材料化学总结.
钨钼材料化学知识点总结

钨钼材料化学知识点总结一、钨钼材料的基本介绍钨钼是一种重要的金属材料,具有很高的熔点和抗腐蚀性能,被广泛应用于航空航天、冶金、化工等领域。
钨钼材料常见的类型包括钨钼合金、钨钼化合物等。
钨钼合金具有高强度、高硬度和耐高温等特点,被用于制造高温零部件和切削工具;而钨钼化合物则具有优良的导热性能和耐腐蚀性,常用于制造电子元件、反应器等。
二、钨钼材料的化学性质1. 钨和钼的化学性质钨的原子序数为74,属于ⅥB族元素,化学性质稳定。
钨在常温下不与空气和水发生反应,不溶于常见酸和碱。
在高温下,钨能够与氧气反应生成氧化物WO3。
钼的原子序数为42,属于VB族元素,化学性质活泼。
钼具有良好的耐腐蚀性,能够与氧气、空气、水等发生反应。
钼的氧化物主要有MoO2和MoO3。
2. 钨钼合金的化学性质钨和钼能够形成多种合金,一般以钨为主,添加适量的钼等元素来调整合金的性能。
钨钼合金具有高熔点、高强度、高硬度的特点,耐热性好,腐蚀性小。
3. 钨钼化合物的化学性质钨钼化合物主要包括氧化物、硫化物等。
钨氧化物具有高熔点、高硬度、抗腐蚀性等特点,适用于高温结构材料;而钼的氧化物和硫化物则具有良好的导电性能和热导性能,常用于电子元件、导热材料等。
三、钨钼材料的应用领域1. 航空航天领域钨钼合金因其高温强度和耐腐蚀性能,被广泛用于制造航空发动机、导弹零部件、航天器等高温零部件。
钨钼化合物则常用于制造航天器外壳、导热材料、电源材料等。
2. 化工领域钨钼合金具有优良的耐腐蚀性能,常用于化工设备、反应器等的制造。
钨钼化合物被应用于制造化工管道、强酸强碱储罐等。
3. 冶金领域钨钼合金在冶金行业被广泛用于制造高温炉具、切削工具等。
钨钼化合物则用于制造高温炉窑隔热材料、熔融金属导热材料等。
4. 电子领域钨钼合金和化合物被广泛应用于制造电子元件、真空电子器件、导热材料等。
四、钨钼材料的生产工艺1. 钨钼合金的生产工艺钨钼合金的生产工艺主要包括熔炼、挤压、热处理等步骤。
木材化学知识点总结归纳

木材化学知识点总结归纳一、木材的化学组成1. 木材主要由纤维素、半纤维素和木质素三种化学成分组成。
其中,纤维素是木材中含量最多的成分,占据了木材的大部分,通常约占木材干重的40-50%。
纤维素分子是由葡萄糖分子经由β-1,4-键连接而成的长链聚合物,具有很强的结晶性和拉伸性。
半纤维素是一种多糖类物质,主要由葡萄糖、木糖和甘露糖等单糖组成,是一种支链聚合物,能够增加木材的柔韧性和弹性。
木质素是木材中的第三大成分,是一种由苯丙烷单体聚合而成的高分子化合物,具有很好的抗腐蚀性和耐受性。
2. 木材中还含有少量的脂肪、酚类、树脂、以及矿物质等成分。
这些成分对木材的性质和用途都有一定的影响。
3. 木材的化学组成是决定木材性能和用途的关键因素,因此对木材的化学组成进行深入了解,对于木材的加工和利用具有重要意义。
二、木材的化学性质1. 木材具有吸湿性、膨胀性和收缩性等性质。
由于木材中的纤维素和半纤维素含有大量的羟基基团,使得木材具有很强的吸水性和膨胀性。
而在干燥条件下,木材会失去吸湿性,并出现收缩现象。
2. 木材具有很强的化学稳定性和抗腐蚀性。
木材中含有的木质素具有很好的抗腐蚀性,使得木材能够在湿润和高温条件下仍然保持其结构和性能。
3. 木材还具有较好的燃烧性能。
木质素是一种含有大量的芳香族和脂肪族羟基的高分子化合物,因此具有较好的燃烧性能。
但由于木材中的脂肪和树脂含量较低,所以木材的燃烧速度并不高。
4. 木材还具有一定的抗弯性、抗压性、抗拉性等物理力学性能。
这些性能与木材的化学组成和化学结构密切相关。
三、木材的化学加工1. 木材的化学加工主要包括干燥、防腐、着色、改性等过程。
干燥是指将原木材中的水分蒸发或挥发出去的过程,以提高木材的稳定性和耐久性。
防腐是指利用一些化学防腐剂或者热处理等方法,使木材具有较好的防腐性。
着色是指利用染料或者其他着色剂对木材进行染色加工,以获得一定的色彩效果。
改性是指通过一些特殊的化学或物理方法,对木材的化学组成和结构进行改变,以获得特定的性能和用途。
排水材料化学知识点总结

排水材料化学知识点总结一、排水材料的基本分类1. 混凝土混凝土是一种由水泥、砂、石子和水混合而成的人造材料。
混凝土具有较高的强度和耐久性,是常见的排水材料之一。
2. PVC管道PVC管道是一种常见的排水管材料,具有耐腐蚀、耐磨损、重量轻、安装方便等优点。
3. HDPE管道HDPE管道是一种采用高密度聚乙烯制成的排水管材料,具有耐腐蚀、耐磨损、重量轻、抗拉强度高等优点。
4. 钢筋混凝土管道钢筋混凝土管道是一种由钢筋混凝土制成的排水管材料,具有强度高、耐用性好、抗压性能优良等特点。
5. 铸铁管道铸铁管道是一种由铸铁制成的排水管材料,具有耐磨损、耐腐蚀、抗压、抗拉性能优良等特点。
二、排水材料的化学成分及性质1. 混凝土混凝土的主要成分是水泥、砂、石子和水。
水泥的主要成分是石灰石、黏土和石膏,它们在水的作用下发生化学反应,生成水泥浆胶,使混凝土具有一定的强度和硬度。
2. PVC管道PVC管道的主要成分是聚氯乙烯,它具有优良的物理和化学性能,具有耐腐蚀、耐磨损、重量轻、安装方便等特点。
3. HDPE管道HDPE管道的主要成分是高密度聚乙烯,它具有良好的耐腐蚀、耐磨损、重量轻、抗拉强度高等优点。
4. 钢筋混凝土管道钢筋混凝土管道的主要成分是水泥、砂、石子和钢筋。
水泥起着粘结材料的作用,砂和石子起着骨料的作用,钢筋起着加固和增强混凝土的作用。
5. 铸铁管道铸铁管道的主要成分是铸铁,它具有耐磨损、耐腐蚀、抗压、抗拉等性能。
三、排水材料的化学反应过程1. 混凝土的化学反应过程当水泥与水混合后,发生硅酸盐水化反应,生成硅酸盐胶石,使混凝土固化成型,具有一定的强度和硬度。
2. PVC管道的化学反应过程PVC管道不易与酸、碱发生化学反应,具有优良的耐腐蚀性能,能够长期保持管道的稳定性能。
3. HDPE管道的化学反应过程HDPE管道不易与酸、碱发生化学反应,具有良好的耐腐蚀性能和耐化学性能,适用于各种排水环境。
4. 钢筋混凝土管道的化学反应过程水泥与水混合后,发生水泥水化反应,生成水化石,使混凝土具有一定的强度和硬度。
高考化学材料总结归纳

高考化学材料总结归纳高考化学是考生们备战高考的重要科目之一,其中材料题占据了一定的比重。
为了帮助同学们更好地复习和应对高考化学材料题,本文将对常见的化学材料进行总结归纳,以期为同学们提供有益的参考。
一、金属材料1. 金属的性质金属具有良好的导电性和热传导性,能散发金属光泽,易于被加工成各种形状。
同时,金属常常具有一定的延展性、韧性和塑性。
2. 金属的应用金属被广泛应用于工业生产和日常生活中。
例如,铁和铝常用于制造建筑材料和机械设备;铜常用于制作导线和管道;银和铜常用于制作首饰和硬币等等。
二、无机非金属材料1. 无机非金属的性质无机非金属一般不具备金属的导电性和热传导性,常常呈现非金属光泽。
此外,无机非金属的硬度和脆性较大,且熔点较高。
2. 无机非金属的应用无机非金属广泛应用于建筑、化工、电子等领域。
例如,石膏和水泥被广泛用于建筑材料;玻璃被广泛用于窗户和容器的制造;陶瓷常用于制作瓷器和建筑材料等。
三、高分子材料1. 高分子材料的性质高分子材料具有较大的分子量,可以通过聚合反应制备。
它们一般具有较低的密度和较好的机械性能,也可以根据需要进行柔韧性的调整。
2. 高分子材料的应用高分子材料被广泛应用于塑料、橡胶等方面。
例如,聚乙烯常用于制作塑料袋和塑料容器;聚氯乙烯可用于制作水管和电线外套等。
四、其他材料1. 合金材料合金是由两种或多种金属元素组成的材料。
不同的合金具备不同的性质和应用。
例如,铝合金具有较好的强度和耐腐蚀性,广泛应用于航空工业和汽车制造。
2. 复合材料复合材料是由两种或多种材料混合而成的材料。
不同的组合可以为材料赋予不同的性能,如强度、轻质化等。
例如,碳纤维复合材料在航空航天领域具有重要应用。
总结:在高考化学材料题中,涉及到了很多不同类型的材料,如金属材料、无机非金属材料、高分子材料等。
掌握这些材料的性质和应用是高考复习的重要内容。
希望同学们能够通过本文的总结归纳,更好地理解和记忆化学材料,为高考化学的顺利通过做好充分准备。
新材料化学知识点总结

新材料化学知识点总结新材料化学的基本概念新材料化学是研究和探索新材料的科学,它旨在开发出具有特定性能和功能的新型材料,并为其应用提供技术支持。
新材料化学的基本任务是通过研究材料的结构、性能和应用,提高材料的性能,开发出更加符合人类需求的新型材料。
新材料化学的研究内容涵盖了化学、物理、材料学等多个学科领域,是一个综合性强、前沿性强的学科领域。
新材料化学的研究内容新材料化学的研究内容包括材料的合成、结构表征、性能测试以及应用研究等多个方面。
其中,材料的合成是新材料化学的基础工作,它包括物质的合成方法、反应机理、合成过程中的控制和调控等内容;结构表征主要是对材料的结构进行分析和表征,包括X射线衍射、扫描电子显微镜、能谱分析等技术手段;性能测试是对材料的力学性能、热学性能、电学性能等进行测试和评价,以了解材料的性能特点;应用研究是将新型材料应用于具体领域,满足特定需求,并为材料在工业和生活中的应用提供技术支持。
新材料化学的研究方法新材料化学的研究方法主要包括理论计算、实验研究、制备工艺等多种手段。
理论计算是通过模拟和计算的方法,对材料的结构和性能进行预测和分析,为实验研究提供指导;实验研究是通过实验手段对材料进行合成、结构表征和性能测试等工作,获取实验数据和结果;制备工艺是根据新材料的特性和需求,设计和开发合适的制备方法和工艺流程,实现新材料的规模化生产。
新材料化学的应用领域新材料化学的研究成果广泛应用于各个领域,包括电子信息、能源材料、生物医药、环境保护、先进制造等多个领域。
在电子信息领域,新型材料的研究应用为信息存储、信息传输、光电器件等提供了新的选择和技术支持;在能源材料领域,新型材料的研究应用为新能源的开发利用、能量转化和储存等提供了新的途径和技术支持;在生物医药领域,新型材料的研究应用为药物载体、医用材料、医学影像等提供了新的选择和技术支持;在环境保护领域,新型材料的研究应用为污染治理、废弃物资源化利用等提供了新的途径和技术支持;在先进制造领域,新型材料的研究应用为高性能材料、先进工艺、智能制造等提供了新的选择和技术支持。
设计材料化学知识点总结

设计材料化学知识点总结1. 材料的热力学性质在材料化学中,热力学性质是研究材料的物理性质和化学性质之间相互关系的一个重要部分。
热力学性质包括热容、热导率、热膨胀系数等。
热容是指物质在吸热或放热过程中所需要的热量,可以用于描述材料的热稳定性和热传导性。
热导率是指材料在热量传导过程中的导热能力,可以用于描述材料的热传导性能。
热膨胀系数是指材料在温度变化时的线性膨胀系数,可以用于描述材料的热膨胀性能。
了解材料的热力学性质可以帮助人们选择合适的材料,并设计出具有特定热稳定性、热传导性和热膨胀性能的材料。
2. 材料的结构性质材料的结构性质是指材料在原子、分子或离子水平上的结构特征。
包括晶体结构和非晶结构。
晶体结构是指材料中的原子、分子或离子按照一定的规则排列形成的有序结构,具有明确的晶体学特征。
非晶结构是指材料中的原子、分子或离子排列是无序的,没有明确的晶体学特征。
了解材料的结构性质可以帮助人们理解材料的物理性质和化学性质,并为材料的设计和制备提供重要的理论基础。
3. 材料的电化学性质材料的电化学性质是指材料在电场作用下的特性。
包括电导率、电化学稳定性、电化学活性等。
电导率是指材料在电场作用下的导电能力,可以用于描述材料的导电性能。
电化学稳定性是指材料在电化学反应过程中的稳定性,可以用于描述材料的防腐蚀性能。
电化学活性是指材料在电化学反应中的活性能力,可以用于描述材料的催化性能。
了解材料的电化学性质可以帮助人们设计和制备具有特定导电性能、防腐蚀性能和催化性能的材料。
4. 材料的表面性质材料的表面性质是指材料表面的物理和化学特性。
包括表面能、表面粗糙度、表面形貌等。
表面能是指材料表面吸附能力的大小,可以用于描述材料的表面活性。
表面粗糙度是指材料表面的粗糙程度,可以用于描述材料的表面质量和功能性。
表面形貌是指材料表面的形状和结构特征,可以用于描述材料的外观和几何形状。
了解材料的表面性质可以帮助人们设计和制备具有特定表面活性、表面质量和表面几何形状的材料。
大一材料化学知识点

大一材料化学知识点一、材料分类和材料性质1. 金属材料金属材料是由金属元素组成的材料,具有良好的导电性、导热性和可塑性。
常见的金属材料包括铁、铝、铜等。
金属材料在工业生产和建筑领域得到广泛应用。
2. 非金属材料非金属材料主要由非金属元素或化合物组成,具有较差的导电性和导热性。
常见的非金属材料有陶瓷、聚合物和复合材料等。
非金属材料在电子、医疗和环保等领域有重要应用价值。
3. 高分子材料高分子材料是由长链分子组成的材料,具有良好的可塑性和耐磨性。
常见的高分子材料有塑料、橡胶和纤维素等。
高分子材料广泛应用于塑料制品、橡胶制品和纺织品等行业。
4. 纳米材料纳米材料是指具有纳米级尺寸的材料,具有特殊的物理和化学性质。
常见的纳米材料有纳米颗粒、纳米管和纳米线等。
纳米材料在电子、光电和医学等领域发展迅速,具有广阔的应用前景。
二、材料结构和组织1. 晶体结构晶体结构是指材料中原子或离子的排列方式。
晶体结构的种类包括立方晶系、正交晶系和六方晶系等。
不同的晶体结构决定了材料的物理和化学性质。
2. 晶体缺陷晶体缺陷是指晶体中存在的原子或离子排列不完整的区域。
常见的晶体缺陷包括点缺陷、线缺陷和面缺陷等。
晶体缺陷对材料的强度和导电性能有重要影响。
3. 材料组织材料组织是指材料中各种组成成分的分布和排列方式。
常见的材料组织有均匀组织、层状组织和颗粒组织等。
不同的材料组织决定了材料的宏观性能和微观行为。
三、材料性能1. 机械性能机械性能是指材料在外力作用下的表现。
常见的机械性能包括强度、硬度和韧性等。
不同的材料具有不同的机械性能,适用于不同的工程应用。
2. 热学性能热学性能是指材料在热力学过程中的表现。
常见的热学性能包括热导率、膨胀系数和热稳定性等。
热学性能对材料的加工和使用具有重要的影响。
3. 电学性能电学性能是指材料在电场中的表现。
常见的电学性能包括电导率、介电常数和电阻率等。
不同的材料具有不同的电学性能,适用于不同的电子器件制备。
材料化学期末总结

材料化学期末总结材料化学是研究材料组成、结构、性质和制备方法的学科,它在材料科学与工程领域有着重要的应用价值。
本学期,我在材料化学的学习过程中,获得了许多宝贵的知识和经验,通过实验、理论学习和案例分析,我深入了解了材料的多样性、相互作用和功能实现。
在本文中,我将对本学期学习的一些重点内容进行总结和归纳,以备将来复习和参考。
第一部分:材料的组成与结构1. 原子、分子和晶体的基本概念原子是构成物质的基本单位,它由质子、中子和电子组成。
分子是由两个或更多原子通过化学键结合而成的。
晶体是由大量原子或分子按照规则的空间排列方式形成的结晶体系。
2. 元素和化合物的分类与命名元素是由一种类型的原子组成的纯物质,可以通过周期表进行分类。
化合物是由不同类型的原子组成的纯物质,可以通过元素符号和化学式进行命名。
3. 材料的晶体结构与缺陷晶体结构描述了晶体中原子或离子的排列方式。
常见的晶体结构包括立方晶系、六方晶系和四方晶系等。
缺陷是指晶体中存在的原子或离子的缺失、替代和插入等情况。
第二部分:材料的物理和化学性质1. 材料的热性质热性质指材料在受热时的表现和反应。
常见的热性质包括热膨胀、热导率和热容等。
2. 材料的电性质电性质指材料在电场、电流或电磁辐射等条件下的表现和反应。
常见的电性质包括导电性、绝缘性和半导体性等。
3. 材料的光学性质光学性质指材料对光的吸收、反射和透射等现象。
常见的光学性质包括折射率、吸收谱和荧光性等。
第三部分:材料制备与应用1. 传统材料的制备方法传统材料的制备方法包括溶解法、熔融法、沉淀法和高温固相反应等。
2. 先进材料的制备方法先进材料的制备方法包括溶胶-凝胶法、物理气相沉积法和化学气相沉积法等。
3. 材料的应用领域材料在电子、光电子、能源、医药和环境等领域有着广泛的应用。
例如,材料在太阳能电池、荧光材料和催化剂等方面发挥着重要作用。
结语通过本学期的学习,我对材料化学有了更深入的理解。
我学会了分析和解决材料化学问题的能力,同时也提高了实验操作和科学研究的技能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章绪论●材料和化学药品化学药品的用途主要基于其消耗;材料是可以重复或连续使用而不会不可逆地变成别的物质。
●材料的分类按组成、结构特点分:金属材料、无机非金属材料、高分子材料、复合材料按使用性能分:Structural Materials ——主要利用材料的力学性能;Functional Materials ——主要利用材料的物理和化学性能按用途分:导电材料、绝缘材料、生物医用材料、航空航天材料、能源材料、电子信息材料、感光材料等等●材料化学的主要内容:结构、性能、制备、应用第二章材料的结构2.1 元素和化学键●了解元素的各种性质及其变化规律:第一电离能、电子亲和势、电负性、原子及离子半径●注意掌握各种结合键的特性及其所形成晶体材料的主要特点●了解势能阱的概念:吸引能(attractive energy,EA):源于原子核与电子云间的静电引力排斥能(repulsive energy,ER):源于两原子核之间以及两原子的电子云之间相互排斥总势能(potential energy):吸引能与排斥能之和总势能随原子间距离变化的曲线称为势能图(势能阱)较深的势能阱表示原子间结合较紧密,其对应的材料就较难熔融,并具有较高的弹性模量和较低的热膨胀系数。
2.2 晶体学基本概念●晶体与非晶体(结构特点、性能特点、相互转化)晶体:原子或原子团、离子或分子在空间按一定规律呈周期性地排列构成(长程有序)非晶体:原子、分子或离子无规则地堆积在一起所形成(长程无序、短程有序)晶态与非晶态之间的转变• 非晶态所属的状态属于热力学亚稳态,所以非晶态固体总有向晶态转化的趋势,即非晶态固体在一定温度下会自发地结晶,转化到稳定性更高的晶体状态。
• 通常呈晶体的物质如果将它从液态快速冷却下来也可能得到非晶态。
●晶格、晶胞和晶格参数周期性:同一种质点在空间排列上每隔一定距离重复出现。
周期:任一方向排在一直线上的相邻两质点之间的距离。
晶格(lattice):把晶体中质点的中心用直线联起来构成的空间格架。
结点(lattice points):质点的中心位置。
空间点阵(space lattice):由这些结点构成的空间总体。
晶胞(unit cell):构成晶格的最基本的几何单元。
●晶系熟记7个晶系的晶格参数特征了解14种空间点阵类型●晶向指数和晶面指数理解晶面和晶向的含义晶面——晶体点阵在任何方向上分解为相互平行的结点平面称为晶面,即结晶多面体上的面。
晶向——点阵可在任何方向上分解为相互平行的直线组(晶列),晶列所指方向就是晶向。
晶列 晶面簇掌握晶向指数和晶面指数的确定晶向指数与晶面指数:国际上统一采用密勒指数(Miller indices )来进行标定。
[uvw]为OP 的晶向指数,用(hkl )来表示一组平行晶面,称为晶面指数。
晶面间距——掌握较简单晶系的晶面间距计算 正交晶系 立方晶系 2.3 晶体材料的结构2.3.1 金属晶体● 理解金属晶体的堆积模型A1型最密堆积(面心立方fcc )和A3型最密堆积(六方hcp ),A2型密堆积(体心立方bcc )0.68● 掌握单位晶胞原子数、配位数的确定Structure CN n ξbcc 8 2 0.68fcc 12 4 0.74hcp 12 6 0.74● 掌握原子堆积系数的计算原子堆积系数 =单位晶胞内原子体积/单位晶胞体积2.3.2 离子晶体● 鲍林规则理解鲍林规则鲍林第一规则── 在离子晶体中,正离子周围形成一个负离子多面体,正负离子之间的距离取决于离子半径之和,正离子的配位数取决于离子半径比。
鲍林第二规则——在离子的堆积结构中必须保持局域的电中性。
鲍林第三规则——稳定结构倾向于共顶连接鲍林第四规则──若晶体结构中含有一种以上的正离子,则高电价、低配位的多面体之间有尽可能彼此互不连接的趋势鲍林第五规则──同一结构中倾向于较少的组分差异,也就是说,晶体中配位多面体类型倾向于最少。
运用鲍林规则分析晶体结构● 二元和三元离子晶体了解各种离子晶体的结构特点关注某些较有特点的离子晶体的结构与性能关系(如课件中提及的内容)CaF2与NaCl 的性质对比:F -半径比Cl -小,Ca2+半径比Na+稍大,综合电价和半径两因素,萤石中质点间的键2222221hklh k l d a b c =++0222hkl a d h k l =++力比NaCl中的键力强,反映在性质上,萤石的硬度为莫氏4级,熔点1410℃,密度3.18,水中溶解度0.002;而NaCl熔点808℃,密度2.16,水中溶解度35.7。
• CaF2晶体结构中,8个F-之间形成的八面体空隙都没有被填充,成为一个“空洞”,结构比较开放,有利于形成负离子填隙,也为负离子扩散提供了条件。
• 立方ZrO2属萤石型结构,具有氧离子扩散传导的机制,在900~1000 ℃间O2-电导率可达0.1 S/cm。
2.3.3 硅酸盐结构●硅酸盐结构特点基本结构单元:硅氧四面体[SiO4]四面体连接方式:共顶连接●硅酸盐结构类型岛状、环状/链状、层状、网架状各种类型的代表性硅酸盐及其性能特点岛状硅酸盐:镁橄榄石Mg2[SiO4]环状硅酸盐:绿宝石Be3Al2[Si6O18] 链状硅酸盐:透辉石CaMg[Si2O6]结构层状硅酸盐:滑石Mg3[Si4O10](OH)22.4 晶体缺陷●基本概念:晶体中原子偏离理想的周期性排列的区域称作晶体缺陷●缺陷的种类:点缺陷、线缺陷、面缺陷、体缺陷2.4.1 点缺陷●种类:空位、间隙原子、置换式杂质原子、间隙式杂质原子●热缺陷和杂质缺陷的主要区别:晶体的杂质缺陷浓度仅取决于加入到晶体中的杂质含量,而与温度无关●肖特基缺陷原子或离子移动到晶体表面或晶界的格点位上,在晶体内部留下相应的空位●弗伦克尔缺陷原子或离子离开平衡位置后,挤入晶格间隙中,形成间隙原子离子,同时在原来位置上留下空位●点缺陷的表示方法主符号表明缺陷的主体;空位V,正离子M、负离子X、杂质原子L(对于具体原子用相应的元素符号)。
下标表示缺陷位置;间隙位用下标i表示,M位置的用下标M表示,X位置的用下标X表示;上标表示缺陷有效电荷:正电荷用“•”(小圆点)表示,负电荷用“’”(小撇)表示,零电荷用“×”表示(可省略)。
●点缺陷对材料性能的影响力学性质:晶体的机械强度大大降低催化性能:成为催化反应发生的活性中心电学性质:掺杂形成半导体光学性质、颜色2.4.2 线缺陷和位错位错:线缺陷的具体形式柏格斯矢量的确定从一个原子出发,移动n个晶格矢量,然后顺时针转向再移动m个晶格矢量,再顺时针转向移动n个晶格矢量,最后顺时针转向移动m个晶格矢量,到达终点原子。
从柏格斯回路的终点到起点画出的矢量就是柏格斯矢量b 刃型位错和螺型位错相同点:二者都是线缺陷不同点:①刃型位错具有一个额外的半原子面,而螺型位错无;②刃型位错的位错线与柏格斯矢量相垂直;螺型位错线与柏格斯矢量平行;③。
2.4.3面缺陷和体缺陷●晶体中的晶界或表面属于面缺陷。
——表面的存在对材料的物理化学性能有重要的影响●体缺陷一般指材料中的空洞、夹杂物等——体缺陷的存在常常是有害的。
2.5 固溶体●固溶体:一个(或几个)组元的原子(化合物)溶入另一个组元的晶格中,而仍保持另一组元的晶格类型的固态晶体。
●种类:置换型固溶体(无限固溶体):由溶质原子代替一部分溶剂原子而占据着溶剂晶格某些结点位置所组成;填隙型固溶体(有限固溶体):在溶剂的晶格间隙内有溶质的原子填入(溶入)形成的固溶体●注意掌握影响形成置换型固溶体或填隙型固溶体的因素(粒子尺寸、电价等因素)原子或离子尺寸的影响(Hume-Rothery经验规则):当△r=(r1-r2)/r1<0.15时,溶质与溶剂之间可以形成连续固溶体;当△r=0.15 -0.30时,溶质与溶剂之间只能形成有限型固溶体;当△r>0.3 时,溶质与溶剂之间很难形成固溶体或不能形成固溶体,而容易形成中间相或化合物。
因此Δr愈大,则溶解度愈小。
电价因素:一般来说,两种固体只有在离子价相同或同号离子的离子价总和相同时,才可能满足电中性的要求,生成连续固溶体。
●实验判断形成何种固溶体的方法:利用X射线衍射或电子衍射,确定固溶体的点阵类型和点阵常数,由此推出一个晶胞内的原子数n 和晶胞体积V;根据该固溶体的平均原子量A及阿弗伽德罗常数NA即可算出固溶体的理论密度;过实验直接测出该固溶体的实际密度;比较理论密度和实际密度●固溶体的形成对晶体材料性质的影响1. 稳定晶格,阻止某些晶型转变的发生2. 活化晶格3. 固溶强化4. 形成固溶体后对材料物理性质的影响第三章材料的性能●化学性能各种材料的化学性能特点:耐氧化性(化学锈蚀、电化学腐蚀);耐酸碱性;耐有机溶剂性;耐老化性●力学性能各种力学性能的表征及一些简单计算:材料的强度、材料的硬度、疲劳性能各种材料的力学性能特点• 很多金属材料既有高的强度,又有良好的延展性;• 多晶材料的强度高于单晶材料;–这是因为多晶材料中的晶界可中断位错的滑移,改变滑移的方向。
通过控制晶粒的生长,可以达到强化材料的目的。
• 固溶体或合金的强度高于纯金属;–杂质原子的存在对位错运动具有牵制作用。
• 多数无机非金属材料延展性很差,屈服强度高。
–源于共价键的方向性●热性能用势能阱解释材料热膨胀及其与键强的关系各种材料的导热率● 电性能能带理论解释各种材料的导电性介电性基本概念铁电性(材料在除去外电场后仍保持部分极化状态)与压电性的原理● 磁性磁性的种类:反磁性、顺磁性、铁磁性、反铁磁性、铁氧体磁性磁畴(—自旋磁矩在一个个微小区域内“自发地”整齐排列起来而形成的磁化小区域)和磁化曲线 ● 光学性能 各种材料的光学性能特点第四章 材料化学热力学4.1化学热力学基础4.2埃灵罕姆图及其应用● ∆G 0-T 线的斜率:与反应前后的气体分子数相关氧化过程气体数目减少,则∆S 0<0, (- ∆S 0)>0,斜率为正。
金属+O 2→金属氧化物氧化过程气体数目增加,则∆S 0>0, (- ∆S 0)<0,斜率为负。
氧化过程气体数目不变,则∆S 0=0, (- ∆S 0)=0,斜率为零,即∆ G 0几乎与温度无关。
● ∆G 0-T 线的相对位置——∆G 0-T 曲线越在下方,金属氧化物的∆G 0负值越大,其稳定性也就越高。
4.3相平衡与相图(相图部分以二元相图为主)● 相律:f = c-p+2f :自由度数;c :组成材料系统的独立组元数;p :平衡相的数目;2:指温度和压力这两个非成分的变量;如果研究的系统为固态物质,可以忽略压力的影响 ,该值为1● 杠杆规则 ● 各种点、线、区及对应的自由度2条线: 液相线、固相线 c=2,p=2,f=12个单相区: 固相区、液相区 c=2,p=1,f=21个两相区: c=2,p=2,f=1 ● 利用相图考察材料的相态变化,例如从熔体降温时,相态的变化,以及各相的成分、含量及其变化第五章 材料的制备5.1 晶体生长技术5.1.1 熔体生长法:将欲生长晶体的原料熔化,然后让熔体达到一定的过冷而形成单晶提拉法:可以在短时间内生长大而无错位晶体;生长速度快,单晶质量好;适合于大尺寸完美晶体的批量生产坩埚下降法区熔法焰熔法液相外延法22C(s) +O (g)=2CO(g)22C(s) +O (g)=CO (g)00L L C C W bc W ab C C αα-==-(关注各种方法的原理、特点)5.1.2 溶液生长法●主要原理:使溶液达到过饱和的状态而结晶。