测量误差理论的基本知识习题参考答案

合集下载

测量误差理论的基本知识习题答案

测量误差理论的基本知识习题答案

5测量误差的基本知识一、填空题:1、真误差为观测值减去真值。

2、观测误差按性质可分为粗差、和系统误差、和偶然误差三类。

3、测量误差是由于仪器误差、观测者(人的因素)、外界条件(或环境)三方面的原因产生的。

4、距离测量的精度高低是用_相对中误差___来衡量的。

5、衡量观测值精度的指标是中误差、相对误差和极限误差和容许误差。

6、独立观测值的中误差和函数的中误差之间的关系,称为误差传播定律。

7、权等于1的观测量称单位权观测。

8、权与中误差的平方成反比。

9、用钢尺丈量某段距离,往测为112.314m,返测为112.329m,则相对误差为1/7488。

10、用经纬仪对某角观测4次,由观测结果算得观测值中误差为±20″,则该角的算术平均值中误差为___10″__.11、某线段长度为300m,相对误差为1/3200,则该线段中误差为__9.4 mm ___。

12、设观测一个角度的中误差为±8″,则三角形内角和的中误差应为±13.856″。

13、水准测量时,设每站高差观测中误差为±3mm,若1km观测了15个测站,则1km的高差观测中误差为11.6mm,1公里的高差中误差为11.6 mm二、名词解释:1、观测条件----测量是观测者使用某种仪器、工具,在一定的外界条件下进行的。

观测者视觉鉴别能力和技术水平;仪器、工具的精密程度;观测时外界条件的好坏,通常我们把这三个方面综合起来,称为观测条件。

2、相对误差K----是误差m的绝对值与相应观测值D的比值。

它是一个不名数,常用分子为1的分式表示。

3、等精度观测----是指观测条件(仪器、人、外界条件)相同的各次观测。

4、非等精度观测---- 是指观测条件不同的各次观测。

5、权----是非等精度观测时衡量观测结果可靠程度的相对数值,权越大,观测结果越可靠。

三、选择题:1、产生测量误差的原因有(ABC)。

A、人的原因B、仪器原因C、外界条件原因D、以上都不是2、系统误差具有的性质是( ABCD )。

误差理论 作业及参考答案

误差理论 作业及参考答案

第一章1、熟悉误差、精度、有效数字的基本概念和相关计算方法。

答案:略2、用两种方法分别测量L1=50mm,L2=80mm。

测得值各为50.004mm,80.006mm。

试评定两种方法测量精度的高低。

解:两种测量方法进行的测量绝对误差分别为:δ1=50.004-50=0.004(mm);δ2=80.006-80=0.006(mm);两种测量方法的相对误差分别为:δ1/L1=0.004/50=0.008%;和δ2/L2=0.006/80=0.0075 %;显然,测量L2尺寸的方法测量精度高些。

3、若某一量值Q用乘积ab表示,而a与b是各自具有相对误差f a和f b的被测量,试求量值Q的相对误差。

解:∵相对误差=绝对误差/真值=(测得值-真值)/真值∴ a = a0(1+f a);b = b0(1+f b);式中a0、b0分别为a、b的真值。

则Q =ab = a0(1+f a) b0(1+f b)≈a0 b0(1+f a+ f b)因此,Q的相对误差约为(f a+ f b)第二章1、在立式测长仪上测量某校对量具,重复测量5次,测得数据(单位为mm)为20.0015,20.0016,20.0018,20.0015,20.0011。

若测量值服从正态分布,试以99%的置信概率确定测量结果。

解:①求算术平均值②求残余误差:各次测量的残余误差依次为 0,0.0001,0.0003,0,-0.0004。

③求测量列单次测量的标准差用贝塞尔公式计算:用别捷尔斯公式计算:④求算术平均值的标准差⑤求单次测量的极限误差和算术平均值的极限误差因假设测量值服从正态分布,并且置信概率P=2Φ(t)=99%,则Φ(t)=0.495,查附录表1 正态分布积分表,得置信系数t=2.6。

故:单次测量的极限误差:算术平均值的极限误差:⑥求得测量结果为:2、甲、乙两测试者用正弦尺对一锥体的锥角α个各重复测量 5 次,测得值如下:α甲:7°2’20”,7°3’0”,7°2’35”,7°2’20”,7°2’15”,α乙:7°2’25”,7°2’25”,7°2’20”,7°2’50”,7°2’45”;试求其测量结果。

测量误差理论的基本知识总结学习试题答案

测量误差理论的基本知识总结学习试题答案

.测量偏差的基本知识一、填空题:1、真偏差为观察值减去真值。

2、观察偏差按性质可分为粗差、和系统偏差、和有时偏差三类。

3、测量偏差是因为仪器偏差、观察者(人的要素)、外界条件(或环境)三方面的原因产生的。

4、距离测量的精度高低是用_相对中偏差___来权衡的。

5、权衡观察值精度的指标是中偏差、相对偏差和极限偏差和允许偏差。

6、独立观察值的中偏差和函数的中偏差之间的关系,称为偏差流传定律。

7、权等于1的观察量称单位权观察。

8、权与中偏差的平方成反比。

9、用钢尺测量某段距离,往测为,返测为,则相对偏差为1/7488。

10、用经纬仪对某角观察4次,由观察结果算得观察值中偏差为±20″,则该角的算术均匀值中偏差为___10″__.11、某线段长度为300m,相对偏差为1/3200,则该线段中偏差为mm___。

12、设观察一个角度的中偏差为±8″,则三角形内角和的中偏差应为±″。

13、水平测量时,设每站高差观察中偏差为±3mm,若1km观察了15个测站,则1km的高差观察中偏差为,1公里的高差中偏差为mm二、名词解说:1、观察条件---- 测量是观察者使用某种仪器、工具,在必定的外界条件下进行的。

观察者视觉鉴识能力和技术水平;仪器、工具的精细程度;观察时外界条件的利害,往常我们把这三个方面综合起来,称为观察条件。

2、相对偏差K----是偏差m的绝对值与相应观察值D的比值。

它是一个不名数,常用分子为1的分式表示。

3、等精度观察---- 是指观察条件(仪器、人、外界条件)同样的各次观察。

4、非等精度观察---- 是指观察条件不一样的各次观察。

5、权---- 是非等精度观察时权衡观察结果靠谱程度的相对数值,权越大,观察结果越靠谱。

三、选择题:1、产生测量偏差的原由有(ABC )。

A、人的原由B、仪器原由C、外界条件原由D、以上都不是2、系统偏差拥有的性质是(ABCD)。

A、累积性B、抵消性C、可除去或减弱性D、规律性..3、权衡精度高低的标准有(ABC )。

误差试题及答案

误差试题及答案

误差试题及答案一、选择题1. 测量误差的来源不包括以下哪一项?A. 仪器误差B. 环境误差C. 人为误差D. 计算误差答案:D2. 绝对误差和相对误差的关系是?A. 绝对误差是相对误差的倍数B. 相对误差是绝对误差的倍数C. 两者之间没有直接关系D. 相对误差是绝对误差与测量值的比值答案:D3. 在测量中,误差的减小可以通过以下哪种方式实现?A. 增加测量次数B. 使用更精确的仪器C. 改进测量方法D. 所有以上选项答案:D二、填空题1. 误差是测量值与_________之间的差异。

答案:真值2. 误差可以分为系统误差和_________误差。

答案:随机3. 误差的表示方法有绝对误差和_________误差。

答案:相对三、简答题1. 请简述如何减小测量误差。

答案:减小测量误差可以通过以下方法实现:使用更精确的测量仪器、改进测量方法、增加测量次数以进行平均、控制环境条件以减少环境误差、对测量人员进行培训以减少人为误差。

2. 什么是系统误差?请举例说明。

答案:系统误差是指在重复测量过程中,误差值保持恒定或按照一定规律变化的误差。

例如,使用一个校准不准确的温度计测量室温,每次测量结果都会比实际温度高0.5摄氏度,这就是系统误差。

四、计算题1. 假设一个测量值的真值为100,测量值为102,计算绝对误差和相对误差。

答案:绝对误差 = 102 - 100 = 2相对误差 = (2 / 100) * 100% = 2%2. 如果一个测量值的相对误差为3%,真值为500,求测量值。

答案:测量值 = 500 * (1 + 3%) = 500 * 1.03 = 515。

误差理论的基本知识题目

误差理论的基本知识题目

第六章误差理论的基本知识一、填空题1、观测条件与精度的关系是 B 。

A.观测条件好,观测误差小,观测精度小。

反之观测条件差,观测误差大,观测精度大B.观测条件好,观测误差小,观测精度高。

反之观测条件差,观测误差大,观测精度低C.观测条件差,观测误差大,观测精度差。

反之观测条件好,观测误差小,观测精度小2、防止系统误差影响应该 C 。

A.严格检验仪器工具;对观测值进行改正;观测中削弱或抵偿系统误差影响B.选用合格仪器工具;检验得到系统误差大小和函数关系;应用可行的预防措施等C.严格检验并选用合格仪器工具;对观测值进行改正;以正确观测方法削弱系统误差影响3、系统误差具有的特点为( C )。

A.偶然性 B.统计性 C.累积性 D.抵偿性4、水平角测量时视准轴不垂直于水平轴引起的误差属于( B )。

A.中误差 B.系统误差 C.偶然误差 D.相对误差5、下列误差中( A )为偶然误差A.照准误差和估读误差B.横轴误差和指标差C.水准管轴不平行与视准轴的误差6、经纬仪对中误差属( A )A.偶然误差B.系统误差C.中误差7、尺长误差和温度误差属( B )A.偶然误差B.系统误差C.中误差8、测量的算术平均值是 B 。

A. n次测量结果之和的平均值B. n次等精度测量结果之和的平均值C.是观测量的真值9、算术平均值中误差按 C 计算得到。

A. 白塞尔公式B. 真误差△。

C. 观测值中误差除以测量次数n的开方根10、角度测量读数时的估读误差属于( C )。

A.中误差 B.系统误差 C.偶然误差 D.相对误差11、边长测量往返测差值的绝对值与边长平均值的比值称为( D )。

A.系统误差 B.平均中误差 C.偶然误差 D.相对误差12、距离测量中的相对误差通过用( B )来计算。

A.往返测距离的平均值B.往返测距离之差的绝对值与平均值之比值C.往返测距离的比值D.往返测距离之差13、衡量一组观测值的精度的指标是( A )A.中误差B.允许误差C.算术平均值中误差14、对某一量进行观测后得到一组观测值,则该量的最或是值为这组观测值的( C )。

05《工程测量》第五章测量误差的基本知识作业与习题答案

05《工程测量》第五章测量误差的基本知识作业与习题答案
在测量实践中观测次数不可能无限多因此实际应用中以有限次观测个数计算出标准差的估值定义为中误差m作为衡量精度的一种标准计算公式为相对误差真误差和中误差都有符号并且有与观测值相同的单位它们被称为绝对误差
第五章 一、选择题
测量误差的基本知识作业与习题答案
1.设 n 个观测值的中误差均为 m,则 n 个观测值代数和的中误差为( A.
相对误差 =
误差的绝对值 1 = 观测值 T
式中当误差的绝对值为中误差 m 的绝对值时,K 称为相对中误差。 m 1 K= = D D m 极限误差 由偶然误差的特性一可知,在一定的观测条件下,偶然误差的绝对值不会超过一定的限值。这 个限值就是极限误差。 容许误差 在实际工作中,测量规范要求观测中不容许存在较大的误差,可由极限误差来确定测量误差的 容许值,称为容许误差 6.什么是极限误差?什么是相对误差? 极限误差 由偶然误差的特性一可知,在一定的观测条件下,偶然误差的绝对值不会超过一定的限值。这 个限值就是极限误差。 容许误差 在实际工作中,测量规范要求观测中不容许存在较大的误差,可由极限误差来确定测量误差的 容许值,称为容许误差 7.说明下列原因产生的误差的性质和消减方法 钢尺尺长不准,定线不准,温度变化,尺不抬平,拉力不均匀,读数误差,水准测量时气泡居
ˆ =± m = ±σ
[∆∆] n
相对误差 真误差和中误差都有符号,并且有与观测值相同的单位,它们被称为“绝对误差” 。绝对误差可 用于衡量那些诸如角度、方向等其误差与观测值大小无关的观测值的精度。但在某些测量工作中, 绝对误差不能完全反映出观测的质量。例如,用钢尺丈量长度分别为 100 m 和 200 m 的两段距离, 若观测值的中误差都是±2 cm,不能认为两者的精度相等,显然后者要比前者的精度高,这时采用 相对误差就比较合理。相对误差 K 等于误差的绝对值与相应观测值的比值。它是一个不名数,常用 分子为 1 的分式表示,即

误差理论与测量平差试题+答案

误差理论与测量平差试题+答案

《误差理论与测量平差》(1)1.正误判断。

正确“T”,错误“F”。

(30分)2.在测角中正倒镜观测是为了消除偶然误差()。

3.在水准测量中估读尾数不准确产生的误差是系统误差()。

4.如果随机变量X和Y服从联合正态分布,且X与Y的协方差为0,则X与Y相互独立()。

5.观测值与最佳估值之差为真误差()。

6.系统误差可用平差的方法进行减弱或消除()。

7.权一定与中误差的平方成反比()。

8.间接平差与条件平差一定可以相互转换()。

9.在按比例画出的误差曲线上可直接量得相应边的边长中误差()。

10.对同一量的N次不等精度观测值的加权平均值与用条件平差所得的结果一定相同()。

11.无论是用间接平差还是条件平差,对于特定的平差问题法方程阶数一定等于必要观测数()。

12.对于特定的平面控制网,如果按条件平差法解算,则条件式的个数是一定的,形式是多样的()。

13.观测值L的协因数阵Q LL的主对角线元素Q ii不一定表示观测值L i的权()。

14.当观测值个数大于必要观测数时,该模型可被唯一地确定()。

15.定权时σ0可任意给定,它仅起比例常数的作用()。

16.设有两个水平角的测角中误差相等,则角度值大的那个水平角相对精度高()。

17.用“相等”或“相同”或“不等”填空(8分)。

已知两段距离的长度及其中误差为300.158m±3.5cm;600.686m±3.5cm。

则:1.这两段距离的中误差()。

2.这两段距离的误差的最大限差()。

3.它们的精度()。

4.它们的相对精度()。

18. 选择填空。

只选择一个正确答案(25分)。

1.取一长为d 的直线之丈量结果的权为1,则长为D 的直线之丈量结果的权P D =( )。

a) d/D b) D/dc) d 2/D 2 d) D 2/d 22.有一角度测20测回,得中误差±0.42秒,如果要使其中误差为±0.28秒,则还需增加的测回数N=( )。

第6章 误差理论的基本知识答案

第6章 误差理论的基本知识答案

第六章 误差理论的基本知识一、选择题1、B2、C3、C4、B5、A6、A7、B8、B9、C 10、C11、D 12、B 13、A 14、C 15、B 16、C 17、A 18、B 19、B 20、B 21、C 22、A 23、C 24、B 25、A 26、A 27、C二、填空题1、 系统误差 偶然误差2、 仪器本身误差 观测误差 外界自然条件影响3、 相对误差4、 读m 25、 中误差 容许误差 相对误差6、n17、 相同 8、[]nlnm9、 提高仪器的等级 10、相对误差 11、极限误差 12、±10″ 13、±0.2m 14、101-''±n 15、观测值的算术平均值 16、Nmm x =三、问答计算题1、可分为系统误差和偶然误差系统误差特点:误差在符号和数值上都相同,或按一定的规律变化。

如果规律性能够被到,则系统误差对观测值的影响可以改正,或者用一定的测量方法加以抵消或者削弱。

偶然误差特点:误差出现的符号和数值大小都不相同,表面上看没有任何规律性,多次观测和平均可以抵消一些偶然误差。

2、产生测量误差的原因:仪器原因 人的原因 外界环境的影响偶然误差具有四个基本特性,即:(1) 在一定观测条件下,偶然误差的绝对值不会超过一定的限值(有界性) (2) 绝对值小的误差比绝对值大的误差出现的机会多(密集性)(3) 绝对值相等的正负误差出现的机会相等(对称性);(4) 在相同条件下同一量的等精度观测,其偶然偶然误差的算术平均值随着观测次数的无限增大而趋于零(抵偿性)。

3、测量中的误差是不可避免的,只要满足规定误差要求,工作中可以采取措施加以减弱或处理。

粗差的产生主要是由于工作中的粗心大意或观测方法不当造成的,错误是可以也是必须避免的,含有粗差的观测成果是不合格的,必须采取适当的方法和措施剔除粗差或重新进行观测。

4、这两种误差主要在含义上不同,另外系统误差具有累积性,对测量结果的影响很大,但这种影响具有一定的规律性,可以通过适当的途径确定其大小和符号,利用计算公式改正系统误差对观测值的影响,或采用适当的观测方法、提高测量仪器的精度加以消除或削弱。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5 测量误差的基本知识一、填空题:1、真误差为观测值减去真值。

2、观测误差按性质可分为粗差、和系统误差、和偶然误差三类。

3、测量误差是由于仪器误差、观测者(人的因素)、外界条件(或环境)三方面的原因产生的。

4、距离测量的精度高低是用_相对中误差___来衡量的。

5、衡量观测值精度的指标是中误差、相对误差和极限误差和容许误差。

6、独立观测值的中误差和函数的中误差之间的关系,称为误差传播定律。

7、权等于1的观测量称单位权观测。

8、权与中误差的平方成反比。

9、用钢尺丈量某段距离,往测为112.314m,返测为112.329m,则相对误差为1/7488 。

10、用经纬仪对某角观测 4 次,由观测结果算得观测值中误差为± 20″, 则该角的算术平均值中误差为___10″__.11、某线段长度为300m,相对误差为1/3200, 则该线段中误差为__9.4 mm___。

12、设观测一个角度的中误差为± 8″,则三角形内角和的中误差应为±13.856 ″。

13、水准测量时,设每站高差观测中误差为± 3mm,若1km观测了15 个测站,则1km的高差观测中误差为11.6mm,1公里的高差中误差为11.6 mm二、名词解释:1、观测条件测量是观测者使用某种仪器、工具,在一定的外界条件下进行的。

观测者视觉鉴别能力和技术水平;仪器、工具的精密程度;观测时外界条件的好坏,通常我们把这三个方面综合起来,称为观测条件。

2、相对误差K 是误差m的绝对值与相应观测值D的比值。

它是一个不名数,常用分子为 1 的分式表示。

3、等精度观测是指观测条件(仪器、人、外界条件)相同的各次观测。

4、非等精度观测是指观测条件不同的各次观测。

5、权是非等精度观测时衡量观测结果可靠程度的相对数值,权越大,观测结果越可靠。

三、选择题:1、产生测量误差的原因有(ABC)。

A、人的原因B、仪器原因C、外界条件原因D、以上都不是2、系统误差具有的性质是(ABCD)。

A、积累性B、抵消性C、可消除或减弱性D、规律性3、衡量精度高低的标准有(ABC)。

A、中误差B、相对误差C、容许误差D、绝对误差4、误差传播定律包括哪几种函数(ABCD)。

A、倍数函数B、和差函数C、一般线性函数D、一般函数5、用钢尺丈量两段距离,第一段长1500m,第二段长1300m,中误差均为+22mm,问哪一段的精度高(A)。

A、第一段精度高,B、第二段精度高。

C、两段直线的精度相同。

6、在三角形ABC中,测出∠ A和∠ B,计算出∠ C。

已知∠ A的中误差为+4″,∠B的中误差为+3″,求∠ C的中误差为(C)A、+3″B、+4″C、+5″D、+7″7、一段直线丈量四次,其平均值的中误差为+10cm,若要使其精度提高一倍,问还需要丈量多少次(C)A、4次B、8次C、12次D、16次8、用经纬仪测两个角,∠A=10°20.5 ′∠ B=81°30.5 ′中误差均为± 0.2 ′,问哪个角精度高(C)A. 、第一个角精度高B、第二个角精度高C、两个角的精度相同9、观测值L 和真值X 的差称为观测值的(D)A、最或然误差B、中误差C、相对误差D、真误差10、一组观测值的中误差m和它的算术平均值的中误差M关系为:(C)M m mm M MA、M mB、nC、nD、n 1m11、在误差理论中,公式n中的△表示观测值的:(C)A、最或然误差B、中误差C、真误差D、容许误差四、判断题:(正确的在括号内打√,打错误的打×)(√)1、测量成果不可避免地存在误差,任何观测值都存在误差。

(×)2、观测条件好,则成果精度就高;观测条件差,则成果精度就低。

(√)3、观测误差与观测成果精度成反比。

(√)4、产生系统误差的主要原因是测量仪器和工具构造不完善或校正不完全准确。

(×)5、系统误差和偶然误差通常是同时产生的,当系统误差消除或减弱性后,决定观测精度的主要是偶然误差。

(√)6、偶然误差不能用计算改正或一定的观测方法简单地消除,只能根据其特性来改进观测方法并合理地处理数据,加以减少影响。

(×)7、在相同观测条件下,对某一量进行一系列观测,若误差的大小和符号保持不变,或按一定的规律变化,这种误差称为偶然误差。

(√)8、误差的绝对值与观测值之比称为相对误差。

(√)9、中误差、容许误差、闭合差都是绝对误差。

(√)10、用经纬仪测角时,不能用相对误差来衡量测角精度,因为测角误差与角度大小无关。

(√)11、在相同的观测条件下,算术平均值的中误差与观测次数的平方根成反比。

(√)12、误差传播定律是描述直接观测量的中误差与直接观测量函数中误差之间的关系。

(√)13、在观测条件不变的情况下, 为了提高测量的精度,其唯一方法是增加测量次数。

五、简答题1、什么叫观测误差?产生观测误差的原因有哪些?答:(1)、观测值与其真实值(简称为真值)之间的差异,这种差异称为测量误差或观测误差(2)、测量是观测者使用某种仪器、工具,在一定的外界条件下进行的。

观测误差来源于以下三个方面:观测者视觉鉴别能力和技术水平;仪器、工具的精密程度;观测时外界条件的好坏。

通常我们把这三个方面综合起来,称为观测条件。

观测条件将影响观测成果的精度。

2、什么是粗差?什么是系统误差?什么是偶然误差?答:粗差:是疏忽大意、失职造成的观测误差,通过认真操作检核是可消除的。

系统误差:在相同的观测条件下作一系列的观测,如果误差在大小、方向、符号上表现出系统性并按一定的规律变化或为常数,这种误差称为系统误差。

偶然误差:在相同的观测条件下作一系列的观测,如果误差表现出偶然性,单个误差的数值、大小和符号变化无规律性,事先不能预知,产生的原因不明显,这种误差为偶然误差。

3、偶然误差有哪些特性?答:(1)、在一定条件下,偶然误差的绝对值不会超过一定的界限(有限性);(2)、绝对值较小的误差比绝对值较大的误差出现的机会多(单峰性);(3)、绝对值相等的正误差与负误差出现的机会相等,(对称性);(4)、偶然误差的平均值,随着观测次数的无限增加而趋近于零,(抵偿性)。

4、举例说明如何消除或减小仪器的系统误差?答:在测量工作中,应尽量设法消除和减小系统误差。

方法有两种:一是在观测方法和观测程序上采用必要的措施,限制或削弱系统误差的影响,如角度测量中采取盘左、盘右观测,水准测量中限制前后视视距差等,另一种是找出产生系统误差的原因和规律,对观测值进行系统误差的改正,如对距离观测值进行尺长改正、温度改正和倾斜改正,对竖直角进行指标差改正等。

5、写出衡量误差精度的指标。

答:(1)、平均误差:在一定条件下的观测系列中,各真误差的绝对值的平均数,即:θ=[| △|] /n(2)、中误差:在一定条件下的观测系列中,各真误差平方和的平均数的平方根:m=±[VV]/n (3)、允许误差(极限误差):在一定的观测条件下,偶然误差的绝对值不会超过某一定限值,通常以三倍中误差或二倍中误差为极限值,称此极限值为允许误差。

(4)、相对误差:是误差的绝对值与相应观测值之比。

6、等精度观测中为什么说算术平均值是最可靠的值?答:这是因为:设对某量进行了n次观测,其观测值分别为Ll ,L2,⋯⋯Ln(1)、其算术平均值为L =(Ll +L2+⋯⋯+Ln)/n=[L] /n,设该量的真值为X;(2)、真误差为:△ 1=L1-X,△2=L2-X,⋯⋯△n=Ln-X,等式两边相加并各除以n,即:[ △] /n=[L]/n -X;Lim(3)、当观测次数无限增加时.有n [ △] /n=0;Lim L(4)、所以:n=X;所以说算术平均值是真值的最优估值。

7、从算术平均值中误差(M)的公式中,使我们在提高测量精度上能得到什么启示?答:从公式可以看出,算术平均值的中误差与观测次数的平方根成反比。

因此增加观测次数可以提高箕术平均值的精度。

当观测值的中误差m=1 时,算术平均值的中误差M 与观测次数n的关系如图5-4 所示。

由图可以看出,当n增加时,M 减小。

但当观测次数n达到一定数值后(如n=10),再增加观测次数,工作量增加,但提高精度的效果就不太明显了。

故不能单纯以增加观测次数来提高测量成果的精度,应设法提高观测值本身的精度。

例如,使用精度较高的仪器、提高观测技能、在良好的外界条件下进行观测等。

8、写出误差传播定律的公式,并说明该公式的用途。

答:设一般函数,Z=(Xl ,X2,⋯⋯Xn),式中X1,X2,⋯⋯X。

为可直接观测的量,m1,m2,⋯⋯mn为各观测量相应的中误差,则:函数Z 的中误差为计算式:mZ=± ( F/ X1)2m12( F/ X2)2m22( F/ X n)2m n2此式就是误差传播定律。

可以用各变量的观测值中误差来推求函数的中误差。

六、计算题:1、设对某线段测量六次, 其结果为 312.581m 、312.546m 、312.551m 、312.532m 、312.537m 、312.499m 。

试求算术平均值、观测值中误差、算术平均值中误差及相对误差。

解:算术平均值 L l1 l2ln l =312.541 mnn 观测值中误差: m =± [VV]/(n 1) =±0.0268;算术平均值中误差: M L =m / n ± 0.011 (m );结果: 312.541 ±0.011 相对误差: K m 1 =1/28412DD m2、已知 DJ6光学经纬仪一测回的方向中误差 m=±6″, 问该类型仪器一测回角值的中误差是多少? 如果要求某角度的算术平均值的中误差 m 角=±5″,用该仪器需要观测几个测回。

解:一测回角值的中误差:由和差函数得 mm 12 m 22 62 62 8.5//4、同精度观测一个三角形的两内角α、β,其中误差: m =m =±6″,求三角形的第三角γ的 中误差 m ?解:γ =180- α- β2 2 2 2由误差传播定理得 m =± ( / ) m ( / ) m =±8.5 5、设量得 A 、B 两点的水平距离 D=206.26m ,其中误差 m D =±0.04m ,同时在 A 点上测得竖直角 =30°00′,其中误差 m =±10″。

试求 A ,B 两点的高差 h=Dtg α)及其中误差 m h ?h=119.08±0.03mM= n =3,需测 3 个测回 3、用某经纬仪测量水平角,一测回的中误差 测回?m=± 15″,欲使测角精度达到土 5″问需要观测几个 解: 由 M=则 n =9,需测 9 个测回解:h=Dtan α=119.08m由误差传播定理得m h tg 2 m D 2 (DSec 2 )2 (m )2 0.03m6、用同一架经纬仪,以不同的测回数观测某一角度,其观测值为:β1=24°13′36″(4个测回),β2=24°13′30″(6 个测回),β3=24°13′24″(8 个测回),试求单位权观测值的中误差,加权平均值及其中误差。

相关文档
最新文档