2011年福建莆田市中考数学试卷扫描版

合集下载

2011年福建省莆田市质检数学试卷及答案

2011年福建省莆田市质检数学试卷及答案

P'PCBA2011年莆田市初中毕业班质量检查试卷数学(满分:150分;考试时间:120分钟)友情提醒:本试卷分为“试题”和“答题卡”两部分,答题时,请按答题卡中的“注意事项”认真作答,答案写在答题卡上的相应位置。

一、精心选一选:本大题共8小题,每小题4分,共32分,每小题给出的四个选项中有且只有一个选项是正确的,请把正确选项的代号写在题后的括号内,答对的得4分;答错、不答或答案超过一个的一律得0分.1.计算2)3(-的结果是()A.-6 B.6 C.-9 D.92.下列各式计算正确的是 ( )A.53232aaa=+B.5326)2(bb=C.xyxyxy3)()3(2=÷D.65632xxx=⋅3.长方体的主视图与左视图如图所示 (单位:cm),则其俯视图的面积是( )A.122cm B.82cmC.62cm D.42cm(第3题图)4.某校抽取九年级的7名男生进行了1次体能测试,其成绩分别为75,90,85, 75,85,95,75,(单位:分)这次测试成绩的众数和中位数分别是 ( )A.85,75 B.75,80 C.75,85 D.75,755.如图,A、B、C是⊙O上的三点,2=AB,OACB30=∠,那么⊙O的半径等于( )A.1 B.2 C.4 D.3(第5题图)6.下列命题中,真命题是( )A.对角线互相平分且相等的四边形是矩形B.对角线互相垂直且相等的四边形是矩形C.对角线互相平分且相等的四边形是菱形D.对角线互相垂直且相等的四边形是菱形7.已知两圆的半径分别为3cm和2cm,圆心距为5cm,则两圆的位置关系是( )A.外离B.外切C.相交D.内切8.抛物线cbxaxy++=2上部分点的横坐标x,纵坐标y的对应值如表所示.给出下列说法:③抛物线经过点(-2,4);④在对称轴右侧,y随x增大而减小.从表可知,下列说法正确的个数有 ( )A.1个B.2个C.3个D.4个二、细心填一填:本大题共8小题,每小题4分,共32分.9. 2010年莆田市经济生产总值达815亿元,将这个总值用科学记数法表示为__________元.10.等腰三角形的两条边长是4 cm、2cm,那么它的周长是 _________cm.11. 在一个不透明的口袋中装有若干个小球,这些小球只有颜色不同,如果袋中红球的个数为4,且摸出红球的概率为31,那么袋中的球共有个.12.某药品降价%20后的单价为a元,则原单价为 _ 元.13. 如图,小明从A地沿北偏东30方向走m3100到B地,再从B地向正南方向走200m到C地,此时小明离A地m.(第12题图)14.若扇形的半径是2cm,圆心角的度数是90°,则扇形的弧长是 _ cm(用含π的式子表示).15.如图,在ABC∆中,OACB90=∠,BCAC=,点P在ABC∆内,CAP'∆是由BPC∆绕着点C旋转得到的,5=PA,1=PB,o135=∠BPC.则=PC__________ . (第15题图)16.已知函数xxf+=11)(,其中)(af表示当ax=时对应的函数值,如11)0(+=f,aaf+=11)(,aaaaf+=+=1111)1(,则)0()1()21()20101()20111(fffff+++⋅⋅⋅+++=++⋅⋅⋅+++)2011()2010()2()1(ffff_________.三.耐心做一做:本大题共9小题,共86分,解答应写出必要的文字说明、证明过程或演算步骤17.(本小题8分)计算:o60sin22383+-+18.(本小题满分8分)求不等式组⎩⎨⎧-<--≤-xxxx15234)2(2的整数解.19.(本小题8分)近来莆田的网上商店发展很快.某公司对某个网站2007年到2010年网上商店的数量和购物顾客人次进行了调查.根据调查结果,将四年来该网站网上商店的数量和每个网上商店年平均购物顾客人次分别制成了折线统计图和条形统计图.请你根据统计图提供的信息完成下列填空:(1)2007年该网站共有网上商店__________个;(2)2010年该网站网上购物顾客共有__________ 万人次;(3)这4年该网站平均每年网上购物顾客有__________ 万人次.F ED C A t (秒)05万/人次每个网上商店平均购物的顾客人次网上商店的数量020.(本小题8分)已知:如图,梯形ABCD 中,AB //DC ,E 是BC 的中点,AE 、DC 的延长线相交于点F ,连接AC 、BF .(1)求证:CF AB =;(2)若将梯形沿对角线AC 折叠恰好D 点与E 点重合, 梯形ABCD 应满足什么条件,能使四边形ABFC 为菱形? 并加以证明.21. (本小题8分)如图,⊙O 是ABC ∆的外接圆,AB 是⊙O 3=BD .(1)当A ∠为何值时,CD 是⊙O 的切线?请说明理由;(2)在(122. (本小题10分)如图,直线b kx y +=1与双曲线xmy =2相交于(2A -(1)当x 为何值时?21y y > ;(2)把直线b kx y +=1平移,使平移后的直线与坐标轴围成的三角形面积为2,求平移后得到的直线解析式.(第22题图)23. (本小题10分)近几年来,我市交通发展迅速,途经我市的福厦铁路动车组已在2010年4月通车。

2011年中考数学试题及答案

2011年中考数学试题及答案

2011年九年级教学质量检测数 学 试 题注意事项:本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分;共120分.考试时间为120分钟.第Ⅰ卷 选择题 (共36分)一、选择题 (本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来填入题后的括号内,每小题选对得3分.) 1.下列根式中与18是同类二次根式的是( ). A .321 B .27 C .6 D .32.抛物线y =2x 2+4x -3的顶点坐标是( ).A .(1,-5)B .(-1,-5)C .(-1,-4)D .(-2,-7) 3.国家游泳中心——“水立方”是2008年北京奥运会标志性建筑之一,其工程占地面积为62828平方米,将62828用科学记数法表示是(保留三个有效数字)( ). A .62.8×103 B .6.28×104 C .6.2828×104 D .0.62828×105 4.数据0,-1,6,1,x 的众数为-1,则这组数据的方差是( ). A .2B .534C .2D .5265.如图,⊙O 的直径为10,弦AB 的长为6,M 是弦AB 上的一动点,则线段OM 的长的取值范围是( ). A .3≤OM ≤5 B .4≤OM ≤5 C .3<OM <5 D .4<OM <56.小明随机地在如图所示的正三角形及其内部区域投针,则针扎 到其内切圆(阴影)区域的概率为( ). A .21 B .π63C .π93 D .π33第6题图第11题图7.如图,□ABCD 中,对角线AC 和BD 相交于点O , 如果AC =12,BD =10,AB =m ,那么m 的取值范围是( ).A .1<m <11B .2<m <22C .10<m <12D .5<m <68.如图,P 1、P 2、P 3是双曲线上的三点.过这三点分别 作y 轴的垂线,得到三个三角形P 1A 1O 、P 2A 2O 、P 3A 3O , 设它们的面积分别是S 1、S 2、S 3,则( ). A .S 1<S 2<S 3 B .S 2<S 1<S 3 C .S 1<S 3<S 2 D .S 1=S 2=S 39.直线1l :1y k x b =+与直线2l :2y k x =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式12k x b k x +>的解为( ).A .1x >-B .1x <-C .2x <-D .无法确定10.如图,将A B C △沿D E 折叠,使点A 与B C边的中点F 重合,下列结论中①EF AB ∥且12E F A B =;②BAF C AF ∠=∠;③DE AF 21S ADFE∙=四边形;④2B D F F E C B A C ∠+∠=∠, 一定正确的个数是( ). A .1B .2C .3D .411.若关于x 的一元二次方程ax 2+2x -5=0的两根中有且仅有一根在0和1 之间(不含0和1),则a 的取值范围是( ). A .a <3 B .a >3 C .a <-3 D .a >-312.如图,⊙O 是△ABC 的内切圆,切点分别是D 、E 、F ,已知∠A = 100°,∠C = 30°,则∠DFE 的度数是 ( ).A .55°B .60°C .65°D .70°DABCO第7题图xb +x第9题图第8题图第12题图第16题图第Ⅱ卷 非选择题(共84分)二、填空题(本题共5小题,共15分.只要求填写最后结果,每小题填对得3分.) 13.当m = 时,关于x 的分式方程213x m x +=--无解.14.已知关于x 的不等式组⎩⎨⎧--≥-0125a >x x 无解,则a 的取值范围是 .15.已知关于的一元二次方程012)1(2=-++x x k 有两个不相同的实数根,则k 的取值范围是 .16.如图,梯形ABCD 中,BC AD //,1===AD CD AB ,︒=∠60B直线MN 为梯形ABCD 的对称轴,P 为MN 上一点,那么PD PC +的最小值是 .17.在实数的原有运算法则中我们补充定义新运算“⊕”如下:当a ≥b 时,a ⊕b =b 2;当a <b 时,a ⊕b =a .则当x =2时,(1⊕x )-(3⊕x )的值为 . 三、解答题(本题共7小题,共69分.解答应写出文字说明、证明过程或推演步骤.)18.(本题满分8分)据《生活报》报道,有关部门要求各中小学要把“每天锻炼一小时”写入课表.为了响应这一号召,某校围绕着“你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行了随机抽样调查,从而得到一组数据.图1是根据这组数据绘制的条形统计图.请结合统计图回答下列问题: (1)该校对多少名学生进行了抽样调查?(2)本次抽样调查中,最喜欢篮球活动的有多少人?占被调查人数的百分比是多少?(3)若该校九年级共有200名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢跳绳活动的人数约为多少?图2图1最喜欢的体育活 动项目的人数/人育活动项目19.(本题满分9分)某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w (千克)随销售单价x (元/千克)的变化而变化,具体关系式为:w =-2x +240.设这种绿茶在这段时间内的销售利润为y (元),解答下列问题: (1)求y 与x 的关系式; (2)当x 取何值时,y 的值最大?(3)如果物价部门规定这种绿茶的销售单价不得高于90元/千克,公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?20.(本题满分9分)经过江汉平原的沪蓉(上海—成都)高速铁路即将动工.工程需要测量汉江某一段的宽度.如图①,一测量员在江岸边的A 处测得对岸岸边的一根标杆B 在它的正北方向,测量员从A 点开始沿岸边向正东方向前进100米到达点C 处,测得∠ACB=68°.(1)求所测之处江的宽度(.48.268tan ,37.068cos ,93.068sin ≈≈≈ ); (2)除(1)的测量方案外,请你再设计一种测量江宽的方案,并在图②中画出图形.21.(本题满分10分)如图,B D 为圆O 的直径,A B A C =,A D 交B C 于E ,2A E =,4E D =.(1)求证:A B E A D B △∽△,并求A B 的长;(2)延长D B 到F ,使B F B O =,连接F A ,那么直线F A 与⊙O 相切吗?为什么?22.(本题满分10分)荣昌公司要将本公司100吨货物运往某地销售,经与春晨运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货物18吨.已知租用1辆甲型汽车和2辆乙型汽车共需费用2500元;租用2辆甲型汽车和1辆乙型汽车共需费用2450元,且同一种型号汽车每辆租车费用相同.(1)求租用一辆甲型汽车、一辆乙型汽车的费用分别是多少元?(2)若荣昌公司计划此次租车费用不超过5000元.通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用.C23.(本题满分11分)如图,等腰梯形ABCD中,AD∥BC,AB=DC,AC⊥BD,过D点作DE∥AC 交BC的延长线于E点.(1)求证:四边形ACED是平行四边形;(2)若AD=3,BC=7,求梯形ABCD的面积.24.(本题满分12分)如图所示,在平面直角坐标系中,⊙M 经过原点O ,且与x 轴、y轴分别相交于A (-6,0),B (0,-8)两点.(1)请求出直线AB 的函数表达式;(2)若有一抛物线的对称轴平行于y 轴且经过点M ,顶点C 在⊙M 上,开口向下,且经过点B ,求此抛物线的函数表达式;(3)设(2)中的抛物线交x 轴于D ,E 两点,在抛物线上是否存在点P ,使得115PDE ABCS S =△△?若存在,请求出点P 的坐标;若不存在,请说明理由.数学参考答案一、选择题1.A2.B3.B4.B5.B6.C7.A8.D9.B10.B11.B12.C 二、填空题13.-6 14.a ≥3 15.k >-2,且k ≠-1 16.3 17.-318.解:(1)由图1知:4810181050++++=(名)………2分 答:该校对50名学生进行了抽样调查.(2)本次调查中,最喜欢篮球活动的有18人.………………3分x181003650⨯=%%………………………………………….4分∴最喜欢篮球活动的人数占被调查人数的36%. (3)1(302624)20-++=%%%% 20020100÷=% (人)…6分8100100016050⨯⨯=% (人)答:估计全校学生中最喜欢跳绳活动的人数约为160人.………8分 19.解:⑴ y =(x -50)∙ w =(x -50) ∙ (-2x +240)=-2x 2+340x -12000,∴y 与x 的关系式为:y =-2x 2+340x -12000........3分 ⑵ y =-2x 2+340x -12000=-2 (x -85) 2+2450,∴当x =85时,y 的值最大. ……………………………6分 ⑶ 当y =2250时,可得方程 -2 (x -85 )2+2450=2250. 解这个方程,得 x 1=75,x 2=95. 根据题意,x 2=95不合题意应舍去.∴当销售单价为75元时,可获得销售利润2250元.…………9分20.解:(1)在BAC Rt ∆中, 68=∠ACB ,∴24848.210068tan =⨯≈⋅= AC AB (米)答:所测之处江的宽度约为248米…………………………………3分 (2)从所画出的图形中可以看出是利用三角形全等、三角形相似、解直角三角形的知识来解决问题的,只要正确即可得分……………9分21.(1)证明:A B A C = ,ABC C ∴=∠∠,C D = ∠∠,ABC D ∴=∠∠.又BAE D AB = ∠∠,ABE AD B ∴△∽△.A B A E A D A B∴=. AB 2=AD ·AE=(AE+ED )·AE=(2+4)×2=12.AB ∴=. ……………………………………………………5分(2)直线F A 与⊙O 相切.理由如下: 连接O A .BD 为⊙O 的直径,∴∠.BD ∴====1122B F B O B D ∴===⨯=AB = ,BF BO AB ∴==.90OAF ∴= ∠.∴直线F A 与⊙O 相切. ……………………………………10分22.解:(1)设租用一辆甲型汽车的费用是元,租用一辆乙型汽车的费用是元.由题意得解得答:租用一辆甲型汽车的费用是800元,租用一辆乙型汽车的费用是850元.……………………………………………………………3分 (2)设租用甲型汽车辆,则租用乙型汽车辆.由题意得解得……………………………………………………6分由题意知,为整数,或或共有3种方案,分别是:方案一:租用甲型汽车2辆,租用乙型汽车4辆; 方案二:租用甲型汽车3辆,租用乙型汽车3辆; 方案三:租用甲型汽车4辆,租用乙型汽车2辆. 方案一的费用是(元); 方案二的费用是(元);方案三的费用是(元),所以最低运费是4900元.……………9分答:共有3种方案,分别是:方案一:租用甲型汽车2辆,租用乙型汽车4辆; 方案二:租用甲型汽车3辆,租用乙型汽车3辆; 方案三:租用甲型汽车4辆,租用乙型汽车2辆.最低运费是4900元.……………………………………………10分 23.证: ⑴∵AD ∥BC ∴AD ∥CE 又∵DE ∥AC∴四边形ACED 是平行四边形……………… 3分 ⑵过D 点作DF ⊥BE 于F 点 ……………………4分∵DE ∥AC ,AC ⊥BD ∴DE ⊥BD ,即∠BDE=90° 由⑴知DE=AC ,CE=AD=3∵四边形ABCD 是等腰梯形∴AC=DB ………………………………………7分 ∴DE=DB ……………………………………8分∴△DBE 是等腰直角三角形,∴△DFB 也是等腰直角三角形 ∴DF=BF=21(7-3)+3=5……………………9分(也可运用:直角三角形斜边上的中线等于斜边的一半)()2553721DF BC)(AD 21S ABCD=⨯+=∙+=梯形……11分注:⑴过对角线交点O 作OF ⊥BC 于F ,延长FO 交AD 于H ,于是OH ⊥AD由△ABC ≌△DCB ,得到△OBC 是等腰直角三角形,OF=21BC=27同理OH=21AD=23,高HF=52327=+⑵过A 作AF ⊥BC 于F ,过D 作DH ⊥BC 于H ,由△AFC ≌△DHB得高AF=FC=21(AD+BC)=5⑶DOA COD BOC AOB ABCD S S S S S ∆∆∆∆+++=梯形(进行计算)24. 解:(1)设直线AB 的函数表达式为(y kx b k =+∵直线AB经过(60)(08)A B --,,,,∴由此可得60,8.k b b -+=⎧⎨=-⎩解得4,38.k b ⎧=-⎪⎨⎪=-⎩∴直线AB的函数表达式为483y x =--. (4)分(2)在R t AO B △中,由勾股定理,得10AB ===,x∵圆M 经过O A B ,,三点,且90AO B ∠=°,AB∴为圆M 的直径,∴半径5M A =,设抛物线的对称轴交x 轴于点N ,M N x ⊥∵,∴由垂径定理,得132A N O N O A ===.在R t A M N △中,4M N ===,541C N M C M N ∴=-=-=,∴顶点C 的坐标为(31)-,, 设抛物线的表达式为2(3)1y a x =++, 它经过(08)B -,,∴把0x =,8y =-代入上式,得28(03)1a -=++,解得1a =-,∴抛物线的表达式为22(3)168y x x x =-++=---.…………8分(3)如图,连结A C ,B C ,35213521ON MC 21AN MC 21S S S BMC AMC ABC ⨯⨯+⨯⨯=∙+∙=+=∆∆∆ =15在抛物线268y x x =---中,设0y =, 则2680x x ---=, 解得12x =-,24x =-.D E ∴,的坐标分别是(40)-,,(20)-,, 2D E ∴=;设在抛物线上存在点()P x y ,,使得111511515P D E A B C S S =⨯=△△=,则1y 221y DE 21S PDE =⨯⨯=∙=∆,1y ∴=±,当1y =时,2681x x ---=,解得123x x ==-,1(31)P ∴-,;当1y =-时,2681x x ---=-,解得13x =-+,23x =--2(3)P ∴-+-1,3(3)P ---1.综上所述,这样的P 点存在,且有三个,1(31)P -,,2(3)P -+-1,3(31)P ---.…………………….12分。

莆田中考数学试题答案.doc

莆田中考数学试题答案.doc

2011年莆田市初中毕业、升学考试试卷数学参考答案及评分标准一、精心选一选1.C 2.D 3.A 4.C 5.B 6,B 7.A 8.C 二、耐心填—填9.48.6410⨯ I0.1 1I .7 12,9 13.4 14,58 15,5 16.5151 三,耐心填一填 17.解:原式=418. 原式=28a -+,当5a =-时,原式=1819. (1)证明略 (2)四边形BDCF 是矩形。

证明略。

20. (1)证明:连接OD ,则OD=OA , ∴∠OAD=∠ODA∵D 为»EF的中点 ∴∠OAD=∠CAD ∴∠ODA=∠CAD ∴OD ∥AC又∵∠C=90°,∴∠ODC=90°,即BC ⊥OD ∴BC 与⊙O 相切。

(2)连接DE ,则∠ADE=90°∵∠OAD=∠ODA=∠CAD=30°,∴∠AOD=120° 在Rt △ADE 中,易求AE=4, ∴⊙O 的半径r=2 ∴»AD 的长120241803l ππ⨯==。

22. 解:(1)∵点E 、F 在函数(0)ky x x=>的图象上, ∴设111()(0)kE x x x >,,222()(0)k F x x x >,∴111122k k S x x =⋅⋅=,222122k k S x x =⋅⋅= ∵12=2S S +,∴222k k+=,2k =。

(2)∵四边形OABC 为矩形,OA=2,OC=4, 设(2)2k E , ,(4)4k F ,∴BE=42k -,BF=24k - ∴211(4)(2)422416BEF k k S k k ∆=--=-+ ∵14242OCF k kS ∆=⨯⨯=,24=8OABC S =⨯⨯矩形∴2211=844162162BEF OCF OABC OAEF k k S S S S k k k ∆∆--=--+-=-++矩形四边形() =21(4)516k --+xyO A BCEP P 2P 3第24题 图1∴当4k =时,5OAEF S =四边形,∴AE=2.当点E 运动到AB 的中点时,四边形OA EF 的面积最大,最大值是5. 23.解:(1)设该公司生产A 钟中医疗器械x 台,则生产B 钟中医疗器械(80x -)台,依题意得2025(80)18002025(80)1810x x x x +-≥⎧⎨+-≤⎩ 解得3840x ≤≤, 取整数得383940x =,,∴该公司有3钟生产方案:方案一:生产A 钟器械38台,B 钟器械42台。

2011年初中毕业升学考试(中考)数学试卷及答案

2011年初中毕业升学考试(中考)数学试卷及答案

数学试卷第1页(共10页)准考证号:**市2011年初中毕业生学业考试数学试卷【说明】全卷分为第Ⅰ卷和第Ⅱ卷,第Ⅰ卷1-2页,第Ⅱ卷3-10页。

考试时间120分钟,满分150分。

考试结束后,第Ⅱ卷和答题卡按规定装袋上交。

第Ⅰ卷(选择题 共40分)注意事项:1.答第Ⅰ卷前,考生务必将自己的学校、姓名、准考证号、考试科目填涂在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡 皮擦干净后,再选涂其他答案,不能答在试题卷上。

3.考试结束后,本试卷由考场统一收回,集中管理。

一、选择题:本大题共10个小题,每小题4分,共40分,在每个小题给出的四个选项中,只有一个符合题目要求 1.-2的相反数A .-2B .2C .2±D .-2 2.下列分式是最简分式的A.b a a 232 B .a a a 32- C .22b a b a ++ D .222ba ab a -- 3.下列运算错误的是A .235a a a ⋅=B .347()m m =C .3363282c b a bc a =)( D .624m m m ÷= 4.一幅扑克牌(不含大小王),任意抽取一张,抽中方块的概率是 A .21 B .521 C .31 D .415.函数31--=x x y 的自变量x 的取值范围是 A .1x > B .1x >且3x ≠ C .1≥x D. 1≥x 且3x ≠数学试卷第2页(共10页)6.点(-2,3)关于原点对称的点的坐标是A .(2,3)B .(-2,-3)C .(2,-3)D .(-3,2) 7.如图:等腰梯形ABCD 中 ,AD ∥BC ,AB=DC , AD=3,AB=4,∠B=60︒,则梯形的面积是 A.310 B.320 C.346+ D.3812+ 8.计算2sin30︒-sin 245︒+cot60︒的结果A.3321+ B.3321+ C.23+ D.23-1+ 9.如图:△ABC 中,DE ∥BC ,AD:DB=1:2,下列选项正确的是A .DE:BC=1:2B .AE:AC=1:3C .BD:AB=1:3D .S DE A ∆:S ABC ∆=1:4( 第9题) (第10题)10.如图:在△ABC 中,∠ACB=90°,CD ⊥AB 于点D ,下列说法中正确的个数是①CD AB BC AC ⋅=⋅ ②DB AD AC ⋅=2③BA BD BC ⋅=2 ④DB AD CD ⋅=2A .1个B .2个C .3个D .4个CBEDABDAC数学试卷第3页(共10页)绝密★启用前【考试时间:2011年6月】**市2011年初中毕业生学业考试数学试卷第Ⅱ卷(非选择题 共110分)注意事项:1.第Ⅱ卷共8页,用钢笔或中性笔直接答在试卷上。

2011年莆田市初中数学质量检查试卷(含答案与评分标准)

2011年莆田市初中数学质量检查试卷(含答案与评分标准)

专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个选项是正确的?A. 1+1=3B. 2×2=5C. 31=2D. 4÷2=1A. 11B. 20C. 33D. 473. 下列哪个选项是正确的?A. 5<3B. 7>9C. 8=8D. 6≠64. 下列哪个选项是正确的?A. 2+3×4=20B. 3×4+2=14C. 4×3+2=14D. 2+3×4=145. 下列哪个选项是正确的?A. 10÷2=5B. 10÷2=3C. 10÷2=4D. 10÷2=6二、判断题(每题1分,共5分)1. 1+1=2 ()2. 2×2=4 ()3. 31=2 ()4. 4÷2=2 ()5. 5<3 ()三、填空题(每题1分,共5分)1. 1+1=_____2. 2×2=_____3. 31=_____4. 4÷2=_____5. 5<3 ()四、简答题(每题2分,共10分)1. 请简述加法的定义。

2. 请简述减法的定义。

3. 请简述乘法的定义。

4. 请简述除法的定义。

5. 请简述比较大小的定义。

五、应用题(每题2分,共10分)1. 小明有3个苹果,他又买了2个苹果,现在他有多少个苹果?2. 小红有4个橘子,她分给2个朋友,每人分到几个橘子?3. 小刚有6个香蕉,他吃掉了3个,还剩下几个香蕉?4. 小李有8个梨,他想平均分给4个朋友,每人能分到几个梨?5. 小王有10个糖果,他吃掉了4个,剩下的是原来的几分之几?六、分析题(每题5分,共10分)1. 请分析加法和减法之间的关系。

2. 请分析乘法和除法之间的关系。

七、实践操作题(每题5分,共10分)1. 请用纸和剪刀制作一个正方形。

2. 请用纸和剪刀制作一个长方形。

八、专业设计题(每题2分,共10分)1. 设计一个简单的加法计算器,能够输入两个数字并显示它们的和。

2011年莆田市初中数学质量检查试卷(含答案与评分标准)

2011年莆田市初中数学质量检查试卷(含答案与评分标准)

专业课原理概述部分一、选择题(每题1分,共5分)1. 下列数中,有理数是()。

A. √3B. √9C. √1D. √2/32. 下列各数中,3的倍数是()。

A. 21B. 22C. 23D. 243. 已知x=5是方程x+a=9的解,那么a的值是()。

A. 4B. 5C. 6D. 74. 下列各式中,是同类二次根式的是()。

A. √5与√10B. √5与3√5C. √5与√2D. 2√5与3√25. 下列图形中,既是轴对称图形,又是中心对称图形的是()。

A. 线段B. 等腰梯形C. 角D. 矩形二、判断题(每题1分,共5分)1. 0是整数,也是正数。

()2. 相反数的平方相等。

()3. 两个无理数相加一定是无理数。

()4. 平行四边形的对角线互相平分。

()5. 同位角相等,两直线平行。

()三、填空题(每题1分,共5分)1. 2的平方根是______。

2. 若|a|=5,则a=______。

3. 下列各数3,5,0,1/2中,正数有______个。

4. 一次函数y=kx+b中,若k<0,则函数图象经过______象限。

5. 已知平行四边形ABCD的对角线交于点O,若AO=6cm,BO=8cm,则对角线AC的长度为______cm。

四、简答题(每题2分,共10分)1. 简述有理数的定义。

2. 解释无理数的概念,并举例说明。

3. 请写出绝对值的性质。

4. 简述平行线的性质。

5. 什么是二次根式?请举例说明。

五、应用题(每题2分,共10分)1. 已知小明和小华的年龄之和为25岁,小明的年龄是小华的2倍,求小明和小华的年龄。

2. 某商店举行打折活动,一件衣服原价200元,打8折后售价是多少?3. 一个长方形的长是12cm,宽是8cm,求这个长方形的对角线长度。

4. 已知x=3是方程2x+a=7的解,求a的值。

5. 一辆汽车以60km/h的速度行驶,行驶了2小时后,行驶的路程是多少?六、分析题(每题5分,共10分)1. 已知一组数据:1,3,5,7,9,11,13。

2011年莆田市初中毕业质检试卷数学参考答案

2011年莆田市初中毕业质检试卷数学参考答案

FEDC BA2011年莆田市初中毕业质检试卷数学参考答案与评分标准一、精心选一选(本大题共8小题,每小题4分,共32分)1. D2. D3. A4. C5. B6. A7. B8. C 二、细心填一填(本大题共8小题,每小题4分,共32分) 9.108.1510⨯ 10.10 11. 12 12.a 4513. 100 14.π 15.2 16.2012 三、耐心做一做(本大题共9小题,共86分) 17.(本小题8分) 解:原式=o 60sin 22383+-+=232)32(2⨯+-+…6分 (其中:283=,3223-=-,2360sin 0=各2分)=4……………………………8分 18.(本小题满分8分) 解:解不等式34)2(2-≤-x x 得:21-≥x …2分 解不等式x x -<-152得:2<x …4分原不等式组的解集是221<≤-x …6分 所以原不等式组的整数解为:0=x 、1 …8分19.(本小题8分) (1)60…2分 (2)4900…3分 (3)1875…3分(共8分)20.(本小题8分)(1)证明:∵AB //DC ,CF 是DC 的延长线 ∴CF //AB …1分∴BAE CFE ∠=∠ …2分 又∵BE CE =,BEA CEF ∠=∠∴CEF ∆≌BEA ∆ …3分 ∴CF AB = …4分(2)当梯形ABCD 是直角梯形,090=∠D 时,四边形ABFC 为菱形. …5分证明:∵CEF ∆≌BEA ∆∴CF AB =,EA EF =∴四边形ABFC 是平行四边形…6分 由折叠得OD AEC 90=∠=∠∴CF AC =…7分所以四边形ABFC 为菱形…8分.21. (本小题8分)解:(1)当OA 30=∠时,CD 是⊙O 的切线. …1分 理由:连接OC ,如图.方法一:∵OC OA = ∴OOCA A 30=∠=∠ ∴OOCA A COD 60=∠+∠=∠…2分 又∵CD AC = ∴OA D 30=∠=∠ …3分 ∴O OD COD OCD 90180=∠-∠-=∠ 所以CD 是⊙O 的切线…4分 方法二: ∵CD 是⊙O 的切线 ∴O OCD 90=∠…2分∵CD AC = ∴OA D 30=∠=∠…3分 又∵OC OA = ∴D A COD ∠=∠=∠22 ∴OA 30=∠ …4分(2) ∵OC OB = 060=∠COD ∴BOC ∆是等边三角形 ∴OOCB 60=∠∴OOOOCD OCD BCD 306090=-=∠-∠=∠…5分 ∴D BCD ∠=∠ ∴3===BD BC OC …6分 33360tan =⨯=⋅=o OC CD …7分∴233360)3(6033212ππ-=⨯⨯-⨯⨯=-=∆BOCOCD S S S 扇形阴影…8分 22. (本小题10分)解:(1)根据图象,当2-<x 或10<<x 时,21y y >…3分 (2)∵212-=⨯-=m …4分 ∴xy 22-= 21-=⨯n 2-=n ∴B (1,-2) …5分根据题意得:⎩⎨⎧-=+=+-212b k b k …解得:⎩⎨⎧-=-=11b k 11--=x y …6分直线11--=x y 与坐标轴的交点分别为C (0,-1)、D (-1,0) 方法一:设把直线11--=x y 向上平移m 个单位长度,所得到的直线为1-+-=m x y …7分. 该直线与x 轴相交于F ,于y 轴相交于E ,则E (0,1-m )…8分 ∵EF ∥DC ∴1-==m OF OE ∴EOF S ∆=2)1(212=-m …9分 解得:31=m ,12-=m 所以平移后所得到的直线为2+-=x y 或2--=x y …10分 方法二:设把直线11--=x y 向右平移m 个单位长度,所得到的直线为1)(---=m x y 即1-+-=m x y …7分.该直线与x 轴相交于F ,于y 轴相交于E ,则E (0,1-m )8∵EF ∥DC ∴1-==m OF OE∴EOF S ∆=2)1(212=-m …9分 解得:31=m ,12-=m所以平移后所得到的直线为2+-=x y 或2--=x y …10分 23. (本小题10分)解:(1)设75+=kt v .…1分 根据题意得:607516=+k ,1615-=k 751615+-=t v …2分 当0=v 时,80=t .…3分 所以从刹车到停止经过的路程为:300080275=⨯+(米)…4分(2)设动车从刹车到滑行2250米处所用的时间为x 秒. …5分根据题意得:22502)161575(75=⋅-+x x …7分048001602=+-x x …8分解得:401=x ,801202>=x (不合题意舍去)…9分动车从刹车到滑行2250米处所用的时间是40秒24.(本小题12分) 解:(1)①∵抛物线1C 经过A (-1,0),B (3,0∴a x a x x a y 4)1()3)(1(2--=-+=…1分∴D (1,a 4-) ∵4=AB ,8=∆ABD S ∴a 4-=4,1-=a …2分所以抛物线1C 为:322++-=x x y …3分② 点C (0,3) ∵3==OB OC BOC 90=∠ ∴OOBC 45=∠过B 作OABQ 45=∠交x 轴于M ,交抛物线1C 于Q 点, 则QBC ∆的内心落在x 轴上…4分.如图1:M (-3,0),直线BQ 为:3-=x y …5分设Q n (,)322++-n n ,则3322-=++-n n n 解得:21-=n ,32=n (不合题意舍去) 所以Q (-2,-5)…7分(2)过P 作PN ∥x 轴与抛物线1C 另一交点记为N 连接DN ,过P 作直线PH ⊥DE 于H , 如图2:由平移得:DN 与PE 平行且相等 由抛物线的对称性得:DN PD =∴DE PD = PDE ∆是等腰三角形…8分 (注:没有证等腰不扣分)图 1ENM D CBA图 2654321NMDCBA∴点H 是DE 的中点∴H (121+t ,4)…9分 当121+=t x 时,4412+-=t y ∴P (121+t ,4412+-t )…10分∴2241)441(4t t PH =+--= …11分 又∵t DE =∴814121323=⋅⨯=tt t t S 为定值…12分 25.(本小题14分)(1)有DAM ∆∽MBN ∆,DAM ∆∽DMN ∆,DMN ∆∽MBN ∆三对相似(写出其中两个即可) …2分 选DAM ∆∽MBN ∆证明:∵四边形ABCD 是矩形 ∴OB A 90=∠=∠ ∴AMD ADM ∠-=∠090∵DM ⊥MN ∴AMD AMD BMN OO∠-=∠--=∠90901800∴BMD ADM ∠=∠…3分 ∴DAM ∆∽MBN ∆…4分 选DAM ∆∽DMN ∆证明:延长NM 交DA 的延长线于E 点,如图1. ∵四边形ABCD 是矩形 ∴OB DAB 90=∠=∠ ∴OB EAM 90=∠=∠ 又∵BMN AME ∠=∠BM AM = ∴AME ∆≌BMN ∴MN EM =又∵DM ⊥MN ∴DN DE = ∴NDM ADM ∠=∠ …3分又∵ODMN DAM 90=∠=∠ ∴DAM ∆∽DMN ∆ …4分 选DAM ∆∽MBN ∆证明:延长NM 交DA 的延长线于E 点,如图1.∵四边形ABCD 是矩形 ∴OB DAB 90=∠=∠∴OB EAM 90=∠=∠又∵BMN AME ∠=∠,BM AM = ∴AME ∆≌BMN ∴MN EM =,MNB E ∠=∠ 又∵DM ⊥MN ∴DN DE = ∴DNM E ∠=∠ ∴MNB DNM ∠=∠…3分 又∵OB DMN 90=∠=∠ ∴DMN ∆∽MBN ∆ …4分 (2)①如图2,t AM =,t MB -=5,t BN 21=()50<<t 分两种情况:(Ⅰ)当31∠=∠时,DAM ∆∽MBN ∆DA MB AM BN = ∴3521t t t-=…5分 解得:27=t …6分 (Ⅱ)当32∠=∠时,DAM ∆∽NBM ∆ AMBMAD BN =∴BM AD BN AM ⋅=⋅ ∴)5(321t t t -=⨯ …7分 解得:3393-=t ,3394--=t (不合题意舍去)…8分所以当27=t 时,DAM ∆∽MBN ∆;当339-=t 时,DAM ∆∽NBM ∆.②分四种情况:(Ⅰ)当631∠=∠=∠时,090=∠DMN ,DAM ∆∽MBN ∆∽DCN ∆由DA MB AM BN =得:3)5(t t BN -=,∴3952+-=t t CN 由MBDCBN CN =得:BN DC MB CN ⋅=⋅ ∴3)5(5)5(3952t t t t t -⋅=-⋅+-…9分 化简得:09102=+-t t ,解得:11=t ,92=t (不合题意舍去),34=a …10分 (Ⅱ)当531∠=∠=∠时,∵09065=∠+∠ ∴09061=∠+∠(与已知条件矛盾)所以此时不存在。

2011年福建省(莆田)中考数学模拟试卷

2011年福建省(莆田)中考数学模拟试卷

2011年福建(莆田)中考数学模拟试卷附:2010年莆田市初中毕业、升学考试试卷数学试题 一.单项选择题: (每题4分) 1.-5的相反数是( ). A. 51 B. 51- C. 5 D.5- 2. 下列计算正确的是( ).A.632aa a=⋅ B.()832aa=C.326a a a =÷D.()6223b a ab =3. 分式方程0242=+-xx 的根是( ) . A.2-=x B. 0=xC.2=xD.无实根4.某市五月份连续五天的日最高气温分别为23、20、20、21、26(单位:°C ),这组数据的中位数和众数分别是( )A. 22°C ,26°CB. 22°C ,20°CC. 21°C ,26°CD. 21°C ,20°C5.如图是正方体的展开图,则原正方体相对两个面上的数字和最小的是( ).A. 4B. 6C. 7D.8 6.在2010世界杯中,每两队进行一场比赛,所有的队伍都进行了10场比赛。

设有x 人参加世界杯,则列出方程正确的是( ).A .(1)10x x -=B .(1)102x x -= C .(1)10x x += D .(1)102x x += 1 42 5 36第5题图7.将矩形纸片ABCD 按如图1所示的方式折叠,得到菱形AECF .若AB =3,则BC 的长为( ). A .1 B .2 C 3 D .28.定义[,,a b c ]为函数2y ax bx c =++的特征数, 下面给出特征数为 [2m ,1 – m , –1– m ] 的函数的一些结论:① 当m = – 3时,函数图象的顶点坐标是(31,38); ② 当m > 0时,函数图象截x 轴所得的线段长度大于23;③ 当m < 0时,函数在x >41时,y 随x 的增大而减小;④ 当m ≠ 0时,函数图象经过同一个点. 其中正确的结论有A. ①②③④B. ①②④C. ①③④D. ②④二.填空(每题4分)9. 计算:( x + 1 ) ( x ─ 1 ) = ____________.10.莆田省运会体育馆占地26000平方米, 用科学记数法表示为---------平方米.11一个圆锥的侧面积是底面面积的2倍.它的侧面展开图是一个圆心角为-----------的扇形.A BCDFEOA B CD图112.已知点F,D,E 分别在AB,BC,AC 上,AD,BE,CF 是锐角△ABC 的三条高,AB=6,BC=5,EF=3,则AE=-----------13.已知圆O 1、圆O 2的半径不相等,圆O 1的半径长为3,若圆O 2上的点A 满足AO 1 = 3,则圆O 1与圆O 2的位置关系是--------- 14. 正三角形的边长,半径,边心距之比为----------15. .抛物线y=ax^2+bx+c 对称轴为x=1,开口向上,且与X 轴的一交点为(3,0) ,则a-b+c=-----------.16. 已知X1,X2是方程X^2+4X+K=0的两根,且2X1-X2=7,则K=--------.17.(8分) 先化简,再求值:(a-3)(a+3)-a (a-6),其中a=2sin60 18.(8分) 解不等式213436x x --≤,并把它的解集在数轴上表示出来.19. (8分)如图,请在下列四个关系中,选出两个恰当....的关系作为条件,推出四边形ABCD 是平行四边形,并予以证明.(写出一种即可)关系:①AD ∥BC ,②CD AB =,③C A ∠=∠,④︒=∠+∠180C B . 已知:在四边形ABCD 中, , ; 求证:四边形ABCD 是平行四边形.ABCD20. (8分) 统计2010年上海世博会前20天日参观人数,得到如下频数分布表和频数分布 直方图(部分未完成):(1)请补全频数分布表和频数分布直方图;(2)求出日参观人数不低于22万的天数和所占的百分比; (3)利用以上信息,试估计上海世博会(会期184天)的参观总人数.21. (8分) 如图,在边长为1的小正方形组成的网格中,AOB △的三个顶点均在格点上,点A 、B 的坐标分别为(23)31.A B --,、(,)(1)画出AOB △绕点O 顺时针...旋转90°后的11AOB △;(2)点1A 的坐标为_______; (3)四边形11AOA B 的面积为______. 22(10分) 2010年春季我国西南大旱,导致大量农田减产,下图是一对农民父子的对话内容,请根据对话内容分别求出该农户今年两块农田的花生产量分别是多少千克?组别(万人) 组中值(万人)频数频率 7.5~14.5 11 5 0.25 14.5~21.5 6 0.30 21.5~28.5 25 0.30 28.5~35.5323上海世博会前20天日参观人数的频数分布表上海世博会前20天日参观人数的频数分布直方图第20题23.(10分)如图8,已知:△ABC 内接于⊙O ,点D 在OC 的延长线上,1sin 2B =,∠D=30°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档