七年级数学解方程4

合集下载

解一元一次方程(4个课时+7个知识点+10个题型)学案苏科版七年级数学上册

解一元一次方程(4个课时+7个知识点+10个题型)学案苏科版七年级数学上册

4.2 解一元一次方程【学习目标】1.了解方程的解与解方程的概念,会根据等式的基本性质解方程。

2.掌握解一元一次方程的方法,了解解一元一次方程的一般步骤,并能灵活运用,能判别解的合理性。

3.经历和体会解一元一次方程中“转化”的思想方法。

【学习内容】1.用等式的基本性质解一元一次方程方程的解与解方程等式的基本性质利用等式的基本性质解简单的一元一次方程2.用移项法解一元一次方程·1·移项的概念·2·用移项的方法解一元一次方程3.用去括号法解方程·1·解含有一个括号的一元一次方程·2·解含有两个(或以上)括号的一元一次方程4.用去分母法解方程·1·解分母为整数的一元一次方程·2·解分母含小数的一元一次方程4.2.1 用等式的基本性质解一元一次方程【基础知识】·知识点01 方程的解与解方程1.方程的解:能使方程两边的值相等的未知数的值叫做方程的解。

使方程左右两边的值相等的未知数的值可以不止一个,即方程的解可以有注意多个。

2.解方程:求方程的解的过程叫做解方程。

★细节剖析:(1)检验一个数是否为方程的解的步骤③比较方程左右两边的值,则此数值是方程的解;若左边的值≠右边的值,则此数值不是方程的解。

·例1·检验下列各数是不是方程4x-2=6x-3的解。

1(1)x=-2;(2)x=2·练习·1.下列方程中,解为x=-1的是()A.2x=-1+x B.3-x=2C.x-4=3D.-2x-2=42.已知关于x的方程2x-a-5=0的解是x=-2,则a的值为()A.1B.-1C.9D.-93.已知x=4是方程ax-2=a+10的解,则a的值为()A.2B.-3C.4D.-45.小强在解方程时,不小心把一个数字用墨水污染成了一2x +=3x ,他翻阅了答案知道这个方程的解为x =-1,于是他判断的值应为___________。

2017-2018学年人教版七年级数学下册(广东专版)高分突破讲练:(四) 二元一次方程组

2017-2018学年人教版七年级数学下册(广东专版)高分突破讲练:(四) 二元一次方程组

(四) 二元一次方程组01 知识结构图02 重难点突破重难点1 二元一次方程组的解法【例1】 解方程组:⎩⎪⎨⎪⎧2x +y =4,①2y +1=5x.②【思路点拨】 方法一:将①变形为y =4-2x ,然后代入②,消去y ,转化为一元一次方程求解;方法二:①×2-②,消去y ,转化为一元一次方程求解. 【解答】二元一次方程组有两种解法,我们可以根据具体的情况来选择简便的解法.如果方程中有未知数的系数是1时,一般采用代入消元法;如果两个方程的相同未知数的系数相同或互为相反数时,一般采用加减消元法;如果方程组中的系数没有特殊规律,通常用加减消元法.1.(2017·广州市海珠区期末)已知x ,y 满足方程组⎩⎪⎨⎪⎧x +2y =8,2x +y =7,则x +y 的值是()A .3B .5C .7D .92.定义一种运算“◎”,规定x ◎y =ax -by ,其中a ,b 为常数,且2◎3=6,3◎2=8,则a +b 的值是()A .2B .-2C .163D .43.(2016·广州市华师附中期末)解方程:2x +y 3=2x -y5=1.重难点2 由方程组的解满足的关系式求字母的取值范围【例2】 若二元一次方程组⎩⎪⎨⎪⎧2x +3y =k -3,x -2y =2k +1的解互为相反数,则k 的值为()A .58B .85C .165D .-85【思路点拨】 先解方程组,得到⎩⎨⎧x =8k -37,y =-3k -57,再根据方程组的解互为相反数,得到关于k 的一元一次方程,求解方程即可得到k 的值.由方程组的解满足的关系式求字母的取值范围的解题步骤一般是:①先解方程组,用含未知数的值表示方程组的解;②根据方程组的解满足的关系式列方程或不等式;③解方程或不等式即可得到字母的取值范围.4.二元一次方程组⎩⎪⎨⎪⎧3x +2y =10,kx +(k +2)y =6的解x ,y 的值相等,则k 的值为()A .12B .1C .2D .525.若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧x +y =k ,2x -y =8k 的解也是二元一次方程3x +2y =10的解,则k 的值为()A .1B .-2C .2D .46.若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧3x +y =1+a ,①x +3y =3②的解,满足x +y<2,则a 的取值范围为()A .a<4B .a>4C .a<-4D .a>-4重难点3 二元一次方程组的应用【例3】 某中学拟组织九年级师生去黄山举行毕业联欢活动.下面是年级组长李老师和小芳、小明同学有关租车问题的对话:李老师:“平安客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵200元.”小芳:“我们学校八年级师生昨天在这个客运公司租了4辆60座和2辆45座的客车到韶山参观,一天的租金共计5 000元.”小明:“我们九年级师生租用5辆60座和1辆45座的客车正好坐满.” 根据以上对话,解答下列问题:(1)平安客运公司60座和45座的客车每辆每天的租金分别是多少元?(2)按小明提出的租车方案,九年级师生到该公司租车一天,共需租金多少元? 【思路点拨】 (1)根据题目给出的条件得出的等量关系是60座客车每辆每天的租金-45座客车每辆每天的租金=200元,4辆60座一天的租金+2辆45座的一天的租金=5 000元,由此可列出方程组求解;(2)可根据“我们九年级师生租用5辆60座和1辆45座的客车正好坐满”以及(1)的结果来求出答案. 【解答】列方程解决实际问题的解题步骤是:1.审题:弄清已知量和未知量;2.设未知数,并根据相等关系列出符合题意的方程; 3.解这个方程;4.验根并作答:检验方程的根是否符合题意,并写出完整的答案.7.从甲地到乙地的路有一段上坡,一段下坡.如果上坡平均每分钟走50米,下坡平均每分钟走100米,那么从甲地走到乙地需要25分钟,从乙地走到甲地需要20分钟.甲地到乙地上坡与下坡的路程各是多少?03 备考集训一、选择题(每小题3分,共30分)1.下列方程组中,是二元一次方程组的是()A .⎩⎪⎨⎪⎧2x +y =-1y +z =2B .⎩⎪⎨⎪⎧5x -3y =3y =2+3xC .⎩⎪⎨⎪⎧x -5y =1xy =2D .⎩⎪⎨⎪⎧3x -y =7x 2+y =1 2.下列各选项中,是二元一次方程x -5y =2的一个解的是()A .⎩⎪⎨⎪⎧x =3y =1B .⎩⎪⎨⎪⎧x =0y =2 C .⎩⎪⎨⎪⎧x =2y =0D .⎩⎪⎨⎪⎧x =3y =-13.方程组⎩⎪⎨⎪⎧3x -y =2,①3x +2y =11 ②的最优解法是()A .由①,得y =3x -2,再代入②B .由②,得3x =11-2y ,再代入①C .由②-①,消去xD .由①×2+②,消去y 4.方程组⎩⎪⎨⎪⎧2x +y =4,x +3z =1,x +y +z =7的解是()A .⎩⎪⎨⎪⎧x =2y =2z =1B .⎩⎪⎨⎪⎧x =2y =1z =1C .⎩⎪⎨⎪⎧x =-2y =8z =1D .⎩⎪⎨⎪⎧x =2y =2z =25.由方程组⎩⎪⎨⎪⎧x +m =4,y -3=m 可得出x 与y 的关系是()A .x +y =1B .x +y =-1C .x +y =7D .x +y =-76.(2017·舟山)若二元一次方程组⎩⎪⎨⎪⎧x +y =3,3x -5y =4的解为⎩⎪⎨⎪⎧x =a ,y =b ,则a -b =()A .1B .3C .-14D .747.(2017·广州市南沙区期末)甲、乙两人骑自行车比赛,若甲先骑30分钟,则乙出发后50分钟可追上甲.设甲、乙每小时分别骑x 千米、y 千米,则可列方程()A .30x =50yB .12x =(12+56)y C .(30+50)x =50yD .(12+56)x=56y 8.(2017·柳州期末)若方程组⎩⎪⎨⎪⎧ax +y =5,x +by =-1解为⎩⎪⎨⎪⎧x =2,y =1,则点P(a ,b)所在的象限为() A .第一象限 B .第二象限 C .第三象限 D .第四象限9.已知关于x ,y 的方程组⎩⎪⎨⎪⎧3x -5y =2a ,x -2y =a -5,若x ,y 的值互为相反数,则a 的值为()A .-5B .5C .-20D .2010.(2017·黑龙江)某企业决定投资不超过20万元建造A ,B 两种类型的温室大棚.经测算,投资A 种类型的大棚6万元/个、B 种类型的大棚7万元/个,那么建造方案有()A .2种B .3种C .4种D .5种 二、填空题(每小题4分,共20分)11.写出一个解为⎩⎪⎨⎪⎧x =1,y =-2的二元一次方程组:____________________________________.12.(2017·枣庄)已知⎩⎪⎨⎪⎧x =2,y =-3是方程组⎩⎪⎨⎪⎧ax +by =2,bx +ay =3的解,则a 2-b 2=________.13.如果4x a+2b -5-2y 3a-b -3=8是二元一次方程,那么a -b =________.14.(2017·玉林市陆川县期末)小东将书折过来,该角顶点A 落在F 处,BC 为折痕,如图所示,若DB 平分∠FBE ,∠DBE 比∠CBA 大30°,设∠CBA 和∠DBE 分别为x °,y °,那么可求出这两个角的度数的方程组是__________________. 15.定义运算“*”,规定x*y =ax 2+by ,其中a ,b 为常数,且1*2=5,2*1=6,则2*3=________. 三、解答题(共50分) 16.(12分)解方程组:(1)⎩⎪⎨⎪⎧3x -2y =-1,①x +3y =7;②(2)⎩⎪⎨⎪⎧3x +2y =5,①2x +5y =7;②(3)⎩⎪⎨⎪⎧4(x -y -1)=3(1-y )-2,x 2+y 3=2.17.(12分)4月23日“世界读书日”期间,玲玲和小雨通过某图书微信群网购图书,请根据他们的微信聊天对话,求出每本《英汉词典》和《读者》杂志的单价.18.(12分)已知方程组⎩⎪⎨⎪⎧5x +y =3,ax +5y =4与方程组⎩⎪⎨⎪⎧x -2y =5,5x +by =1有相同的解,求a ,b 的值.19.(14分)“五一”节期间,步步高超市进行兑换活动,亮亮妈妈的积分卡里有7 000分,她看了看兑换方法后(见表),兑换了两种礼品共5件并刚好用完积分,请你求出亮亮妈妈的兑换方法.(四) 二元一次方程组例1 方法一:由①,得y =4-2x.③把③代入②,得2(4-2x)+1=5x.解得x =1.把x =1代入③,得y =2.∴原方程组的解为⎩⎪⎨⎪⎧x =1,y =2.方法二:①×2,得4x +2y =8.③③-②,得4x -1=8-5x.解得x =1.把x =1代入②,得y =2.∴原方程组的解为⎩⎪⎨⎪⎧x =1,y =2.例2 B例3 (1)设平安客运公司60座和45座的客车每辆每天的租金分别为x 元,y 元.由题意,得⎩⎪⎨⎪⎧x -y =200,4x +2y =5 000.解得⎩⎪⎨⎪⎧x =900,y =700.答:平安客运公司60座和45座的客车每辆每天的租金分别为900元和700元.(2)5×900+1×700=5 200(元).答:九年级师生租车一天共需租金5 200元. 变式训练 1.B 2.A3.由原方程可得⎩⎪⎨⎪⎧2x +y =3,①2x -y =5.②①+②,得4x =8.解得x =2.①-②,得2y =-2.解得y =-1.∴方程组的解为⎩⎪⎨⎪⎧x =2,y =-1.4.A 5.C 6.A7.设甲地到乙地上坡路x 米,下坡路y 米.根据题意,得⎩⎨⎧x 50+y100=25,y 50+x 100=20.解得⎩⎪⎨⎪⎧x =1 000,y =500.答:甲地到乙地上坡路1 000米,下坡路500米. 备考集训1.B 2.C 3.C 4.C 5.C 6.D 7.D 8.D 9.D 10.B11.答案不唯一,如⎩⎪⎨⎪⎧x +y =-1x -y =3 12.1 13.0 14.⎩⎪⎨⎪⎧2x +2y =180y -x =3015.10 16.(1)由②,得x =7-3y.③③代入①,得3(7-3y)-2y =-1.解得y =2.把y =2代入③,得x =7-3y =1.∴原方程组的解是⎩⎪⎨⎪⎧x =1,y =2.(2)①×2-②×3,得-11y =-11,解得y =1.将y =1代入①,得x =1.∴原方程组的解是⎩⎪⎨⎪⎧x =1,y =1.(3)原方程组可化为:⎩⎪⎨⎪⎧4x -y =5,①3x +2y =12.②①×2+②,得11x =22.解得x =2.将x =2代入①,得y =3.∴原方程组的解是⎩⎪⎨⎪⎧x =2,y =3.17.设每本《汉英词典》和《读者》杂志的单价分别为x ,y 元,根据题意,得⎩⎪⎨⎪⎧10x +4y +5=349,2x +12y +5=141.解得⎩⎪⎨⎪⎧x =32,y =6.答:每本《汉英词典》和《读者》杂志的单价分别为32元和6元.18.解方程组⎩⎪⎨⎪⎧5x +y =3,x -2y =5.得⎩⎪⎨⎪⎧x =1,y =-2.将⎩⎪⎨⎪⎧x =1,y =-2代入ax +5y =4,得a =14.将⎩⎪⎨⎪⎧x =1,y =-2代入5x+by =1,得b =2.19.设亮亮妈妈兑换了x 个电茶壶和y 个书包.由题意,得⎩⎪⎨⎪⎧2 000x +1 000y =7 000,x +y =5.解得⎩⎪⎨⎪⎧x =2,y =3.或设亮亮妈妈兑换了a 个榨汁机和b 个书包.由题意,得⎩⎪⎨⎪⎧3 000a +1 000b =7 000,a +b =5.解得⎩⎪⎨⎪⎧a =1,b =4.由题知,7 000分兑换不了5个榨汁机和电茶壶,故只有上述两种情况.答:亮亮妈妈兑换了2个电茶壶和3个书包或1个榨汁机和4个书包.。

七年级数学上册《用等式的性质解方程》教案、教学设计

七年级数学上册《用等式的性质解方程》教案、教学设计
4.设计不同难度的练习题,使学生在解题过程中逐步提高分析问题和解决问题的能力,形成系统的解题思路。
(三)情感态度与价值观
1.培养学生认真观察、积极思考的良好学习习惯,激发学生对数学学科的兴趣和热情。
2.使学生认识到数学在生活中的重要作用,提高学生运用数学知识解决实际问题的意识。
3.培养学生勇于探索、克服困难的精神,增强学生面对挑战的自信心。
-结合信息技术,如多媒体课件、网络资源等,丰富教学手段,提高教学效果。
3.教学过程:
(1)导入新课:
通过一个简单的实际问题,引导学生思考如何用数学方法解决问题,从而引出一元一次方程。
(2)探索新知:
分组讨论,让学生在合作中发现等式的性质,并尝试用这些性质解方程。
教师适时给予指导,总结解方程的方法和步骤。
五、作业布置
为了巩固学生对本章节知识的掌握,激发学生学习兴趣,我设计了以下几类作业:
1.基础巩固题:针对本节课所学的基本概念和解方程方法,布置一些基础题,让学生在课后独立完成。这些题目旨在帮助学生巩固等式的性质,以及解一元一次方程的基本步骤。
例题:
(1)解方程:2x + 5 = 9
(2)解方程:3y - 7 = 2y + 5
七年级数学上册《用等式的性质解方程》教案、教学设计
一、教学目标
(一)知识与技能
1.理解等式的性质,包括加法、减法、乘法、除法的等式性质,并能够运用这些性质简化方程。
2.学会解一元一次方程,包括含有一个未知数、未知数的最高次数为一的方程,如:线性方程。
3.能够根据方程的特点,选择合适的方法进行求解,如移项、合并同类项、化简等。
2.提高拓展题:为提高学生运用数学知识解决实际问题的能力,布置一些拓展题,让学生将所学知识应用到实际情境中。

苏科版七年级上册数学4.2《解一元一次方程》课件 (共20张PPT)

苏科版七年级上册数学4.2《解一元一次方程》课件 (共20张PPT)

移项、合并同类项,得 5x=10
系数化为1,得 x=2
讲授新课
如何解方程 x 2 x 1 3? 0.2 0.5
解:去分母,得 5(x-2)-2(x+1)=3 去括号,得 5x-10-2x-2=3 移项、合并同类项,得 3x=15 系数化为1,得 x=5
讲授新课
解一元一次方程有哪些步骤? 一般步骤:去分母;去括号;移项;合并同类项; 未知数系数化为1.
讲授新课 例3、解方程:2x=5x-21 思考:方程2x=5x-21变形为2x-5x=-21 解:两边都减去5x,得 从形式上发生了什么变化? 2x-5x=-21 合并同类项,得 -3x=-21 两边都除以-3,得 x=7 方程中的某些项改变符号后,可以从方程的一边移到另一 边,这样的变形叫做移项 .
讲授新课
例4、解方程:x-3=4- 1 x
解:移项,得
1 x+
2 x=4+3
合并同类项,得3 2 x=7
两边都除以
3,得2
14 x=
2
3
方 乘程2 ,32 都x=能7的把两未边知都数除的以系32数或化 3
为1.
注意:(1)移项时,通常把含有未知数的项移到等号的左边,
把常数项移到等号的右边.
(2)移项要改变符号.
5x=15 系数化为1,得 x=3
(2) x 1 x 3 2
解:去分母,得 x-1=2(x+3) 去括号,得 x-1=2x+6 移项、合并同类项,得 -x=7 系数化为1,得 x=-7
移项,得 -4x=7-3-3
合并同类项,得 -4x=1
两边除以-4,得
1 x=-
4
(2)x-3 =2(x+1) 解:去括号,得 x-3=2x+2 移项,得 x-2x=2+3 合并同类项,得 -x=5 两边除以-1,得 x=-5

初中数学苏科版七年级上册第四章 一元一次方程4.2 解一元一次方程-章节测试习题(17)

初中数学苏科版七年级上册第四章 一元一次方程4.2 解一元一次方程-章节测试习题(17)

章节测试题1.【答题】下面是解方程的部分步骤:①由7x=4x-3,得7x-4x=3;②由,得2(2-x)=3+3(x-3);③由2(2x-1)-3(x-3)=1,得4x-2-3x-9=1;④由2(x+1)=7+x,得x=5.其中正确的有( )A. 0个B. 1个C. 2个D. 3个【答案】B【分析】此题考查了一元一次方程的解法,要知道解答的步骤:去分母、去括号、移项、合并同类项、系数化为1.【解答】①错误,由7x=4x-3,得7x-4x=-3;②错误,由,得2(2-x)=6+3(x-3);③错误,由2(2x-1)-3(x-3)=1,得4x-2-3x+9=1;④正确.选B.2.【答题】已知x=1是关于x的方程的解,则2k+2的值是( )A. -2B. 2C. 0D. -1【答案】A【分析】已知方程的实数根,可以考虑把根代入原方程求原方程里面的未知数.【解答】将x=1代入原方程,得,9-2(1-k)=3,9-2+2k=3,7+2k=3,2k=-4,k=-2,2k+2=-2.选A.3.【答题】解方程变形正确的是()A. =1.2B. =12C. =12D. 5(x-1)-8(x+2)=4.8【答案】D【分析】此题考查了一元一次方程的解法,要知道解答的步骤:去分母、去括号、移项、合并同类项、系数化为1.【解答】A说法错误,方程应变形为:=1.2;B说法错误,方程应变形为:=1.2;C说法错误,方程应变形为:=0.12;D说法正确,由方程左右两边同时乘以4得到.选D.4.【答题】下列方程变形正确的是()A. 由得B. 由,得C. 由得D. 由,得【答案】D【分析】此题考查了一元一次方程的解法,要知道解答的步骤:去分母、去括号、移项、合并同类项、系数化为1.【解答】A选项:由得,故是错误的;B选项:由,得,故是错误的;C选项:由得,故是错误的;D选项:由,得,故是正确的;选D.5.【答题】方程,去分母后正确的是().A.B.C.D.【答案】A【分析】本题考查了一元一次方程去分母的法则,即在方程两边同时乘以方程中各分母的最小公倍数即可消去分母.【解答】根据等式的性质方程两边都乘以12即可.解: +1=,去分母得:3(x+2)+12=4x,选A.6.【答题】已知x=2是关于x的方程a(x+1)=a+x的解,则a的值是()A. B. - C. - D.【答案】D【分析】此题考查了一元一次方程的解法,要知道解答的步骤:去分母、去括号、移项、合并同类项、系数化为1.【解答】解:把x=2代入方程得3a=a+2,解得:a=.选D.7.【答题】下列判断正确的是()A. 是一元一次方程B. 解方程-x-x=2,得x=1C. 方程的解是x=0D. 从9+x=4x-2得x+4x=9-2【答案】C【分析】此题考查了一元一次方程的解法,要知道解答的步骤:去分母、去括号、移项、合并同类项、系数化为1.【解答】解: A.是分式方程,不是一元一次方程;B.解得x=-1;C.正确;D.移项的时候要注意变号.选C.8.【答题】解方程时,去分母、去括号后,正确的结果是()A. 9x+1-10x+1=1B. 9x+3-10x-1=1C. 9x+3-10x-1=12D. 9x+3-10x+1=12【答案】C【分析】此题考查了一元一次方程的解法,要知道解答的步骤:去分母、去括号、移项、合并同类项、系数化为1.【解答】解方程时,去分母得:,去括号得:.选C.9.【答题】解方程3﹣5(x+2)=x去括号正确的是()A. 3﹣x+2=xB. 3﹣5x﹣10=xC. 3﹣5x+10=xD. 3﹣x﹣2=x【答案】B【分析】本题考查了解一元一次方程,去括号是解题关键,括号前是负数去括号都变号,括号前是正数去括号不变号.【解答】根据去括号法则可得:3-5x-10=x,选B.10.【答题】解方程:=1时,去分母正确的是()A. (2x+1)-(10x+1)=1B. 4x+1-10x+1=6C. 4x+2-10x-1=1D. 2(2x+1)-(10x+1)= 6【答案】C【分析】本题考查了一元一次方程去分母的法则,即在方程两边同时乘以方程中各分母的最小公倍数即可消去分母.【解答】解:方程两边同时乘以6得:4x+2﹣(10x+1)=6,去括号得:4x+2﹣10x﹣1=6.选C.11.【答题】对于方程,去分母后得到的方程是()A.B.C.D.【答案】D【分析】本题考查了一元一次方程去分母的法则,即在方程两边同时乘以方程中各分母的最小公倍数即可消去分母.【解答】解:在方程的左右两边同时乘以6可得:2(5x-1)-12=3(1+2x).12.【答题】若代数式4x﹣5与的值相等,则x的值是()A. 1B.C. 3D. 2【答案】B【分析】此题考查了一元一次方程的解法,要知道解答的步骤:去分母、去括号、移项、合并同类项、系数化为1.【解答】解:根据题意可得:4x-5=,去分母可得:8x-10=2x-1,解得:x=。

2022秋七年级数学上册第4章一元一次方程4.2解一元一次方程3用去括号法解方程授课课件新版苏科版

2022秋七年级数学上册第4章一元一次方程4.2解一元一次方程3用去括号法解方程授课课件新版苏科版
根据题中的新定义,得4-4(1+2x)=x+9. 去括号,得4-4-8x=x+9. 解得x=-1.
14 某超市为了回馈客户,决定实行优惠活动. 方案一:非会员购买所有商品可获九折优惠; 方案二:交纳200元会费成为该超市的会员,购买所 有商品可获八折优惠. (1)若用x(元)表示商品价格,请你用含x的式子分别表 示两种购物方案所花的钱数; 解:由题意,可得方案一:付费为0.9x元, 方案二:付费为(200+0.8x)元.
3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022年3月12日星期六3时47分18秒15:47:1812 March 2022
谢谢观赏
You made my day!
错解:去括号,得 12-y=-6y-1.移项,得 6y-y =-1-12.合并同类项,得 5y=-13.系数化为 1, 得 y=-153.
诊断:用去括号法解一元一次方程,去括号时
易漏乘某些项而出错.
10 解下列方程: (1)3(7x-5)-13(5-7x)+17(7x-5)=7(5-7x); 解:把 7x-5 看成一个整体,将原方程变形为 3(7x -5)+13(7x-5)+17(7x-5)=-7(7x-5), 整体移项、合并同类项,得10+1201(7x-5)=0, 即 7x-5=0.移项,得 7x=5.系数化为 1,得 x=57.
(6)x-2[x-3(x-1)]=8.
解:去中括号,得 x-2x+6(x-1)=8. 去小括号,得 x-2x+6x-6=8. 移项、合并同类项,得 5x=14. 系数化为 1,得 x=154.
9 解方程:2(6-0.5y)=-3(2y-1).
正解:去括号,得 12-y=-6y+3.移项,得-y+ 6y=3-12.合并同类项,得 5y=-9.系数化为 1,得 y=-95.

第四章一元一次方程


六.【当堂检测】 完成《补充习题》中的练习,然后后小组内先核对答案,完成自 我评价。 七.【回扣目标】学有所成、悟出方法 移项时要改变项的符号外,还应该注意什么? 教 后 记
-6-
高邮市临泽镇初级中学七年级数学教案
§ 4.2 解一元一次方程(3) 课型:新授 主备:匡寿林 课时:3/4 复备: 教学准备: 教学时间: 月 日:
-2-
高邮市临泽镇初级中学七年级数学教案
§ 4.2 课型:新授 主备:匡寿林 教学目的 教学重难点 课时:1/4 复备: 教学准备: 教学时间: 月 日:
1.了解方程的解,解方程的概念; 2.掌握运用等式的基本性质解简单的一元一次方程; 3.经历体会解方程中的转化思想. 运用等式的基本性质解简单的一元一次方程. 教 学 过 程 个人复备
例 2.解方程: 1 (1)x-3=4- x 2 1 1 (2) x-1=3x+ 3 3
-5-
高邮市临泽镇初级中学七年级数学教案
让学生自己完成,问:你觉得自己在哪一步易错? 教师引导学生归纳: (1)移项时,通常把含有未知数的项移到等号的左边,把常数 项移到等号的右边. (2)移项要改变符号. 例 3.x 为何值时,代数式 4x+3 与-5x+6 的值. (1) 相等? (2)互为相反数? (3)和为 3?
高邮市临泽镇初级中学七年级数学教案
§ 4.1 从问题到方程 课型:新授 主备:匡寿林 课时:1/1 复备: 教学准备: 教学时间: 月 日:
教学目的
1、 探索实际问题中数量之间的相等关系,并用方程描述; 2、 通过对多种实际问题中的数量关系的分析 ,使学生初步感受方程是刻画现实世 界的有效模型; 3、 认识一元一次方程,并能正确识别. 分析题意,找出相等关系,正确列出方程. 教 学 过 程 个人复备

第五单元5.11《解方程 例4》(教案)五年级上册数学人教版

第五单元5.11《解方程例4》教案一、教学目标1. 让学生理解方程的意义,能够识别方程中的未知数和已知数。

2. 培养学生通过观察、操作、猜测等方式,找出方程的解。

3. 引导学生运用简单的逻辑推理,判断方程的解是否正确。

4. 培养学生解决问题的能力,提高学生的数学思维。

二、教学内容1. 方程的意义:方程是由等号连接的两个表达式,其中包含未知数和已知数。

2. 方程的解:方程的解是使等式成立的未知数的值。

3. 解方程的方法:通过观察、操作、猜测等方式找出方程的解。

三、教学过程1. 导入:通过简单的实际问题,引导学生理解方程的意义。

例:小明的年龄加上5等于10,小明的年龄是多少?学生通过观察、操作、猜测等方式,找出小明的年龄是5岁。

2. 探究:引导学生探究解方程的方法。

例:找出使等式成立的未知数的值。

学生通过观察、操作、猜测等方式,找出方程的解。

3. 应用:让学生运用解方程的方法解决实际问题。

例:小红有3个苹果,小蓝有5个苹果,他们一共有多少个苹果?学生通过解方程的方法,找出他们一共有8个苹果。

4. 巩固:通过练习,巩固解方程的方法。

例:找出使等式成立的未知数的值。

学生通过解方程的方法,找出方程的解。

5. 总结:总结解方程的方法,引导学生运用解方程的方法解决实际问题。

四、作业布置1. 完成课后练习题。

2. 思考题:如何运用解方程的方法解决实际问题?五、课后反思本节课通过实际问题,引导学生理解方程的意义,探究解方程的方法,并运用解方程的方法解决实际问题。

在教学过程中,要注意引导学生运用观察、操作、猜测等方式找出方程的解,培养学生的数学思维。

同时,要注意及时总结解方程的方法,引导学生运用解方程的方法解决实际问题。

需要重点关注的细节是“探究:引导学生探究解方程的方法”。

解方程是数学教学中的一个重要内容,对于培养学生的数学思维和解题能力具有重要意义。

在探究解方程的方法时,教师需要引导学生通过观察、操作、猜测等方式,找出方程的解。

数学人教版七年级上册移项解方程

3.2解一元一次方程(移项)教材分析:1、本节课是数学人教版七年级上册第三章第二节第二小节的内容。

2、本节课主要内容是解一元一次方程的重要步骤移项。

是学生学习解一元一次方程的基础,这一部分内容在方程中占有很重要的地位,在解方程、解一元一次不等式、解一元二次不等式中都要用到。

学情分析:针对初一年级学生学习热情高,但观察、分析、概括能力较弱的特点,本节从实际问题入手,让学生通过自己思考、动手,激发学生的求知欲,提高学生学习的兴趣与积极性。

在课堂教学中,学生主要采取讨论、思考、观察的学习方式,使学生真正成为课堂的主人,逐步培养学生观察、概括、归纳的能力。

教学策略:1)、自主探索策略:通过分组讨论,学生通过观察、分析发现结论,归纳概括。

(2)、师生交流:通过教师引导,让学生学会学习数学的方法和数学思想。

生生交流:学生分组讨论问题,在讨论的过程中相互交流,发表个人的见解,对问题进行探讨,互相学习。

教学目标:理解移项法,并知道移项法的依据,会用移项法则解方程。

教学重点:运用方程解决实际问题,会用移项法则解方程。

教学难点:找相等关系列方程,正确地移项解一元一次方程复习回顾回忆一下上节课我们学的什么内容呀?合并同类项解一元一次方程。

说到解方程,那么到目前为止你总共学了几种解一元一次方程的方法了?两种(除了合并同类项还有利用等式的性质)解方程并说出解方程的依据(让学生自己在练习本上做再一起对答案)(1)2x-2=4(2)5x-2x=9上面的这两个方程第一个是利用等式的性质来解的;第二个是利用合并同类项的方法来解的一、创设情境,引出问题好现在我们来看一个实际问题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?现在来看一下下面的3个小问题,先独立思考再找学生回答1.如果我设这个班有x名学生,请完成下列填空每人分3本,共分出-3x--本,加上剩余的20本,这批书共—(3x+20)本每人分4本,需要-4x-本,减去缺少的25本,这批书共--(4x-25)--本2.很明显这批书有2种分法,他们之间友存在怎样的关系呢?由于这批书的总数是一个定值所以由这两种分法得出的表示这批书总数的两个代数式是相等的。

初一数学解方程题及答案

初一数学解方程题及答案1、A、B两个车站相距240千米,一公共汽车从A站开出,每小时行驶48千米,一小轿车从B站开出,每小时行驶72千米.小轿车从B站开出1小时后,客车从A站开出,两车相向而行,几小时后两车相遇?设两车x小时后相遇.72x1+(72+48)x=240120x=168x=1.42、一拖拉机准要去拉货,每小时走30千米,出发30分钟后,家中有事派一辆小轿车50千米/小时的速度去追拖拉机,问小轿车用多少时间可以追上拖拉机?设小轿车用x小时可以追上拖拉机.50x=30x+30x1/220x=15x=0.753、甲乙两人在10km的环行公路上跑步,甲每分跑230m,乙每分跑170m.(1).若两人同时同地同向出发,经过多少时间首次相遇?(2).若甲先跑10min,乙再同地同向出发,还需多长时间两人首次相遇?(3).若两人同时同地同向出发,经过多长时间第二次相遇?解:(1)第一次相遇也就是甲比乙恰好多跑一圈,设经过t时间.230t-170t=10000解得t=500/3分钟(2)甲先跑10分钟,就跑了230*10=2300米,不到10km,那么他们第一次相遇也是甲比乙恰好多跑一圈230*10+230t-170t=10000解得t=385/3分钟(3)230t-170t=20000解得t=1000/3分钟4、飞机在两城市之间飞行,顺风返回要4h,逆风返回要5h,飞机在静风中速度为360km/h.求风速及两城市之间的距离.解:设风速为v,两城市距离为ss/(360+v)=4s/(360-v)=5解得v=40km/h s=1600km5、一轮船从甲地顺流而下8h到达乙地,原路返回要12h才能到达甲地.一直水流速度是每小时3km,求甲乙两地的距离.(1).设间接未知数解方程:设船在静水中的速度为x km/h,则船在顺水中的速度为_,船在逆水中的速度为_.列出相应的方程为_______.解得:x=_.从而得两码头之间的距离为_km.(2)设直接未知数列方程:设甲乙两码头的距离为x km,则船在顺水中的速度为__,船在逆水中的速度为__,列出相应的方程为______,解得两码头之间的距离为_km.解:(1)x+3 x-3 8*(x+3)=12*(x-3)15km/h 144(2)x/8 x/12 x/8-3=x/12+3 1446、某部队士兵以每小时4km的速度从部队步行到市中心广场去参加公益活动,走了1.5h后,小马奉命回部队取一件东西,他以每小时6km的速度回部队取了东西后又以同样的速度追赶队伍,结果在距广场2km处追上队伍,求某部队与市中心广场的距离.解:设距离为s,那么在距广场2km的地方就是s-2.部队是一直在走,所以这段路程总共用时(s-2)/4小马是先随着大队伍走了1.5h后折回再追上大队伍,跟着大队伍走了1.5h,然后折回原地用时1.5*4/6=1h,然后小马从原地追到距广场2km处,用时(s-2)/6,所以小马的总用时为1.5+1+(s-2)/6大队伍和小马的用时应该是一样的,所以(s-2)/4=1.5+1+(s-2)/6解得s=327、船在静水中的速度为16im/h,水流速度为2km/h,上午8点逆流而上,问这船最多开出多远就应返回,才能保证中午12点前回到出发地?解:设开出x km,恰好能在12点回到出发地,那么来回总共用时4个小时x/(16-2)+x/(16+2)=4解得x=31.58、恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.解:设这两个月的平均增长率是x.,则根据题意,得200(1-20%)(1+x)2=193.6,即(1+x)2=1.21,解这个方程,得x1=0.1,x2=-2.1(舍去).答:这两个月的平均增长率是10%.说明:这是一道正增长率问题,对于正的增长率问题,在弄清楚增长的次数和问题中每一个数据的意义,即可利用公式m(1+x)2=n求解,其中mn.9、益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价a元,则可卖出(350-10a)件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400元,需要进货多少件?每件商品应定价多少?解:根据题意,得(a-21)(350-10a)=400,整理,得a2-56a+775=0,解这个方程,得a1=25,a2=31.因为21×(1+20%)=25.2,所以a2=31不合题意,舍去.所以350-10a=350-10×25=100(件).答:需要进货100件,每件商品应定价25元.说明:商品的定价问题是商品交易中的重要问题,也是各种考试的热点.10、王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.(假设不计利息税)解:设第一次存款时的年利率为x.则根据题意,得[1000(1+x)-500](1+0.9x)=530.整理,得90x2+145x-3=0.解这个方程,得x1≈0.0204=2.04%,x2≈-1.63.由于存款利率不能为负数,所以将x2≈-1.63舍去.答:第一次存款的年利率约是2.04%.说明:这里是按教育储蓄求解的,应注意不计利息税.11、一个醉汉拿着一根竹竿进城,横着怎么也拿不进去,量竹竿长比城门宽4米,旁边一个醉汉嘲笑他,你没看城门高吗,竖着拿就可以进去啦,结果竖着比城门高2米,二人没办法,只好请教聪明人,聪明人教他们二人沿着门的对角斜着拿,二人一试,不多不少刚好进城,你知道竹竿有多长吗?解:设渠道的深度为xm,那么渠底宽为(x+0.1)m,上口宽为(x+0.1+1.4)m.则根据题意,得(x+0.1+x+1.4+0.1)·x=1.8,整理,得x2+0.8x-1.8=0.解这个方程,得x1=-1.8(舍去),x2=1.所以x+1.4+0.1=1+1.4+0.1=2.5.答:渠道的上口宽2.5m,渠深1m.说明:求解本题开始时好象无从下笔,但只要能仔细地阅读和口味,就能从中找到等量关系,列出方程求解.初中数学列方程解应用题知识点汇总一.列方程解应用题的一般步骤:1.认真审题:分析题中已知和未知,明确题中各数量之间的关系;2.寻找等量关系:可借助图表分析题中的`已知量和未知量之间关系,找出能够表示应用题全部含义的相等关系;3.设未知数:用字母表示题目中的未知数时一般采用直接设法,当直接设法使列方程有困难可采用间接设法;4.列方程:根据这个相等关系列出所需要的代数式,从而列出方程注意它们的量要一致,使它们都表示一个相等或相同的量;列方程应满足三个条件:方程各项是同类量,单位一致,左右两边是等量;5.解方程:解所列出的方程,求出未知数的值;6.写出答案:检查方程的解是否符合应用题的实际意义,进行取舍,并注意单位。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.2解方程 (1)
教学目标:
1、学会利用等式性质1解方程;
2、理解移项的概念;
3、学会移项。

教学重点:利用等式性质1解方程及移项法则;
教学难点:利用等式性质1来解释方程的变形。

教学准备:
1、投影仪、投影片。

2、天平称、若干个质量相同的物体,与物体质量相同的若干个砝码。

教学过程:
(一)引入新课:
1、上节课的想一想引入新课:等式和方程之间有什么区别和联系?
方程是等式,但必须含有未知数;
等式不一定含有未知数,它不一定是方程。

2、下面的一些式子是否为方程?这些方程又有何特点?
①5x+6=9x②3x+5③7+5×3=22④4x+3y=2
由学生小议后回答:①、④是方程。

分析这些方程得:①等式两边都是一次式或等式一边是一次式,另一边是常数,②这些方程中有的含一个未知数,也有的含两个未知数。

我们先来研究最简单的(只含有一个未知数的)的一元一次方程。

3、一次方程:我们把等号两边是一次式、或等号一边是一次式另一边是常数的方程叫做一次方程。

注意:一次方程可以含有两个或两个以上的未知数:如上例的④。

4、一元一次方程:只含有一个未知数的一次方程叫做一元一次方程。

5、判断下列方程哪些是一次方程,哪些是一元一次方程?(口答)
①2x+3=11②y2=16③x+y=2④3y-1=4y
6、什么叫方程的解?怎样解方程?
关键是把方程进行变形为x=?即求得方程的解。

今天我们就来研究如何求一元一次方程的解(点出课题)利用等式性质1解一元一次方程
(二)、讲解新课:
1、等式性质1:
出示天平称,在天平平衡的两边同时都添上或拿去质量相同的物体,天平仍保持平衡,指出:等式也有类似的情形。

强调关键词:"两边"、"都"、"同"、"等式"。

2、利用等式性质1解方程:
x+2=5
分析:要把原方程变形成x=?只要把方程两边同时减去2即可。

注意: 解题格式。

例1 解方程5x=7+4x
分析:方程两边都有含x的项,要解这个方程就需要把含x的项集中到一边,即可把方程变形成x=?(一般是含x的项集中到方程的左边,使方程的右边不含有x的项),此题的关键是两边都减去4x。

(解略)
解完后提问:如何检验方程时的计算有没有错误?(由学生回答)
只要把求得的解代替原方程中的未知数,检查方程的左右两边是否相等,(由一学生口头检验)
观察前面两个方程的求解过程:
x+2=5 5x=7+4x
x=5-2 5x-4x=7 思考:⑴把+2从方程的一边移到另一边,发生了什么变化?
⑵把+4x从方程的一边移到另一边,又发生了什么变化?(符号改变)
3、移项:
从变形前后的两个方程可以看到,这种变形相当于:把方程中的某一项改变符号后,从方程的一边移到另一边,我们把这种变形叫做移项。

注意:①移项要变号;
②移项的实质:利用等式性质1对方程进行变形。

例2 解方程:3x+4=2x+7
解:移项,得3x-2x=7-4,
合并同类项,得x=3。

∴x=3是原方程的解。

归纳:①格式:解方程时一般把含未知数的项移到方程的左边,把常数项移到方程的右边,以便合并同
类项;
②解方程与计算不同:解方程不能写成连等式;计算可以写成连等式;
③一个方程只写一行,每个方程只有一个等号(理由:利用等式性质1对方程进行变形,前后两个方程之间没有相等关系)。

练习:书本105页 1(口答),2(板演),想一想。

(三)、课堂小结:
①什么是一次方程,一元一次方程?
②等式性质1(找关键词);
③移项法则;
④应用等式性质1的注意点(例2归纳的三条)。

(四)、布置作业:见作业本。

5.2解方程(2)
教学目标
1. 通过分析具体问题中的数量关系,了解到解方程作为运用方程解决实际问题的需要.正确理解
和使用乘法分配律和去括号法则解方程.
2. 领悟到解方程作为运用方程解决实际问题的组成部分.
3. 进一步体会同一方程有多种解决方法及渗透整体化一的数学思想.
4. 培养学生热爱数学,独立思考,与合作交流的能力,领悟数学来于实践,服务于实践.
教学重点: 正确去括号解方程
教学难点:去括号法则和分配律的正确使用.
教学设计
5.2解方程(3)
教学目标
1. 经历解方程基本思路是把“复杂”转化为“简单”,把“新”转化为“旧”的过程.进一步理解
并掌握如何去分母的解题方法.
2. 通过解方程时去分母过程,体会转化思想.
3. 进一步体会解方程方法的灵活多样.培养解决不同问题的能力.
4. 培养学生自觉反思求解和自觉检验方程的解是否正确的良好习惯,团结合作的精神.
教学重点
解方程时如何去分母.教学难点
解方程时如何去分母.教学设计。

相关文档
最新文档