人教新课标版数学高一人教A必修1学案 .2分段函数及映射
数学必修Ⅰ人教新课标A版1-2-2-2分段函数及映射课件(35张)

数学 必修1
第一章 集合与函数概念
学案·新知自解
教案·课堂探究
练案·学业达标
分段函数 在函数的定义域内,对于自变量 x 的不同取值区间,有着不同的对应关系, 这样的函数通常叫做分段函数.
映射 设 A、B 是两个_非__空___集合,如果按某一个确定的_对___应__关__系__,使对于集 合 A 中的_任___意__一个元素 x,在集合 B 中都有_唯__一___确定的元素 y 与之对应, 那么就称对应__f_:__A_→__B____为从集合 A 到集合 B 的一个映射.
教案·课堂探究
练案·学业达标
解析: (1)由-5∈(-∞,-2],- 3∈(-2,2), -52∈(-∞,-2],知 f(-5)=-5+1=-4, f(- 3)=(- 3)2+2(- 3)=3-2 3. ∵f-52=-52+1=-32,且-2<-32<2, ∴ff-52=f-32=-322+2×-32=94-3=-34.
数学 必修1
第一章 集合与函数概念
学案·新知自解
教案·课堂探究
练案·学业达标
[归纳升华] 1.求分段函数的函数值的方法 先确定要求值的自变量的取值属于哪一段区间,然后代入该段的解析式求 值.当出现 f[f(a)]的形式时,应从内到外依次求值,直到求出值为止. 2.求某条件下自变量的值的方法 先假设所求的值在分段函数定义区间的各段上,然后相应求出自变量的 值,切记代入检验.
数学 必修1
第一章 集合与函数概念
学案·新知自解
教案·课堂探究
练案·学业达标
数学 必修1
第一章 集与函数概念
学案·新知自解
教案·课堂探究
练案·学业达标
1.下列给出的式子是分段函数的是( ) ①f(x)=x22x+,1x,<11.≤x≤5, ②f(x)=xx+ 2,1x,≥x2∈. R,
高一数学(新人教A版必修1)知识点梳理《1.2.2 分段函数与映射(第二课时)》(教师版) Word版含答案

第二课时分段函数与映射
●课标展示
.通过实例,体会分段函数的概念,了解分段函数在解决实际问题中的应用.
.理解映射的概念及表示法,会判断简单的对应是否为映射,理解函数是一种特殊的映射.
●温故知新
旧知再现
.函数图象的作法:、、成图.
.实数的绝对值=(\\((≥()).
.下列各图中,不能是函数()图象的是()
[答案]
.已知(+)=+,则()等于()
..
..
[答案]
.某班连续进行了次数学测试,其中方青同学成绩如表所示,在
这个函数中,定义域是次数,值域是分数.
新知导学
.分段函数
所谓分段函数,是指在定义域的不同部分,有不同的对应法则的函数.
[名师点拨]分段函数是一个函数,不要把它误认为是几个函数.分段函数的定义域是各段定义域的并集,值域是各段值域的并集.
.映射
()定义:一般地,设,是两个非空的集合,如果按某一个确定的对应关系,使对于集合中的元素,在集合中都有的元素与之对应,那么就称对应:→为从集合到集合的一个映射.
[归纳总结]满足下列条件的对应:→为映射:
(),为非空集合;
()有对应法则;
()集合中的每一个元素在集合中均有唯一元素与之对应.
()映射与函数的关系:函数是特殊的映射,即当两个集合,均为时,从到的映射就是函数,所以函数一定是映射,而映射不一定是函数,映射是函数的推广.
[归纳总结]函数新概念,记准三要素;定义域值域,关系式相连;。
高中数学人教版A版必修一第一单元1.2.2 第2课时 分段函数及映射

第2课时 分段函数及映射学习目标 1.理解分段函数的定义,并能解决简单的分段函数问题(重点).2.了解映射的概念以及它与函数的联系与区别(难点).预习教材P21-P22,完成下面问题: 知识点1 分段函数 分段函数的定义:(1)前提:在函数的定义域内;(2)条件:在自变量x 的不同取值范围内,有着不同的对应关系; (3)结论:这样的函数称为分段函数. 【预习评价】已知函数f (x )=⎩⎪⎨⎪⎧2x -3,x ≥02x +3,x <0,则f ⎝⎛⎭⎫12=________,f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=________. 解析 由题意得f ⎝⎛⎭⎫12=2×12-3=-2,f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=f (-2)=2×(-2)+3=-1. 答案 -2 -1 知识点2 映射 映射的定义:【预习评价】 (正确的打“√”,错误的打“×”) (1)函数是特殊的映射.( )(2)在映射的定义中,对于集合B 中的任意一个元素在集合A 中都有一个元素与之对应.( )(3)按照一定的对应关系,从集合A 到集合B 的映射与从集合B 到集合A 的映射是同一个映射.( )提示 (1)√ 根据映射的定义,当映射中的集合是非空数集时,该映射就是函数,否则不是函数;(2)× 映射可以是“多对一”,但不可以是“一对多”;(3)× 从集合A 到集合B 的映射与从集合B 到集合A 的映射不是同一个映射.题型一 映射的概念及应用【例1】 (1)下列对应是集合A 到集合B 上的映射的是( ) A .A =N *,B =N *,f :x →|x -3|B .A =N *,B ={-1,1,-2},f :x →(-1)xC .A =Z ,B =Q ,f :x →3xD .A =N *,B =R ,f :x →x 的平方根(2)已知映射f :A →B ,在f 的作用下,A 中的元素(x ,y )对应到B 中的元素(3x -2y +1,4x +3y -1),求:①A 中元素(-1,2)在f 作用下与之对应的B 中的元素. ②在映射f 作用下,B 中元素(1,1)对应A 中的元素.(1)解析 对于选项A ,由于A 中的元素3在对应关系f 的作用下与3的差的绝对值在B 中找不到象,所以不是映射;对于选项B ,对任意的正整数x ,在集合B 中有唯一的1或-1与之对应,符合映射的定义;对于选项C,0在f 下无意义,所以不是映射;对于选项D ,正整数在实数集R 中有两个平方根(互为相反数)与之对应,不满足映射的定义,故该对应不是映射.答案 B(2)解 ①由题意可知当x =-1,y =2时,3x -2y +1=3×(-1)-2×2+1=-6, 4x +3y -1=4×(-1)+3×2-1=1,故A 中元素(-1,2)在f 的作用下与之对应的B 中的元素是(-6,1).②设在映射f 作用下,B 中元素(1,1)对应A 中的元素为(x ,y ),则⎩⎪⎨⎪⎧3x -2y +1=1,4x +3y -1=1,解之得⎩⎨⎧x =417y =617,即A 中的元素为⎝⎛⎭⎫417,617. 规律方法 1.判断一个对应是不是映射的两个关键(1)对于A 中的任意一个元素,在B 中是否有元素与之对应. (2)B 中的对应元素是不是唯一的.2.求对应元素的两种类型及处理思路(映射f :A →B )(1)若已知A 中的元素a ,求B 中与之对应的元素b ,这时只要将元素a 代入对应关系f 求解即可.(2)若已知B 中的元素b ,求A 中与之对应的元素a ,这时构造方程(组)进行求解即可,需注意解得的结果可能有多个.【训练1】 下列各个对应中,构成映射的是( )解析 对于A ,集合M 中元素2在集合N 中无元素与之对应,对于C ,D ,均有M 中的一个元素与集合N 中的两个元素对应,不符合映射的定义,故选B .答案 B典例迁移题型二 分段函数求值问题【例2】 已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤-2,3x +5,-2<x <2,2x -1,x ≥2,求f (-5),f (1),f ⎣⎡⎦⎤f ⎝⎛⎭⎫-52. 解 由-5∈(-∞,-2],1∈(-2,2),-52∈(-∞,-2],知f (-5)=-5+1=-4,f (1)=3×1+5=8,f ⎣⎡⎦⎤f ⎝⎛⎭⎫-52=f ⎝⎛⎭⎫-52+1=f ⎝⎛⎭⎫-32=3×⎝⎛⎭⎫-32+5=12. 【迁移1】 (变换所求)例2条件不变,若f (a )=3,求实数a 的值. 解 当a ≤-2时,f (a )=a +1=3,即a =2>-2,不合题意,舍去; 当-2<a <2时,f (a )=3a +5=3,即a =-23∈(-2,2),符合题意;当a ≥2时,f (a )=2a -1=3,即a =2∈[2,+∞),符合题意. 综上可得,当f (a )=3时,a 的值为-23或2.【迁移2】 (变换所求)例2的条件不变,若f (x )>2x ,求x 的取值范围.解 当x ≤-2时,f (x )>2x 可化为x +1>2x ,即x <1,所以x ≤-2; 当-2<x <2时,f (x )>2x 可化为3x +5>2x ,即x >-5,所以-2<x <2; 当x ≥2时,f (x )>2x 可化为2x -1>2x ,则x ∈∅. 综上可得,x 的取值范围是{x |x <2}. 规律方法 1.求分段函数函数值的方法 (1)先确定要求值的自变量属于哪一段区间.(2)然后代入该段的解析式求值,直到求出值为止.当出现f (f (x 0))的形式时,应从内到外依次求值.2.由分段函数的函数值求自变量的方法已知分段函数的函数值求对应的自变量的值,可分段利用函数解析式求得自变量的值,但应注意检验函数解析式的适用范围,也可先判断每一段上的函数值的范围,确定解析式再求解.【训练2】 函数f (x )=⎩⎪⎨⎪⎧x 2+2,x ≤2,2x ,x >2.若f (x 0)=8,则x 0=________.解析 当x 0≤2时,f (x 0)=x 20+2=8,即x 20=6,∴x 0=-6或x 0=6(舍去). 当x 0>2时,f (x 0)=2x 0=8,∴x 0=4. 综上,x 0=-6或x 0=4. 答案 -6或4题型三 分段函数的图象及应用【例3】 (1)已知f (x )的图象如图所示,则f (x )的解析式为________.(2)已知函数f (x )=1+|x |-x 2(-2<x ≤2).①用分段函数的形式表示函数f (x ); ②画出函数f (x )的图象;③写出函数f (x )的值域.(1)解析 当0≤x ≤1时,f (x )=-1; 当1<x ≤2时,设f (x )=kx +b (k ≠0),则⎩⎪⎨⎪⎧ k +b =-1,2k +b =0, 解得⎩⎪⎨⎪⎧k =1,b =-2,此时f (x )=x -2.综上,f (x )=⎩⎪⎨⎪⎧ -1,0≤x ≤1,x -2,1<x ≤2.答案 f (x )=⎩⎪⎨⎪⎧-1,0≤x ≤1,x -2,1<x ≤2.(2)解 ①当0≤x ≤2时,f (x )=1+x -x2=1,当-2<x <0时,f (x )=1+-x -x2=1-x .所以f (x )=⎩⎪⎨⎪⎧1,0≤x ≤2,1-x ,-2<x <0.②函数f (x )的图象如图所示.③由(2)知,f (x )在(-2,2]上的值域为[1,3).规律方法 1.由分段函数的图象确定函数解析式的步骤(1)定类型:根据自变量在不同范围内图象的特点,先确定函数的类型. (2)设函数式:设出函数的解析式.(3)列方程(组):根据图象中的已知点,列出方程或方程组,求出该段内的解析式. (4)下结论:最后用“{”表示出各段解析式,注意自变量的取值范围. 2.作分段函数图象的注意点作分段函数的图象时,定义域分界点处的函数取值情况决定着图象在分界点处的断开或连接,特别注意端点处是实心点还是空心点.【训练3】 已知f (x )=⎩⎪⎨⎪⎧x 2 (-1≤x ≤1),1 (x >1或x <-1),(1)画出f (x )的图象; (2)求f (x )的值域.解 (1)利用描点法,作出f (x )的图象,如图所示.(2)由条件知,函数f (x )的定义域为R .由图象知,当-1≤x ≤1时,f (x )=x 2的值域为[0,1], 当x >1或x <-1时,f (x )=1,所以f (x )的值域为[0,1].课堂达标1.已知函数f (x )=⎩⎪⎨⎪⎧1x 2+1,x <2,x -2,x ≥2,则f (0)=( )A .2B .2C .1D .0解析 因为0∈(-∞,2),所以f (0)=102+1=1.答案 C2.下列图形是函数y =x |x |的图象的是( )解析 y =⎩⎪⎨⎪⎧x 2,x ≥0,-x 2,x <0,故选D .答案 D3.如图中所示的对应:其中构成映射的个数为( ) A .3B .4C .5D .6解析 由映射的定义知①②③是映射. 答案 A4.设函数f (x )=⎩⎪⎨⎪⎧-x ,x ≤0x 2,x >0,若f (a )=4,则实数a =________.解析 当a ≤0时,f (a )=-a =4,即a =-4;当a >0时,f (a )=a 2=4,a =2(a =-2舍去),故a =-4或a =2.答案 -4或25.作出y =⎩⎪⎨⎪⎧-7,x ∈(-∞,-2],2x -3,x ∈(-2,5],7,x ∈(5,+∞)的图象,并求y 的值域.解 y =⎩⎪⎨⎪⎧-7,x ∈(-∞,-2],2x -3,x ∈(-2,5],7,x ∈(5,+∞). 值域为y ∈[-7,7].图象如右图.课堂小结1.对分段函数的理解(1)分段函数是一个函数而非几个函数.分段函数的定义域是各段上“定义域”的并集,其值域是各段上“值域”的并集.(2)分段函数的图象应分段来作,特别注意各段的自变量取值区间端点处函数的取值情况,以决定这些点的虚实情况.2.函数与映射的关系映射f:A→B,其中A、B是两个“非空集合”,而函数y=f(x),x∈A为“非空的实数集”,其值域也是实数集.于是,函数是数集到数集的映射.由此可知,映射是函数的推广,函数是一种特殊的映射.。
教学:高一数学人教A版必修一教案:1.2.2 映射 Word版含答案

课题:§1.2.2映射教学目的:(1)了解映射的概念及表示方法,了解象、原象的概念;(2)结合简单的对应图示,了解一一映射的概念.教学重点:映射的概念.教学难点:映射的概念.教学过程:一、引入课题复习初中已经遇到过的对应:1.对于任何一个实数a,数轴上都有唯一的点P和它对应;2.对于坐标平面内任何一个点A,都有唯一的有序实数对(x,y)和它对应;3.对于任意一个三角形,都有唯一确定的面积和它对应;4.某影院的某场电影的每一张电影票有唯一确定的座位与它对应;5.函数的概念.二、新课教学1.我们已经知道,函数是建立在两个非空数集间的一种对应,若将其中的条件“非空数集”弱化为“任意两个非空集合”,按照某种法则可以建立起更为普通的元素之间的对应关系,这种的对应就叫映射(mapping)(板书课题).2.先看几个例子,两个集合A、B的元素之间的一些对应关系(1)开平方;(2)求正弦(3)求平方;(4)乘以2;3.什么叫做映射?一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A 中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B 为从集合A到集合B的一个映射(mapping).记作“f:A→B”说明:(1)这两个集合有先后顺序,A到B的射与B到A的映射是截然不同的.其中f表示具体的对应法则,可以用汉字叙述.(2)“都有唯一”什么意思?包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思。
4.例题分析:下列哪些对应是从集合A到集合B的映射?(1)A={P | P是数轴上的点},B=R,对应关系f:数轴上的点与它所代表的实数对应;(2)A={ P | P是平面直角体系中的点},B={(x,y)| x∈R,y∈R},对应关系f:平面直角体系中的点与它的坐标对应;(3)A={三角形},B={x | x是圆},对应关系f:每一个三角形都对应它的内切圆;(4)A={x | x是新华中学的班级},B={x | x是新华中学的学生},对应关系f:每一个班级都对应班里的学生.思考:将(3)中的对应关系f改为:每一个圆都对应它的内接三角形;(4)中的对应关系f 改为:每一个学生都对应他的班级,那么对应f:B→A是从集合B到集合A的映射吗?5.完成课本练习三、作业布置补充习题以下为赠送文档:选修4_5 不等式选讲课 题: 第01课时 不等式的基本性质目的要求:重点难点:教学过程:一、引入:不等关系是自然界中存在着的基本数学关系。
高一数学 人教A版必修1 1-2 函数的表示法、分段函数与映射 课件

随堂达标自测
1.y 与 x 成反比,且当 x=2 时,y=1,则 y 关于 x 的
函数关系式为( )
A.y=1x
B.y=-1x
C.y=2x
D.y=-2x
解析 设 y=kx(k≠0),则 1=2k,∴k=2,∴y=2x.
2.已知函数 f(x)=xx+ 2+11,,xx∈∈[-0,1,1]0,], 则函数 f(x) 的图象是( )
c=1,
意得a+b+c=2, 4a+2b+c=5,
a=1,
Байду номын сангаас
解得b=0, c=1,
故 f(x)=x2+1.
探究3 换元法(或配凑法)、方程组法求函数解析式 例 3 (1)已知函数 f(x+1)=x2-2x,求 f(x)的解析式; (2)已知函数 y=f(x)满足 f(x)+2f1x=x,求函数 y=f(x) 的解析式.
解析 当 x=-1 时,y=0,即图象过点(-1,0),D 错; 当 x=0 时,y=1,即图象过点(0,1),C 错;当 x=1 时,y =2,即图象过点(1,2),B 错.故选 A.
3.某种茶杯,每个 2.5 元,把买茶杯的钱数 y(元)表示 为茶杯个数 x(个)的函数,则 y 与 x 的函数关系式为 ____y_=__2_._5_x_,__x_∈__N_*_____.
(2)把已知条件代入解析式,列出关于待定系数的方程 或方程组.
(3)解方程或方程组,得到待定系数的值. (4)将所求待定系数的值代回所设解析式.
【跟踪训练 2】 (1)已知函数 f(x)=x2,g(x)为一次函数, 且一次项系数大于零,若 f[g(x)]=4x2-20x+25,求 g(x)的 表达式;
1.判一判(正确的打“√”,错误的打“×”) (1)任何一个函数都可以用列表法表示.( × ) (2)任何一个函数都可以用解析法表示.( × ) (3) 函 数 的 图 象 一 定 是 定 义 区 间 上 一 条 连 续 不 断 的 曲 线.( × )
人教A版数学必修一1.2.2第2课时分段函数、映射

点击进入WORD链接
谢谢观看!
(2)对含有绝对值的函数,要作出其图象,首先根据绝对值 的意义去掉绝对值符号,将函数转化为分段函数来画图象.
2.已知函数 f(x)=1+|x|-2 x(-2<x≤2). (1)用分段函数的形式表示该函数; (2)画出该函数的图象; (3)写出该函数的值域.
解:(1)当 0≤x≤2 时,f(x)=1+x-2 x=1,
解:(1)f-12=-12+2=32, ∴ff-12=f32=322=94, ∴fff-12=f94=12×94=98. (2)当 f(x)=x+2=2 时,x=0, 不符合 x<0. 当 f(x)=x2=2 时,x=± 2,其中 x= 2符合 0≤x<2. 当 f(x)=12x=2 时,x=4,符合 x≥2. 综上,x 的值是 2或 4.
分段函数
(1)分段函数是一个函数而非几个函数,只不过在定义域的 不同子集内解析式不一样.
(2)分段函数的定义域是各段“定义域”的并集,其值域是 各段“值域”的并集.
x+2x<0, 已知函数 f(x)=x20≤x<2,
12xx≥2.
(1)求 fff-12值; (2)若 f(x)=2,求 x 的值. 【思路点拨】分段考虑求值即可. (1)先求 f-12,再求 ff-12,最后求 fff-12; (2)分别令 x+2=2,x2=2,12x=2,分段验证求 x.
【思路点拨】解答本题可由映射的概念出发,观察A中任何 一个元素在B中是否都有唯一的元素与之对应.
解:(1)由于A中元素3在对应关系f作用下其与3的差的绝对 值为0,而0∉B,故不是映射.
(2)因为一个圆有无数个内接矩形,即集合A中任何一个元素 在集合B中有无数个元素与之对应,故不是映射.
(3)对 A 中任何一个元素,按照对应关系 f,在 B 中都有唯一 元素与之对应,符合映射定义,是映射.
数学新课标人教A版必修1教学课件:1.2.2.2第2课时 分段函数及映射

栏目导引
1.分段函数 如果函数y=f(x),x∈A,根据自变量x在A中不 同的取值范围,有着不同的_对__应__关___系_,则称这 样 的函数为分段函数. 2.映射 设 A、B是两个_非__空__的集合,如果按某一个确 定的对应 关 系f,使对于集合A中的任__意__一__个__元 素x,在集合B中都有_唯__一__确__定__的元素y与之对 应 ,那么就称对应f_:__A_→__B_为 从集合A到集合B 的一个映射.
必修1 第一章 集合与函数的概念
栏目导引
解析: A、B项中集合A中的元素0在集合B中 没有元素与之对应,C项中集合A中的元素1在 集合B中没有元素与之对应,故选D. 答案: D
栏目导引
解析:
必修1 第一章 集合与函数的概念
栏目导引
(1)利用描点法,作出f(x)的图象,如图所示. (2)由条件知, 函数f(x)的定义域为R. 由图象知,当-1≤x≤1时 f(x)=x2的值域为[0,1], 当x>1或x<-1时, f(x)=1,所以f(x)的值域为[0,1].
必修1 第一章 集合与函数的概念
必修1 第一章 集合与函数的概念
栏目导引
解析: (1)此函数图象是直线y=x的一部分.
必修1 第一章 集合与函数的概念
栏目导引
(2)此函数的定义域为{-2,-1,0,1,2},所以 其图象由五个点组成,这些点都在直线y=1- x上.(这样的点叫做整点)
必修1 第一章 集合与函数的概念
栏目导引
必修1 第一章 集合与函数的概念
栏目导引
④ 不是 ⑤ 不是 ⑥ 不是 答案: A
是一对多,不满足对应 元素 唯一性.
是一对多,不满足对应 元素 唯一性.
a3,a4无对应 元素、不满足 取元任意性.
新人教版必修一数学分段函数及映射

2
22
24
4
【延伸探究】 1.(改变问法)本例条件不变,若f(a)=3,求实数a的值.
【解析】①当a≤-2时,f(a)=a+1, 所以a+1=3,所以a=2>-2不合题意,舍去. ②当-2<a<2时,a2+2a=3, 即a2+2a-3=0. 所以(a-1)(a+3)=0,所以a=1或a=-3. 因为1∈(-2,2),-3∉(-2,2), 所以a=1符合题意. ③当a≥2时,2a-1=3,所以a=2符合题意. 综合①②③,当f(a)=3时,a=1或a=2.
5.已知函数f(x)= 0x,2,xx0,0,则f(2)+f(-2)=
.
【解析】f(2)+f(-2)=0+(-2)2=4.
答案:4
【知识探究】 知识点1 分段函数 观察如图所示内容,回答下列问题:
问题1:画分段函数的图象应注意什么? 问题2:分段函数的定义域、值域各有什么特点?
【总结提升】 对分段函数的四点说明 (1)研究分段函数的性质时,应根据“先分后合”的原则,尤其是在作 分段函数的图象时,可先将各段的图象分别画出来,从而得到整个函数 的图象.应特别注意各段图象端点是用实心点还是空心点表示. (2)分段函数的定义域是各段“定义域”的并集,其值域是各段“值域” 的并集.写定义域时,区间端点需不重不漏.
2.选C.
由题意得
x+2y 2x y
1,解得 1,
x y
3, 5 1. 5
即B中的元素(1,1)对应A中的元素 (3,1).
55
【方法技巧】 1.判断一个对应是不是映射的两个关键 (1)对于A中的任意一个元素,在B中是否有元素与之对应. (2)B中的对应元素是不是唯一的. 提醒:“一对一”或“多对一”的对应才可能是映射.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时 分段函数及映射[学习目标] 1.掌握简单的分段函数,并能简单应用.2.了解映射概念及它与函数的联系.[知识链接]1.函数的定义:设A ,B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =f (x ),x ∈A .2.作函数的图象通常分三步,即列表、描点、连线. [预习导引] 1.分段函数在函数的定义域内,对于自变量x 的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数. 2.映射的概念映射的定义:设A 、B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射.要点一 分段函数求值例1 已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤-2,x 2+2x ,-2<x <2,2x -1,x ≥2.(1)求f (-5),f (-3),f [f (-52)]的值;(2)若f (a )=3,求实数a 的值.解 (1)由-5∈(-∞,-2],-3∈(-2,2), -52∈(-∞,-2],知f (-5)=-5+1=-4, f (-3)=(-3)2+2(-3)=3-2 3.∵f ⎝⎛⎭⎫-52=-52+1=-32,而-2<-32<2, ∴f [f (-52)]=f ⎝⎛⎭⎫-32=⎝⎛⎭⎫-322+2×⎝⎛⎭⎫-32=94-3=-34. (2)当a ≤-2时,a +1=3, 即a =2>-2,不合题意,舍去.当-2<a <2时,a 2+2a =3,即a 2+2a -3=0. 所以(a -1)(a +3)=0,得a =1,或a =-3. ∵1∈(-2,2),-3∉(-2,2),∴a =1符合题意. 当a ≥2时,2a -1=3,即a =2符合题意. 综上可得,当f (a )=3时,a =1,或a =2.规律方法 1.分段函数求值,一定要注意所给自变量的值所在的范围,代入相应的解析式求值. 2.已知分段函数的函数值求相对应的自变量的值,可分段利用函数解析式求得自变量的值,但应注意检验分段解析式的适用范围;也可先判断每一段上的函数值的范围,确定解析式再求解. 跟踪演练1 已知函数f (x )=⎩⎪⎨⎪⎧1x +1,x <1,x -1,x >1,则f (2)等于( )A .0 B.13 C .1 D .2答案 C 解析 f (2)=2-1=1.要点二 分段函数的图象及应用例2 已知f (x )=⎩⎪⎨⎪⎧x 2 (-1≤x ≤1),1 (x >1或x <-1),(1)画出f (x )的图象; (2)求f (x )的定义域和值域.解 (1)利用描点法,作出f (x )的图象,如图所示.(2)由条件知,函数f (x )的定义域为R .由图象知,当-1≤x≤1时,f(x)=x2的值域为[0,1],当x>1或x<-1时,f(x)=1,所以f(x)的值域为[0,1].规律方法 1.分段函数的解析式因其特点可以分成两个或两个以上的不同解析式,所以它的图象也由几部分构成,有的可以是光滑的曲线段,有的也可以是一些孤立的点或几段线段或射线,而分段函数的定义域与值域的最好求法也是“图象法”.2.对含有绝对值的函数,要作出其图象,首先根据绝对值的意义去掉绝对值符号,将函数转化为分段函数来画图象.3.画分段函数图象时还要注意端点是“实心点”还是“空心点”.跟踪演练2作出y=错误!的图象,并求y的值域.解y=错误!值域为y∈[-7,7].图象如下图.要点三映射的概念例3以下给出的对应是不是从集合A到集合B的映射?(1)集合A={P|P是数轴上的点},集合B=R,对应关系f:数轴上的点与它所代表的实数对应;(2)集合A={P|P是平面直角坐标系中的点},集合B={(x,y)|x∈R,y∈R},对应关系f:平面直角坐标系中的点与它的坐标对应;(3)集合A={x|x是三角形},集合B={x|x是圆},对应关系f:每一个三角形都对应它的内切圆;(4)集合A={x|x是新华中学的班级},集合B={x|x是新华中学的学生},对应关系f:每一个班级都对应班里的学生.解(1)按照建立数轴的方法可知,数轴上的任意一个点,都有唯一的实数与之对应,所以这个对应f:A→B是从集合A到集合B的一个映射.(2)按照建立平面直角坐标系的方法可知,平面直角坐标系中的任意一个点,都有唯一的一个实数对与之对应,所以这个对应f:A→B是从集合A到集合B的一个映射.(3)由于每一个三角形只有一个内切圆与之对应,所以这个对应f :A →B 是从集合A 到集合B 的一个映射.(4)新华中学的每一个班级里的学生都不止一个,即与一个班级对应的学生不止一个,所以这个对应f :A →B 不是从集合A 到集合B 的一个映射.规律方法 映射是一种特殊的对应,它具有:(1)方向性:映射是有次序的,一般地从A 到B 的映射与从B 到A 的映射是不同的;(2)唯一性:集合A 中的任意一个元素在集合B 中都有唯一元素关系,可以是:一对一,多对一,但不能一对多.跟踪演练3 下列对应是从集合M 到集合N 的映射的是( )①M =N =R ,f :x →y =1x ,x ∈M ,y ∈N ;②M =N =R ,f :x →y =x 2,x ∈M ,y ∈N ;③M =N =R ,f :x →y =1|x |+x ,x ∈M ,y ∈N ;④M =N =R ,f :x →y =x 3,x ∈M ,y ∈N .A .①②B .②③C .①④D .②④ 答案 D解析 对于①,集合M 中的元素0在N 中无元素与之对应,所以①不是映射.对于③,M 中的元素0及负实数在N 中没有元素与之对应,所以③不是映射.对于②④,M 中的元素在N 中都有唯一的元素与之对应,所以②④是映射.故选D.1.下列集合A 到集合B 的对应中,构成映射的是( )答案 D解析 在A 、B 选项中,由于集合A 中的元素2在集合B 中没有对应的元素,故构不成映射,在C 选项中,集合A 中的元素1在集合B 中的对应元素不唯一,故构不成映射,只有选项D 符合映射的定义,故选D.2.函数y =|x |的图象是( )答案 B解析 ∵y =|x |=⎩⎪⎨⎪⎧x ,x ≥0,-x ,x <0,∴B 选项正确.3.设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤12x ,x >1,则f (f (3))等于( )A.15 B .3 C.23 D.139 答案 D解析 ∵f (3)=23,∴f (f (3))=⎝⎛⎭⎫232+1=139. 4.设函数f (x )=⎩⎪⎨⎪⎧-x ,x ≤0,x 2,x >0. 若f (α)=4,则实数α等于( )A .-4或-2B .-4或2C .-2或4D .-2或2 答案 B解析 当α≤0时,f (α)=-α=4,∴α=-4; 当α>0时,f (α)=α2=4,∴α=2或-2(舍去).5.某客运公司确定车票价格的方法是:如果行程不超过100千米,票价是每千米0.5元;如果超过100千米,超过部分按每千米0.4元定价,则客运票价y (元)与行程x (千米)之间的函数关系式是________.答案 y =⎩⎪⎨⎪⎧0.5x ,0≤x ≤10010+0.4x ,x >100解析 由题意得,当0≤x ≤100时,y =0.5x ;当x >100时y =100×0.5+(x -100)×0.4=10+0.4x .1.对映射的定义,应注意以下几点:(1)集合A 和B 必须是非空集合,它们可以是数集、点集,也可以是其他集合. (2)映射是一种特殊的对应,对应关系可以用图示或文字描述的方法来表达. 2.理解分段函数应注意的问题:(1)分段函数是一个函数,其定义域是各段“定义域”的并集,其值域是各段“值域”的并集.写定义域时,区间的端点需不重不漏.(2)求分段函数的函数值时,自变量的取值属于哪一段,就用哪一段的解析式.(3)研究分段函数时,应根据“先分后合”的原则,尤其是作分段函数的图象时,可先将各段的图象分别画出来,从而得到整个函数的图象.一、基础达标 1.以下几个论断①从映射角度看,函数是其定义域到值域的映射; ②函数y =x -1,x ∈Z 且x ∈(-3,3]的图象是一条线段;③分段函数的定义域是各段定义域的并集,值域是各段值域的并集; ④若D 1,D 2分别是分段函数的两个不同对应关系的值域,则D 1∩D 2=∅. 其中正确的论断有( )A .0个B .1个C .2个D .3个 答案 C解析 函数是特殊的映射,所以①正确;②中的定义域为{-2,-1,0,1,2,3},它的图象是直线y =x -1上的六个孤立的点;因此②不正确;由分段函数的概念可知③正确,④不正确.2.已知f (x )=⎩⎪⎨⎪⎧10,x <0,10x ,x ≥0,则f [f (-7)]的值为( )A .100B .10C .-10D .-100 答案 A解析 ∵f (x )=⎩⎪⎨⎪⎧10,x <0,10x ,x ≥0, ∴f (-7)=10.f [f (-7)]=f (10)=10×10=100. 3.函数f (x )=x +|x |x的图象是( )答案 C解析 f (x )=⎩⎪⎨⎪⎧x +1,x >0,x -1,x <0,画出f (x )的图象可知选C.4.已知集合A 中元素(x ,y )在映射f 下对应B 中元素(x +y ,x -y ),则B 中元素(4,-2)在A 中对应的元素为( ) A .(1,3) B .(1,6) C .(2,4) D .(2,6) 答案 A解析 由题意得⎩⎪⎨⎪⎧ x +y =4,x -y =-2, 解得⎩⎪⎨⎪⎧x =1,y =3.5.设f :x →ax -1为从集合A 到B 的映射,若f (2)=3,则f (3)=________. 答案 5解析 由f (2)=3,可知2a -1=3,∴a =2, ∴f (3)=3a -1=3×2-1=5.6.函数f (x )=⎩⎪⎨⎪⎧x 2+1(x ≥0),2-x (-2≤x <0)的值域是________.答案 [1,+∞)解析 当x ≥0时,f (x )≥1, 当-2≤x <0时,2<f (x )≤4,∴f (x )≥1或2<f (x )≤4,即f (x )的值域为[1,+∞).7.已知函数f (x )=⎩⎪⎨⎪⎧x 2-4,0≤x ≤2,2x ,x >2.(1)求f (2),f [f (2)]的值; (2)若f (x 0)=8,求x 0的值.解 (1)∵0≤x ≤2时,f (x )=x 2-4, ∴f (2)=22-4=0, f [f (2)]=f (0)=02-4=-4. (2)当0≤x 0≤2时, 由x 20-4=8, 得x 0=±23(舍去);当x 0>2时,由2x 0=8,得x 0=4. ∴x 0=4. 二、能力提升8.已知f (x )=⎩⎪⎨⎪⎧x -5,x ≥6,f (x +2), x <6,则f (3)为( )A .2B .3C .4D .5 答案 A解析 f (3)=f (3+2)=f (5), f (5)=f (5+2)=f (7), ∴f (7)=7-5=2.故f (3)=2.9.已知函数f (x )的图象是两条线段(如图所示,不含端点),则f [f ⎝⎛⎭⎫13]等于( )A .-13 B.13C .-23 D.23答案 B解析 由图可知,函数f (x )的解析式为f (x )=⎩⎪⎨⎪⎧x -1,0<x <1,x +1,-1<x <0,∴f ⎝⎛⎭⎫13=13-1=-23,∴f [f ⎝⎛⎭⎫13]=f ⎝⎛⎭⎫-23=-23+1=13. 10.设函数f (x )=⎩⎪⎨⎪⎧1-x 2,x ≤1,x 2+x -2,x >1, 则f ⎝⎛⎭⎫1f (2)的值是________.答案1516解析 f (2)=22+2-2=4,∴1f (2)=14,∴f ⎝⎛⎭⎫1f (2)=f ⎝⎛⎭⎫14=1-⎝⎛⎭⎫142=1516. 11.已知函数y =|x -1|+|x +2|. (1)作出函数的图象; (2)写出函数的定义域和值域.解 (1)首先考虑去掉解析式中的绝对值符号,第一个绝对值的分段点x =1,第二个绝对值的分段点x =-2,这样数轴被分为三部分:(-∞,-2],(-2,1],(1,+∞), 所以已知函数可写为分段函数形式: y =|x -1|+|x +2| =⎩⎪⎨⎪⎧-2x -1 (x ≤-2),3 (-2<x ≤1),2x +1 (x >1).在相应的x 取值范围内,分别作出相应函数的图象,即为所求函数的图象,如图.(2)根据函数的图象可知:函数的定义域为R ,值域为[3,+∞). 三、探究与创新12.“水”这个曾经被人认为取之不尽,用之不竭的资源,竟然到了严重制约我国经济发展,严重影响人民生活的程度.因为缺水,每年给我国工业造成的损失达2 000亿元,给我国农业造成的损失达1 500亿元,严重缺水困扰全国三分之二的城市.为了节约用水,某市打算出台一项水费政策,规定每季度每人用水量不超过5吨时,每吨水费1.2元,若超过5吨而不超过6吨时,超过的部分的水费按原价的200%收费,若超过6吨而不超过7吨时,超过部分的水费按原价的400%收费,如果某人本季度实际用水量为x(x≤7)吨,试计算本季度他应交的水费y(单位:元).解由题意知,当0<x≤5时,y=1.2x,当5<x≤6时,y=1.2×5+(x-5)×1.2×2=2.4x-6.当6<x≤7时,y=1.2×5+(6-5)×1.2×2+(x-6)×1.2×4=4.8x-20.4.所以y=⎩⎪⎨⎪⎧1.2x,0<x≤5,2.4x-6,5<x≤6,4.8x-20.4,6<x≤7.13.如图所示,在边长为4的正方形ABCD边上有一点P,由点B(起点)沿着折线BCDA,向点A(终点)运动.设点P运动的路程为x,△APB的面积为y,求y与x之间的函数解析式.解当0≤x≤4时,S△APB=12×4x=2x;当4<x≤8时,S△APB=12×4×4=8;当8<x≤12时,S△APB=12×4×(12-x)=24-2x.∴y=⎩⎪⎨⎪⎧2x(0≤x≤4),8 (4<x≤8),24-2x(8<x≤12).。