叠的性质可得∠D'EF=∠DEF=66°,∴∠DED'=132°,∴∠AED'=180°-132°=48°.故答案为48.【点睛】本题考查了折叠的性质,以及平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.17.【分析】根据三角形的外角性质可得∠ACD=∠A+∠ABC ∠A1CD=∠A1+∠A1BC 根据角平分线的定义可得∠A1BC=∠ABC ∠A1CD=∠ACD 整理得到∠A1=∠A 同理可得∠A2=∠A1从而判断 解析:4θ 2n θ 【分析】根据三角形的外角性质可得∠ACD=∠A+∠ABC ,∠A 1CD=∠A 1+∠A 1BC ,根据角平分线的定义可得∠A 1BC=12∠ABC ,∠A 1CD=12∠ACD ,整理得到∠A 1=12∠A ,同理可得∠A 2=12∠A 1,从而判断出后一个角是前一个角的12,然后表示出∠A n 即可得答案. 【详解】∵ACD ∠是ABC 的外角,∠A 1CD 是△A 1BC 的外角,∴∠ACD=∠A+∠ABC ,∠A 1CD=∠A 1+∠A 1BC ,∵ABC ∠的平分线与ACD ∠的平分线交于点1A ,∴∠A 1BC=12∠ABC ,∠A 1CD=12∠ACD , ∴∠A 1=12∠A , 同理可得∠A 2=12∠A 1=14∠A , ∵∠A=θ,∴∠A 2=4θ, 同理:∠A 3=12∠A 2=382θθ=, ∠A 4=12∠A 3=4162θθ= …… ∴∠A n =2nθ. 故答案为:4θ,2n θ 【点睛】 本题考查了三角形的外角性质及角平分线的定义,三角形的一个外角等于与它不相邻的两个内角的和;熟记性质并准确识图,求出后一个角是前一个角的12是解题的关键.18.(1)y=8x+20x在0--10变化;(2)2860;(3)35【解析】试题分析:(1)由每分钟水温升高8℃结合冷水的温度为20℃即可得到与间的关系式;由题意可知:自变量是烧水的时间;由烧水时间从解析:(1)y=8x+20,x,在0--10变化;(2)28,60;(3)3.5【解析】试题分析:(1)由每分钟水温升高8℃结合冷水的温度为20℃即可得到y与x间的关系式;由题意可知:自变量是烧水的时间;由烧水时间从0开始,到水烧开停止结合前面所得关系式即可求出自变量的取值范围;(2)将x的取值代入(1)中所得关系式即可求得对应的y的值;(3)将48y=代入(1)中所得关系式解出对应的x的值即可.试题(1)根据题意,y=8x+20;∵水温是随着时间的变化而变化的,∴自变量是时间x ;∵当水温y=100时,水烧开了就不再烧了,∴8x+20=100,解得x=10,∴x的变化范围是0≤x≤10.(2)当x=1时, y=1×8+20=28;当x=5时,y=5×8+20=60;(3)把y=48代入y=8x+20得:8x+20=48,解得:x=3.5,∴当x=3.5时,y=48.19.【分析】设这个角为α根据余角的和等于90°补角的和等于180°表示出这个角的补角与余角然后根据题意列出方程求解即可【详解】解:设这个角为α则它的补角为180°-α余角为90°-α根据题意得180°-解析:25︒【分析】设这个角为α,根据余角的和等于90°,补角的和等于180°表示出这个角的补角与余角,然后根据题意列出方程求解即可.【详解】解:设这个角为α,则它的补角为180°-α,余角为90°-α,根据题意得,180°-α=3(90°-α)-40°,解得α=25°.故答案为:25°.【点睛】本题考查了余角与补角的定义,熟记“余角的和等于90°,补角的和等于180°”是解题的关键.20.【分析】可设长方形ABCD的长为m分别求出S1S2再代入S2-S1计算即可求解【详解】解:设长方形ABCD的长为m则S2-S1=(m-3a)×4a-(m-4a)×4a=4ma-12a2-4am+16解析:24a【分析】可设长方形ABCD的长为m,分别求出S1,S2,再代入S2-S1计算即可求解.【详解】解:设长方形ABCD的长为m,则S2-S1=(m-3a)×4a-(m-4a)×4a=4ma-12a2-4am+16a2×=4a2.故答案为:4a2.【点睛】本题考查了列代数式和整式的运算,关键是熟练掌握长方形的面积公式,准确的进行整式计算.三、解答题21.(1)5,0.20,0.24;(2)72°;(3)60.【解析】试题分析:(1)根据总的监测点个数为25,即可求出第5个组别的频率;已知各个组别的频数,即可求出a的值,继而求出该组别的频数;(2)A类所对应的圆心角=A类的频率×360°;(3)PM2.5日平均浓度值符合安全值的城市的个数=100×PM2.5日平均浓度值符合安全值的城市的频率.试题(1)a=25﹣(2+3+5+6+4)=5,b=525=0.20,c=625=0.24;故答案为:5,0.20,0.24;(2)A类所对应的圆心角=(0.08+0.12)×360°=72°;故答案为:72°;(3)∵100×(0.08+0.12+0.20+0.20)=60个,∴PM2.5日平均浓度值符合安全值的城市的个数约为60个.考点:1.频数(率)分布表;2.用样本估计总体;3.扇形统计图.22.(1)见解析;(2)点P位置见解析,最小值为5;(3)8.6【分析】(1)根据题意作图即可(2)连接BA1交直线l于点P,由两点间,线段最短即可确定点P的位置(3)由(2)中求得点P的位置,即可得AB+AP+BP=AB+A1P+BP=AB+A1B【详解】(1)如图,点A1即为所作点A关于直线l的对称点(2)连接BA1交直线l于点P,连接AB,AP,则AP=A1P,由两点之间,线段最短可知,AP BP +最短值为5,(3)由(2)可知,点P 即可使△ABP 最小的位置故△ABP 周长的最小值为AB+AP+BP=AB+A 1P+BP=3.6+A 1B=3.6+5=8.6【点睛】此题考查轴对称变换的作图及两点间线段最短的问题,解题关键在于掌握通过轴对称建立最短路径进行解题.23.(1)见解析;(2)见解析【分析】(1)由已知可证∠B=∠F ,BC=EF ,然后根据SAS 可以得到结论;(2)同(1)有∠B=∠F ,再结合已知条件和对顶角相等可以证得ΔABO ≅ΔDFO ,从而得到OB=OF ,所以点O 为BF 中点 .【详解】证明:(1)∵AB//DF ,∴∠B=∠F ,∵BE=CF ,∴BE+CE=CF+CE ,即BC=EF ,∴在ΔABC 和ΔDFE 中,AB DF B F BC EF =⎧⎪∠=∠⎨⎪=⎩,∴ΔABC ≅ΔDFE (SAS );(2)与(1)同理有∠B=∠F ,∴在ΔABO 和ΔDFO 中,AOB DOF B F AB DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ΔABO ≅ΔDFO (AAS ),∴OB=OF ,∴点O 为BF 中点 .【点睛】本题考查三角形全等的应用,熟练掌握三角形全等的判定与性质并灵活应用是解题关键. 24.(1)y=210x x -,x 是自变量,010x <<;(2)见解析;(3)当长方形的长与宽相等,即x 为5时,y 的值最大,最大值为225cm ;(4)当围成的长方形的面积是222cm 时,x 的值应在3和4之间或6和7之间.【分析】(1)根据周长的等量关系可得长方形的另一边为10-x ,那么面积=x (10-x ),自变量是x ,取值范围是0<x <10;(2)把相关x 的值代入(1)中的函数解析式求值即可;(3)根据表格可得x 为5时,y 的值最大;(4)观察表格21<y <24时,对应的x 的取值范围即为所求.【详解】(1)(202)y x x =÷-2(10)10x x x x =-=-.x 是自变量,010x <<. (2)当x 从1变到9时(每次增加1),y 的相应值列表如下()x cm 1 23 4 5 6 7 8 9 ()2y cm 916 21 24 25 24 21 16 9 (3)当长方形的长与宽相等,即x 为5时,y 的值最大,最大值为25cm .(4)由表格可知,当围成的长方形的面积是222cm 时,x 的值应在3和4之间或6和7之间.【点睛】本题考查了变量与函数,函数的表示方法,求函数值等知识.用到的知识点为:长方形的长与宽的和等于周长的一半;长方形的面积等于长×宽.25.见解析【分析】作点B 关于直线MN 的对称点B ′,作直线AB′交MN 于点P ,连接BP ,点P 即为所求.【详解】解:如图,点P 即为所求.【点睛】本题考查作图−基本作图,解题的关键是理解题意,灵活运用所学知识解决问题.26.(1)()()3222310245x x x x x x +--÷-=++;(2)0a =,8b =;1a =,4b =;2a =,0b =【分析】(1)直接利用竖式计算即可;(2)竖式计算,根据整除的意义,利用对应项的系数对应倍数求得答案即可.【详解】解:(1)列竖式如下:()()3222310245x x x x x x +--÷-=++ (2)列竖式如下:∵多项式43225x x ax b +++能被二项式2x +整除 ∴余式()420b a +-=∵a ,b 均为自然数∴0a =,8b =;1a =,4b =;2a =,0b =【点睛】此题考查利用竖式计算整式的除法,解题时要注意同类项的对应.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七下期末数学试卷一一、选择题: .下列图形是轴对称图形的是()✌. . . ..下列事件中,是确定事件的是()✌.打开电视,它正在播广告 .抛掷一枚硬币,正面朝上 . 人中有两人的生日相同 .打雷后会下雨.对于 ﹣ 的运算结果正确的是()✌.﹣ . .﹣ ..如图,已知直线♋、♌被直线♍所截,那么 的同位角是()✌.  .  .  . . 年 月,生物学家发现一种病毒的长度约为 米,利用科学记数法表示为()✌.  米 . ﹣ 米 . ﹣ 米 .  米.如图,在 ✌中,✌✌, ✌,延长 至点 ,则 ✌等于()✌.  .  .  . .下列计算正确的是()✌.(♋﹣♌) ♋ ﹣♌ .(♋♌) ♋ ♌ .(﹣♋♌) ♋ ﹣ ♋♌♌.(♋﹣ ♌)(♋♌) ♋ ﹣ ♌.如图,在 ✌与 ☜☞中,已知✌☜, ✌ ,还添加一个条件才能使 ✌☹☜☞,下列不能添加的条件是()✌.  ☜ . ☜☞ . ②☞ .✌☞.洗衣机在洗涤衣服时,每浆洗一遍都经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水).在这三个过程中,洗衣机内的水量⍓(升)与浆洗一遍的时间⌧(分)之间函数关系的图象大致为()✌. . . ..如图,小明用铅笔可以支起一张质地均匀的三角形卡片,则他支起的这个点应是三角形的()✌.三边高的交点 .三条角平分线的交点.三边垂直平分线的交点 .三边中线的交点二、填空题:.计算:♋ ❿♋ ..若( ⌧) ⌧ ❍⌧,则❍的值是..如图所示,一艘船从✌点出发,沿东北方向航行至 ,再从 点出发沿南偏东 方向航行至 点,则 ✌等于多少度..根据如图所示的计算程序,若输入的值⌧,则输出的值⍓为.三、计算题:(本大题共 个小题,共 分).计算:( )﹣ ﹣(⇨﹣ ) ﹣ ; ( )(﹣ ⌧ ⍓) ❿⌧⍓ ⌧⍓..先化简,再求值:( ⌧)( ⌧﹣ )﹣ ⌧(⌧﹣ ) (⌧﹣ ) ,其中⌧﹣..如图所示,在边长为 的小正方形组成的网格中, ✌的三个顶点分别在格点上,请在网格中按要求作出下列图形,并标注相应的字母.( )作 ✌ ,使得 ✌ 与 ✌关于直线●对称;( )求 ✌ 得面积(直接写出结果)..暑假将至,某商场为了吸引顾客,设计了可以自由转动的转盘(如图所示,转盘被均匀地分为 份),并规定:顾客每 元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得 元、 元、 元的购物券,凭购物券可以在该商场继续购物.若某顾客购物 元.( )求他此时获得购物券的概率是多少?( )他获得哪种购物券的概率最大?请说明理由..将长为 ♍❍,宽为 ♍❍的长方形白纸,按图所示的方法粘合起来,粘合部分宽为 ♍❍.( )根据上图,将表格补充完整.白纸张数 ⑤纸条长度   ⑤( )设⌧张白纸粘合后的总长度为⍓♍❍,则⍓与⌧之间的关系式是什么?( )你认为多少张白纸粘合起来总长度可能为 ♍❍吗?为什么?.已知 ✌,点 、☞分别为线段✌、✌上两点,连接 、 ☞交于点☜.( )若 ✌, ☞✌,如图 所示,试说明 ✌ ☜;( )若 平分 ✌, ☞平分 ✌,如图 所示,试说明此时 ✌与 ☜的数量关系;( )在( )的条件下,若 ✌,试说明:☜☞☜.卷一、填空题:(本大题共 个小题,每小题 分,共 分).当⌧时,代数式♋⌧ ♌⌧的值为 ,那么当⌧﹣ 时,该代数式的值是. .在⌧☐与⌧ ﹣ ⌧的积中不含⌧,则☐的值为..如图,矩形✌中,将四边形✌☜☞沿☜☞折叠得到四边形☟☝☞☜,已知 ☞☝,则 ☜☞..若自然数⏹使得三个数的竖式加法运算❽⏹(⏹) (⏹)❾产生进位现象,则称⏹为❽连加进位数❾.例如: 不是❽连加进位数❾,因为 不产生进位现象; 是❽连加进位数❾,因为 产生进位现象,如果 、 、 、⑤、 这 个自然数中任取一个数,那么取到❽连加进位数❾的概率是..如图, ✌中,✌>✌,延长 ✌至点☝,边 的垂直平分线☞与 ✌☝的角平分线交于点 ,与✌交于点☟,☞为垂足,☜✌于☜.下列说法正确的是.(填序号)♊☟☞;♋ ☝✌(  ☟);♌☜﹣✌✌☜;♍  ✌☜.二、解答题: .已知♋、♌满足 ♋ ♌ ﹣ (♋﹣♌﹣ ) .( )求♋♌的值;( )先化简,再求值:( ♋﹣♌)( ♋﹣♌﹣ )﹣(♋♌)(♋﹣♌)..已知✌、 两地相距 千米,甲于某日下午 时骑自行车从✌地出发驶往 地,乙也同日下午骑摩托车按同路从✌地出发驶往 地,如图所示,图中的折线 ✈和线段 ☠分别表示甲、乙所行驶的路程 (千米)与该日下午时间♦(时)之间的关系.根据图象回答下列问题:( )直接写出:甲出发小时后,乙才开始出发;乙的速度为千米 时;甲骑自行车在全程的平均速度为千米 时.( )求乙出发几小时后就追上了甲?( )求乙出发几小时后与甲相距 千米? .如图 所示,以 ✌的边✌、✌为斜边向外分别作等腰 ♦✌和等腰 ♦✌☜, ✌ ✌☜,☞为 边的中点,连接 ☞、☜☞.( )若✌✌,试说明 ☞☜☞;( )若 ✌,如图 所示,试说明 ☞☜☞;( )若 ✌为钝角,如图 所示,则 ☞与☜☞存在什么数量关系与位置关系?试说明理由.七下期末数学试卷一参考答案与试题解析一、选择题:每小题均有四个选项,其中只有一项符合题目要求..下列图形是轴对称图形的是()✌. . . .【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:✌、是轴对称图形,符合题意;、不是轴对称图形,不符合题意;、不是轴对称图形,不符合题意;、不是轴对称图形,不符合题意.故选✌.【点评】掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合..下列事件中,是确定事件的是()✌.打开电视,它正在播广告 .抛掷一枚硬币,正面朝上. 人中有两人的生日相同 .打雷后会下雨【考点】随机事件.【分析】确定事件包括必然事件和不可能事件.必然事件就是一定发生的事件,即发生的概率是 的事件.不可能事件是指在一定条件下,一定不发生的事件.【解答】解:✌, , 都不一定发生,属于不确定事件.一年最多有 天, 人中有两人生日相同,是必然事件.故选 .【点评】理解概念是解决这类基础题的主要方法.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件..对于 ﹣ 的运算结果正确的是()✌.﹣ . .﹣ .【考点】负整数指数幂.【分析】根据负整数指数为正整数指数的倒数可得答案.【解答】解: ﹣ ,故选: .【点评】此题主要考查了负整数指数幂,关键是掌握♋﹣☐ (♋♊)..如图,已知直线♋、♌被直线♍所截,那么 的同位角是()✌.  .  .  . 【考点】同位角、内错角、同旁内角.【分析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角可得答案.【解答】解: 的同位角是 ,故选: .【点评】此题主要考查了同位角的概念,关键是掌握同位角的边构成❽☞❽形.. 年 月,生物学家发现一种病毒的长度约为 米,利用科学记数法表示为()✌.  米 . ﹣ 米 . ﹣ 米 .  米【考点】科学记数法 表示较小的数.【分析】绝对值小于 的正数也可以利用科学记数法表示,一般形式为♋﹣⏹,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的 的个数所决定.【解答】解: ﹣ ,故选: .【点评】本题考查了用科学记数法表示较小的数,一般形式为♋﹣⏹,其中 ♎♋< ,⏹为由原数左边起第一个不为零的数字前面的 的个数所决定..如图,在 ✌中,✌✌, ✌,延长 至点 ,则 ✌等于()✌.  .  .  . 【考点】三角形的外角性质.【分析】根据等腰三角形两底角相等求出  ✌,再根据邻补角的定义解答即可.【解答】解: ✌✌, ✌, ✌( ﹣ ) ,✌﹣ ✌﹣ .故选 .【点评】本题主要考查了等腰三角形两底角相等的性质,邻补角的定义,是基础题,熟记性质并准确识图是解题的关键..下列计算正确的是()✌.(♋﹣♌) ♋ ﹣♌ .(♋♌) ♋ ♌.(﹣♋♌) ♋ ﹣ ♋♌♌ .(♋﹣ ♌)(♋♌) ♋ ﹣ ♌【考点】完全平方公式;平方差公式.【分析】根据完全平方公式和平方差公式进行解答即可.【解答】解:✌、(♋﹣♌) ♋ ﹣ ♋♌♌ ,错误;、(♋♌) ♋ ♋♌♌ ,错误;、(﹣♋♌) ♋ ﹣ ♋♌♌ ,正确;、(♋﹣ ♌)(♋♌) ♋ ﹣ ♌ ,错误;故选【点评】本题考查了完全平方公式和平方差公式问题,关键是对完全平方式的理解和掌握..如图,在 ✌与 ☜☞中,已知✌☜, ✌ ,还添加一个条件才能使 ✌☹☜☞,下列不能添加的条件是()✌.  ☜ . ☜☞ . ②☞ .✌☞【考点】全等三角形的判定.【分析】利用判定两个三角形全等的方法 、 ✌、✌✌、✌✌、☟☹进行分析.【解答】解:✌、添加  ☜,可利用✌✌定理判定 ✌☹☜☞,故此选项不合题意;、添加 ☜☞,不能判定 ✌☹☜☞,故此选项符合题意;、添加  ☞,可利用✌✌定理判定 ✌☹☜☞,故此选项不合题意; 、添加✌☞,可利用 ✌定理判定 ✌☹☜☞,故此选项不合题意;故选: .【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有: 、 ✌、✌✌、✌✌、☟☹.注意:✌✌✌、 ✌不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角..洗衣机在洗涤衣服时,每浆洗一遍都经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水).在这三个过程中,洗衣机内的水量⍓(升)与浆洗一遍的时间⌧(分)之间函数关系的图象大致为()✌. . . .【考点】函数的图象.【分析】根据洗衣机内水量开始为 ,清洗时水量不变,排水时水量变小,直到水量 ,即可得到答案.【解答】解: 洗衣机工作前洗衣机内无水,✌, 两选项不正确,被淘汰;又 洗衣机最后排完水,选项不正确,被淘汰,所以选项 正确.故选: .【点评】本题考查了对函数图象的理解能力.看函数图象要理解两个变量的变化情况..如图,小明用铅笔可以支起一张质地均匀的三角形卡片,则他支起的这个点应是三角形的()✌.三边高的交点 .三条角平分线的交点.三边垂直平分线的交点 .三边中线的交点【考点】三角形的重心.【分析】根据题意得:支撑点应是三角形的重心.根据三角形的重心是三角形三边中线的交点.【解答】解: 支撑点应是三角形的重心,三角形的重心是三角形三边中线的交点,故选 .【点评】考查了三角形的重心的概念和性质.注意数学知识在实际生活中的运用.二、填空题:.计算:♋ ❿♋ ♋ .【考点】同底数幂的乘法.【专题】计算题.【分析】根据同底数的幂的乘法,底数不变,指数相加,计算即可.【解答】解:♋ ❿♋ ♋  ♋ .故答案为:♋ .【点评】熟练掌握同底数的幂的乘法的运算法则是解题的关键..若( ⌧) ⌧ ❍⌧,则❍的值是 .【考点】完全平方公式.【分析】根据完全平方式得出❍⌧❿⌧❿,求出即可.【解答】解: ( ⌧) ⌧ ❍⌧,❍⌧❿⌧❿,解得:❍,故答案为:【点评】本题考查了对完全平方式的理解和掌握,能根据完全平方式得出❍⌧❿⌧❿是解此题的关键,注意:完全平方式有两个,是♋ ♋♌♌ 和♋ ﹣ ♋♌♌ ..如图所示,一艘船从✌点出发,沿东北方向航行至 ,再从 点出发沿南偏东 方向航行至 点,则 ✌等于多少 度.【考点】方向角;平行线的性质.【专题】应用题.【分析】将实际问题转化为方向角的问题,利用平行线的性质解答即可.【解答】解:从图中我们发现向北的两条方向线平行, ☠✌, ,根据平行线的性质:两直线平行内错角相等,可得 ✌ ☠✌,所以 ✌.故答案为: .【点评】根据方位角的概念,画图正确表示出方位角,利用平行线的性质作答..根据如图所示的计算程序,若输入的值⌧,则输出的值⍓为 .【考点】函数值.【专题】图表型.【分析】根据把自变量的值代入相应的函数关系式,可得答案.【解答】解:⌧> ,把⌧代入⍓⌧﹣ ,得⍓﹣ .故答案为: .【点评】本题考查了函数值,利用自变量的值得出相应的函数值是解题关键.三、计算题:(本大题共 个小题,共 分).计算:( )﹣ ﹣(⇨﹣ ) ﹣ ; ( )(﹣ ⌧ ⍓) ❿⌧⍓ ⌧⍓.【考点】整式的混合运算;零指数幂.【分析】( )根据零指数幂、绝对值以及乘方进行计算即可;( )先算乘方再算乘除即可.【解答】解:( )原式 ﹣ ﹣ ;( )原式 ⌧ ⍓ ❿⌧⍓ ⌧⍓⌧ ⍓ ⌧⍓⌧ ⍓ .【点评】本题考查了整式的混合运算以及零指数幂运算,是中考常见题型,要熟练掌握..先化简,再求值:( ⌧)( ⌧﹣ )﹣ ⌧(⌧﹣ ) (⌧﹣ ) ,其中⌧﹣.【考点】整式的混合运算 化简求值.【专题】计算题;一次方程(组)及应用.【分析】原式利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把⌧的值代入计算即可求出值.【解答】解:原式 ⌧ ﹣ ﹣ ⌧ ⌧⌧ ﹣ ⌧⌧,当⌧﹣时,原式 ﹣ .【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键..如图所示,在边长为 的小正方形组成的网格中, ✌的三个顶点分别在格点上,请在网格中按要求作出下列图形,并标注相应的字母.( )作 ✌ ,使得 ✌ 与 ✌关于直线●对称;( )求 ✌ 得面积(直接写出结果).【考点】作图 轴对称变换.【分析】( )根据网格确定✌、 、 三点的对称点,然后再连接即可;( )利用矩形的面积减去周围多余三角形的面积即可.【解答】解:( )如图所示:( ) ✌ 得面积: ﹣ ﹣ ﹣ ﹣ ﹣ ﹣ .【点评】此题主要考查了作图﹣﹣轴对称变换,关键是正确确定对称点位置..暑假将至,某商场为了吸引顾客,设计了可以自由转动的转盘(如图所示,转盘被均匀地分为 份),并规定:顾客每 元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得 元、 元、 元的购物券,凭购物券可以在该商场继续购物.若某顾客购物 元.( )求他此时获得购物券的概率是多少?( )他获得哪种购物券的概率最大?请说明理由.【考点】概率公式.【分析】( )由转盘被均匀地分为 份,他此时获得购物券的有 份,直接利用概率公式求解即可求得答案;( )分别求得获得 元、 元、 元的购物券的概率,即可求得答案.【解答】解:( ) 转盘被均匀地分为 份,他此时获得购物券的有 份,他此时获得购物券的概率是: ;( ) (获得 元购物券) , (获得 元购物券) , (获得 元购物券) ,他获得 元购物券的概率最大.【点评】此题考查了概率公式的应用.用到的知识点为:概率 所求情况数与总情况数之比..将长为 ♍❍,宽为 ♍❍的长方形白纸,按图所示的方法粘合起来,粘合部分宽为 ♍❍.( )根据上图,将表格补充完整.白纸张数 ⑤纸条长度     ⑤( )设⌧张白纸粘合后的总长度为⍓♍❍,则⍓与⌧之间的关系式是什么?( )你认为多少张白纸粘合起来总长度可能为 ♍❍吗?为什么?【考点】一元一次方程的应用.【分析】( )用总长度减去粘合后重叠部分的长度,即可求出纸条的长度;( )用总长度减去⌧张白纸粘合后重叠部分的长度,即可求出⍓与⌧之间的关系式;( )当⍓时得到的方程,求出⌧的值,根据⌧为正整数,再进行判断即可.【解答】解:( ) 张白纸黏合,需黏合 次,重叠 ♍❍,则总长为 ﹣ (♍❍); 张白纸黏合,需黏合 次,重叠 ♍❍,则总长为 ﹣ (♍❍);故答案为: , ;( )⌧张白纸黏合,需黏合(⌧﹣ )次,重叠 (⌧﹣ )♍❍,则总长⍓⌧﹣ (⌧﹣ ) ⌧;( )当⍓时, ⌧,解得;⌧,不是正整数,总长度不可能为 ♍❍.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解..已知 ✌,点 、☞分别为线段✌、✌上两点,连接 、 ☞交于点☜.( )若 ✌, ☞✌,如图 所示,试说明 ✌ ☜;( )若 平分 ✌, ☞平分 ✌,如图 所示,试说明此时 ✌与 ☜的数量关系;( )在( )的条件下,若 ✌,试说明:☜☞☜.【考点】全等三角形的判定与性质.【分析】( )根据余角的性质得到 ☜ ✌,由于 ☜ ☜,即可得到结论;( )根据角平分线的性质得到 ☜✌, ☜✌,于是得到结论;( )作 ☜的平分线☜交 于 ,由 ✌,得到☜ ✌,求得 ☞☜ ☜,根据角平分线的性质得到☜,推出 ☞☜☹☜,根据全等三角形的性质得到☜☞☜,同理 ☜☜,即可得到结论.【解答】解:( ) ✌, ☞✌,☜ ☜ ☜ ☞✌,☜ ✌, ☜ ☜,✌ ☜;( ) 平分 ✌, ☞平分 ✌,☜✌, ☜✌, ☜﹣( ☜ ☜) ﹣( ✌ ✌) ( ﹣ ✌)  ✌;( )作 ☜的平分线☜交 于 ,✌,☜ ✌,☞☜ ☜,☜平分 ☜,☜,在 ☞☜与 ☜中,,☞☜☹☜,☜☞☜,同理 ☜☜,☜☞☜.【点评】本题考查了全等三角形的判定和性质,角平分线的定义,垂直的定义,正确的作出辅助线构造全等三角形是解题的关键.卷一、填空题:(本大题共 个小题,每小题 分,共 分).当⌧时,代数式♋⌧ ♌⌧的值为 ,那么当⌧﹣ 时,该代数式的值是 .【考点】代数式求值.【分析】分别把⌧﹣ 和⌧代入♋⌧ ♌⌧,找出关于♋、♌两个算式之间的联系,利用整体代入得思想求得答案即可.【解答】解:当⌧时,♋⌧ ♌⌧♋♌,♋♌;当⌧﹣ 时,♋⌧ ♌⌧﹣ ♋﹣ ♌﹣ .故答案为: .【点评】此题考查代数式求值,注意代数式之间的内在联系,利用整体代入的思想求值..在⌧☐与⌧ ﹣ ⌧的积中不含⌧,则☐的值为.【考点】多项式乘多项式.【分析】根据多项式乘以多项式的法则先计算出⌧☐与⌧ ﹣ ⌧的积,再根据在⌧☐与⌧ ﹣ ⌧的积中不含⌧,得出 ﹣ ☐,求出☐的值即可.【解答】解: (⌧☐)(⌧ ﹣ ⌧) ⌧ ﹣ ⌧ ⌧☐⌧ ﹣ ☐⌧☐⌧ ﹣ ⌧ ☐⌧ ( ﹣ ☐)⌧☐,⌧☐与⌧ ﹣ ⌧的积中不含⌧,﹣ ☐,☐.故答案为:.【点评】此题考查了多项式乘多项式,注意不要漏项,漏字母,有同类项的合并同类项. .如图,矩形✌中,将四边形✌☜☞沿☜☞折叠得到四边形☟☝☞☜,已知 ☞☝,则☜☞ .【考点】平行线的性质;翻折变换(折叠问题).【分析】先根据翻折变换的性质求出 ☜☞的度数,再由平行线的性质求出 ✌☜☞的度数,根据平角的定义即可得出结论.【解答】解: 四边形☟☝☞☜由四边形✌☜☞翻折而成,☜☞ ☝☞☜,☞☝,☜☞ ☝☞☜,☜☞.四边形✌是矩形,✌,☜☞ ☜☞.故答案为: .【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等..若自然数⏹使得三个数的竖式加法运算❽⏹(⏹) (⏹)❾产生进位现象,则称⏹为❽连加进位数❾.例如: 不是❽连加进位数❾,因为 不产生进位现象; 是❽连加进位数❾,因为 产生进位现象,如果 、 、 、⑤、 这 个自然数中任取一个数,那么取到❽连加进位数❾的概率是 .【考点】规律型:数字的变化类;概率公式.【专题】创新题型.【分析】分析❽连加进位数特点❾可以判断: 、 、 、 、 、 、 是连加进位数,利用概率公式求解即可.【解答】解:根据连加进位数的意义可以判断: 、 、 、 、 、 、 是连加进位数,因为共有 个数,所以:取到❽连加进位数❾的概率是 .故答案为: .【点评】此题主要考查了新定义的理解和应用,准确理解新定义的规则并合理运用于题目分析是解题的关键..如图, ✌中,✌>✌,延长 ✌至点☝,边 的垂直平分线 ☞与 ✌☝的角平分线交于点 ,与✌交于点☟,☞为垂足, ☜✌于☜.下列说法正确的是♌.(填序号)♊☟☞;♋ ☝✌(  ☟);♌☜﹣✌✌☜;♍  ✌☜.【考点】全等三角形的判定与性质;角平分线的性质;线段垂直平分线的性质.【分析】根据线段垂直平分线的性质得到 ☟☟, ☞☞,由于 ☟> ☞,于是得到 ☟> ☞,故♊错误;根据角平分线的性质和三角形的外角的性质得到 ☝✌☝✌( ✌ ✌),由于 ✌> ☟,于是得到 ☝✌(  ☟),故♋错误;过 作 ☠✌,垂足为☠,连接 、 ,推出 ☠☞, ,根据☟☹证 ♦☞☹☠,推出 ☞☠,根据☟☹证♦☞✌☹♦☠✌,推出✌☠✌☞,于是得到 ☜✌✌☠✌✌☜,即 ☜﹣✌✌☜,故♌正确;根据余角的性质得到 ✌ ☟☜,故♍错误.【解答】证明: ☞垂直平分 ,☟☟, ☞☞,☟> ☞,☟> ☞,故♊错误;☝✌ ✌ ✌,✌平分 ☝✌,☝✌☝✌( ✌ ✌),✌> ☟,☝✌(  ☟),故♋错误;过 作 ☠✌,垂足为☠,连接 、 ,则 ☠☜, ,又 ☞✌, ☠✌,☜ ☠,在 ♦☜和 ♦☠中,,♦☜☹♦☠(☟☹),☜☠,在 ♦☜✌和 ♦☠✌中,,♦☜✌☹♦☠✌(☟☹),✌☠✌☜,☜✌✌☠✌✌☜,即 ☜﹣✌✌☜,故♌正确;☜✌,☟☜ ☟☜ ☟☞ ☟☞,✌ ☟☜,故♍错误.故答案为:♌.【点评】本题考查了全等三角形的性质和判定,线段的垂直平分线定理,角平分线性质等知识点,会添加适当的辅助线,会利用中垂线的性质找出全等的条件是解此题的关键.二、解答题:.已知♋、♌满足 ♋ ♌ ﹣ (♋﹣♌﹣ ) .( )求♋♌的值;( )先化简,再求值:( ♋﹣♌)( ♋﹣♌﹣ )﹣(♋♌)(♋﹣♌).【考点】整式的混合运算 化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】( )根据绝对值和偶次方的非负性求出♋ ♌ ,♋﹣♌,再根据完全平方公式进行求出♋♌;( )先算乘法,再合并同类项,最后整体代入求出即可.【解答】解:( ) ♋ ♌ ﹣ (♋﹣♌﹣ ) ,♋ ♌ ﹣ ,♋﹣♌﹣ ,♋ ♌ ,♋﹣♌,(♋﹣♌) ,♋ ♌ ﹣ ♋♌,﹣ ♋♌,♋♌;( )( ♋﹣♌)( ♋﹣♌﹣ )﹣(♋♌)(♋﹣♌)( ♋﹣♌) ﹣ ﹣(♋ ﹣♋♌♋♌﹣ ♌ )♋ ﹣ ♋♌♌ ﹣ ﹣♋ ♋♌﹣ ♋♌♌♋ ♌ ﹣ ♋♌﹣(♋ ♌ )﹣ ♋♌﹣ ,当♋ ♌ ,♋♌时,原式 ﹣ ﹣ .【点评】本题考查了绝对值,偶次方,乘法公式的应用,也考查了整式的混合运算和求值的应用,能正确运用整式的运算法则进行计算和化简是解此题的关键..已知✌、 两地相距 千米,甲于某日下午 时骑自行车从✌地出发驶往 地,乙也同日下午骑摩托车按同路从✌地出发驶往 地,如图所示,图中的折线 ✈和线段 ☠分别表示甲、乙所行驶的路程 (千米)与该日下午时间♦(时)之间的关系.根据图象回答下列问题:( )直接写出:甲出发 小时后,乙才开始出发;乙的速度为 千米 时;甲骑自行车在全程的平均速度为 千米 时.( )求乙出发几小时后就追上了甲?( )求乙出发几小时后与甲相距 千米?【考点】一次函数的应用.【专题】行程问题.【分析】( )根据函数图象可以解答本题;( )根据函数图象分别设出✈段和 ☠段对应的函数解析式,求出这两个函数的解析式,然后联立方程组即可求得乙出发几小时后追上甲;( )根据第二问求得的两个函数的解析式和函数图象,可知两个函数作差的绝对值等于 ,从而可以求得乙出发几小时与甲相距 千米.【解答】解:( )根据函数图象可得,甲出发 小时后,乙才开始出发;乙的速度为: ( ﹣ ) 千米 时;甲骑自行车在全程的平均速度是: ( ﹣ ) 千米 时;故答案为: , , ;( )设✈段对应的函数解析式为:⍓⌧♌,点( , ),( , )在✈段上,,解得 ,♌.即✈段对应的函数解析式为:⍓⌧;设过点 ( , ),☠( , )的函数解析式为:⍓❍⌧⏹,则,解得❍,⏹﹣ .即过点 ( , ),☠( , )的函数解析式为:⍓⌧﹣ ;解得,⌧,⍓﹣ (小时),即乙出发 小时后就追上甲;( )根据题意可得,⌧﹣ ﹣ ⌧解得⌧ ,⌧ ,﹣ (小时), ﹣ (小时),即乙出发 小时或 小时时与甲相距 千米.【点评】本题考查一次函数的应用,解题的关键是利用数形结合的思想找出所求问题需要的条件..如图 所示,以 ✌的边✌、✌为斜边向外分别作等腰 ♦✌和等腰 ♦✌☜,✌ ✌☜,☞为 边的中点,连接 ☞、☜☞.( )若✌✌,试说明 ☞☜☞;( )若 ✌,如图 所示,试说明 ☞☜☞;( )若 ✌为钝角,如图 所示,则 ☞与☜☞存在什么数量关系与位置关系?试说明理由.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】( )分别取✌、✌中点 、☠,连接 ☞、☠☞,再连接 、☜☠,利用在直角三角形中:直角三角形斜边上的中线等于斜边的一半和已知条件证明四边形 ☞☠✌为平行四边形,再利用平行四边形的性质和已知条件证明 ☞☹☜☠☞即可;( )如图 ,连接✌☞根据等腰直角三角形的性质得到✌,✌☜☜,由直角三角形的性质得到✌☞☞,根据线段垂直平分线的性质得到 ☞垂直平分✌,同理☜☞垂直平分✌,求得✌☞ ✌☠☞,推出四边形✌☞☠是矩形,于是得到结论;( ) ☞☜☞, ☞☜☞,如图 ,分别取✌、✌中点 、☠,连接 ☞、☠☞,再连接 、☜☠,利用在直角三角形中:直角三角形斜边上的中线等于斜边的一半和已知条件证明四边形 ☞☠✌为平行四边形,再利用平行四边形的性质和已知条件证明 ☞☹☜☠☞由全等三角形的性质得到 ☞☜☞, ☞ ☠☞☜,根据平行线的性质得到 ✌☞ ☞☠,由三角形的内角和得到☞ ☞ ☞☞,等量代换得到 ☞☜ ✌,即可得到结论.【解答】证明:( )如图 ,分别取✌、✌中点 、☠,连接 、☠☜,再连接☞、☞☠,☞为 边的中点, ✌, ✌☜,✌,☜☠✌,☞☠是 ✌的中位线.☞☠✌,☞☠✌,☜☠☞✌,☞☠✌且☞☠✌,四边形✌☞☠为平行四边形,✌☞ ✌☠☞.✌ ✌☠☜,☜ ☞☠,在 ☞与 ☜☠☞中,,☞☹☜☠☞( ✌).☞☜☞;( )如图 ,连接✌☞, 等腰 ♦✌和等腰 ♦✌☜,✌,✌☜☜,✌,☞为 边的中点, ✌☞☞,☞垂直平分✌,同理☜☞垂直平分✌,✌☞ ✌☠☞,四边形✌☞☠是矩形,☞☜,☞☜☞;( ) ☞☜☞, ☞☜☞,如图 ,分别取✌、✌中点 、☠,连接 、☠☜,再连接☞、☞☠, ☞为 边的中点, ✌, ✌☜,✌,☜☠✌,☞☠是 ✌的中位线.☞☠✌,☞☠✌,☜☠☞✌,☞☠✌且☞☠✌,四边形✌☞☠为平行四边形,✌☞ ✌☠☞.✌ ✌☠☜,☜ ☞☠,在 ☞与 ☜☠☞中,,☞☹☜☠☞( ✌).☞☜☞, ☞ ☠☞☜,✌☠☞,✌☞ ☞☠,☞ ☞ ☞☞,☞☜ ✌,✌,☞☜,☞☜☞.【点评】本题考查了平行四边形的判定和性质、全等三角形的判定和性质以及直角三角形的性质:直角三角形斜边上的中线等于斜边的一半,正确的作出辅助线构造全等三角形是解题的关键.。

相关文档
最新文档