曲柄连杆机构课程设计

合集下载

曲柄连杆机构设计

曲柄连杆机构设计

活塞和连杆小头 ➢ 往复直线运动,速度高、不断变化 ➢ 上止点下止点,速度变化规律:
零增大最大(临近中间)减小零 活塞向下运动:
前半行程加速运动,惯性力向上,Fj; 后半行程减速运动,惯性力向下,F’j 活塞向上运动:
前半行程惯性力向下 后半行程惯性力向上
往复惯性力与离心力 Parts inertia and centrifugal force
设在前端。 2. 止推轴承设置在后端则可以避免曲轴各曲拐承受功率消耗者的轴向推
力的作用。 3. 从降低曲轴和机体加工尺寸链精度要求出发,也可设在曲轴中央。
11、曲轴的油封装置
发动机工作时,为了防止曲轴前后端沿着轴向漏油,曲轴应有油封装置。在高 速内燃机上采用的油封结构都是组合式的,常用的有: 1)甩油盘和反油螺纹; 2)甩油盘和填料(石棉绳)油封; 3)甩油盘和橡胶骨架式油封;
螺钉可能承受剪切力,要设计定位凸台或定位齿。
8、油孔的位置和尺寸
将润滑油输送到曲轴油道中去的供油方法有两种: ①集中供油 ②分路供油 ①润滑油一般从机体上的主轴油道通过主轴承的上轴瓦引入。因为上轴瓦仅承受惯性 力的作用,比下轴瓦受力要低一些。 ②从主轴颈向曲柄销供油一般采用斜油道。直的斜油道结构最简单,但有两个主要缺 点:一是油道位于曲拐平面内,油道出口处应力集中现象严重。二是斜油道相对轴承 摩擦面是倾斜的,润滑油中的杂质受离心力的作用总是冲向轴承的一边。
1.、曲轴的工作情况、设计要求 曲轴是内燃机中价格最贵的重要零件。曲轴的成本大致占整机成本的
1/10 。 曲轴承受着不断周期性变化的缸内气体作用力、往复惯性力和旋转惯性
力引起的周期性变化的弯曲和扭转负荷。 曲轴还可能承受扭转振动引起的附加扭转应力 。 曲轴最常见的损坏原因是弯曲疲劳。所以,保证曲轴有足够的疲劳强度

汽车发动机曲柄连杆机构教案

汽车发动机曲柄连杆机构教案

曲柄连杆机构构造任务一机体组学习目标1.掌握曲轴连杆机构作用与结构2.掌握机体组的结构。

3.掌握机体组组成部分的作用1.曲柄连杆机构功用:曲柄连杆机构是内燃机实现工作循环,完成能量转换的传动机构,用来传递力和改变运动方式。

工作中,曲柄连杆机构在作功行程中把活塞的往复运动转变成曲轴的旋转运动,对外输出动力,而在其他三个行程中,即进气、压缩、排气行程中又把曲轴的旋转运动转变成活塞的往复直线运动。

总的来说曲柄连杆机构主要是发动机借以产生并传递动力的机构。

通过它把燃料燃烧后发出的热能转变为机械能。

工作条件,发动机工作时,曲柄连杆机构直接与高温高压气体接触,曲轴的旋转速度又很高,活塞往复运动的速度相当大,同时与可燃混合气和燃烧废气接触,曲柄连杆机构还受到化学腐蚀作用,并且润滑困难。

可见,曲柄连杆机构的工作条件相当恶劣,它要承受高温、高压、高速和化学腐蚀。

2.曲柄连杆机构组成曲柄连杆机构的主要零件可以分为三部分,机体组、活塞连杆组和曲轴飞轮组等组成。

曲柄连杆机构3.机体组机体组是构成发动机的重要组成部分,是发动机各机构和各系统的安装基础,其内、外安装着发动机的所有主要零件和附件,承受各种载荷。

因此,机体必须要有足够的强度和刚度。

机体组主要由气缸体、曲轴箱、气缸盖和气缸垫、油底壳等零件组成。

机体组1)气缸体水冷发动机的气缸体和上曲轴箱常铸成一体,称为气缸体或曲轴箱。

按照气缸体的制造材料,可将气缸体分为铸铁气缸体和铝合金气缸体。

铝合金气缸体具有散热好、质量轻等优点被现代轿车发动机广泛采用。

气缸体上部的圆柱形空腔为气缸,气缸是活塞在起内部作往复运动的圆通状零件。

气缸体下半部为支承曲轴的曲轴箱,其内腔为曲轴运动的空间。

在气缸体内部铸有许多加强筋,冷却水套和润滑油道等。

气缸体应具有良好的刚性(不易变形和弯曲),即足够的强度和刚度,噪声、震动小,良好的冷却性能,输出功率髙时热传导性好。

良好的耐磨性能,即使活塞在高速运动的状态下也不会产生磨损。

汽油机曲柄连杆机构设计—连杆

汽油机曲柄连杆机构设计—连杆

4
沈阳理工大学课程设计说明书
4 理论分子变更系数μ0
0
M2 M1
0.506 =1.077 0.47
5 实际分子变更系数μ1
1
0 1r
r
1.077 0.06 =1.073 1 0.06
其中,γr——残余废气系数,γr = 0.04~0.10,取γr =0.06
3.2 换气过程计算
1 排气压力(气缸内废气压力)Pr
则 1+Vs/Vc=8.8
得 Vc=0.028 L
3 近似热计算
3.1 燃料燃烧热化学计算
1 理论空气量 L0
L0
1 gc 0.21 12
gH 4
gO 32
(3.1)
1 0.855 0.145 0.000 =0.512 (千摩尔/千克汽油)
0.21 12
4
32
燃料采用轻汽油 gc 0.855 , g H 0.145 , go 0.000
3.3 压缩过程计算
1 平均多变压缩指数 n1
n1=1.32~1.38
取 n1 =1.35
2 压缩过程中任意曲轴转角cx 时的压力 Pcx (画示功图时用)
Pcx
Pa
(Vca Vcx
)n1
(3.2)
( MPa )
5
沈阳理工大学课程设计说明书
其中:Vca——进气终点气缸容积。
Vca
Vs c c 1
D2S 4 c 1
指导教师:
专业负责人:
学院教学副院长:
2012 年 12 月 21 日 2012 年 12 月 21 日
2012 年 月 日
沈阳理工大学课程设计说明书
目录
1 汽油机设计参数---------------------------------------------------------------------------2 2 汽油机基本结构参数选用---------------------------------------------------------------3 3 近似热计算---------------------------------------------------------------------------------4 3.1 燃料燃烧热学计算---------------------------------------------------------------------4 3.2 换气过程计算---------------------------------------------------------------------------4 3.3 压缩过程计算---------------------------------------------------------------------------5 3.4 燃烧过程计算---------------------------------------------------------------------------6 3.5 膨胀过程计算---------------------------------------------------------------------------8 3.6 示功图绘制------------------------------------------------------------------------------9 3.7 汽油机性能指标计算-----------------------------------------------------------------10 4 连杆三维建模----------------------------------------------------------------------------11 4.1 连杆基本尺寸---------------------------------------------------------------------------11 4.2 连杆的建模过程------------------------------------------------------------------------11 4.3 连杆大头盖的建模过程---------------------------------------------------------------14 5 动力计算------------------------------------------------------------------------------------17 5.1 活塞位移、速度、加速度------------------------------------------------------------17 5.2 活塞连杆作用力分析------------------------------------------------------------------18 5.3 曲柄销载荷和连杆轴承载荷---------------------------------------------------------20 6 参考文献------------------------------------------------------------------------------------22 附录

3《汽车构造》电子教案曲柄连杆机构

3《汽车构造》电子教案曲柄连杆机构

3《汽车构造》电子教案-曲柄连杆机构教案章节一:曲柄连杆机构概述教学目标:1. 让学生了解曲柄连杆机构的作用和组成。

2. 让学生掌握曲柄连杆机构的工作原理。

教学内容:1. 曲柄连杆机构的作用:将往复直线运动转化为旋转运动,实现内燃机的做功。

2. 曲柄连杆机构的组成:曲轴、连杆、活塞、气缸、轴承等。

3. 曲柄连杆机构的工作原理:通过活塞在气缸内的往复直线运动,驱动连杆旋转,从而实现曲轴的旋转。

教学方法:1. 采用多媒体课件进行讲解,结合实物图片和动画演示。

2. 引导学生参与讨论,提问解答。

教学评价:1. 学生能准确描述曲柄连杆机构的作用和组成。

2. 学生能理解并解释曲柄连杆机构的工作原理。

教案章节二:曲轴的设计与制造教学目标:1. 让学生了解曲轴的设计要求和制造工艺。

2. 让学生掌握曲轴的结构特点和强度计算。

教学内容:1. 曲轴的设计要求:满足力学性能、耐磨性、疲劳强度等要求。

2. 曲轴的制造工艺:铸造、锻造、机械加工等。

3. 曲轴的结构特点:曲轴轴线、曲拐、曲柄等。

4. 曲轴的强度计算:扭转强度计算、弯曲强度计算。

教学方法:1. 采用多媒体课件进行讲解,结合图纸和实物图片。

2. 案例分析,让学生参与讨论。

教学评价:1. 学生能描述曲轴的设计要求和制造工艺。

2. 学生能分析曲轴的结构特点和强度计算。

教案章节三:连杆的设计与制造教学目标:1. 让学生了解连杆的设计要求和制造工艺。

2. 让学生掌握连杆的结构特点和强度计算。

教学内容:1. 连杆的设计要求:满足力学性能、耐磨性、疲劳强度等要求。

2. 连杆的制造工艺:铸造、锻造、机械加工等。

3. 连杆的结构特点:连杆小头、连杆大头、连杆身等。

4. 连杆的强度计算:扭转强度计算、弯曲强度计算。

教学方法:1. 采用多媒体课件进行讲解,结合图纸和实物图片。

2. 案例分析,让学生参与讨论。

教学评价:1. 学生能描述连杆的设计要求和制造工艺。

2. 学生能分析连杆的结构特点和强度计算。

曲柄连杆机构课程设计

曲柄连杆机构课程设计

黑龙江工程学院曲柄连杆机构课程设计汽车与交通工程学院车辆工程10-1班赵攀201011951黑龙江工程学院第1章绪论 (2)第2章活塞组的设计 (2)2.1 活塞的设计 (2)2.1.1 活塞头部的设计 (2)2.1.2 活塞裙部的设计 (3)2.2 活塞销的设计 (3)2.2.1 活塞销的结构 (3)第3章连杆组的设计 (3)3.1 连杆的设计 (3)3.1.1 连杆长度的确定 (3)3.1.2 连杆小头的结构设计 (3)3.1.3 连杆杆身的结构设计 (4)3.1.4 连杆大头的结构设计 (4)3.2 连杆螺栓的设计 (4)第4章曲轴的设计 (4)4.1 曲轴的结构型式和材料的选择 (4)4.1.1 曲轴的结构型式 (4)4.1.2 曲轴的材料 (5)4.2 曲轴的主要尺寸的确定和结构细节设计 (5)4.2.1 曲柄销的直径和长度 (5)4.2.2 主轴颈的直径和长度 (5)4.2.3 曲柄 (6)4.2.4 平衡重 (6)4.2.5 油孔的位置和尺寸 (6)4.2.6 曲轴两端的结构 (6)第5章曲柄连杆机构的创建 (7)6.2 活塞的创建 (7)6.3 连杆的创建 (7)6.4 曲轴的创建 (8)参考文献2黑龙江工程学院3第1章 绪 论曲柄连杆机构是发动机的传递运动和动力的机构,通过它把活塞的往复直线运动转变为曲轴的旋转运动而输出动力。

本文以捷达EA113汽油机的相关参数作为参考,对四缸汽油机的曲柄连杆机构的主要零部件进行了结构设计计算,并对曲柄连杆机构进行了有关运动学和动力学的理论分析与计算机仿真分析。

第2章 活塞组的设计2.1 活塞的设计2.1.1 活塞头部的设计1、压缩高度的确定压缩高度1H 是由火力岸高度1h 、环带高度2h 和上裙尺寸3h 构成的,即 1H =1h +2h +3h(1)第一环位置一般汽油机D h )12.0~06.0(1=,D 为活塞直径,该发动机的活塞标准直径mm D 80=确定火力岸高度为:mm D h 8801.01.01=⨯==(2)环带高度一般气环高mm b 5.2~5.1=,油环高mm b 5~2=。

kcsj曲柄课程设计

kcsj曲柄课程设计

kcsj曲柄课程设计一、课程目标知识目标:1. 让学生掌握曲柄的基本概念、构造和分类。

2.使学生了解曲柄在机构中的应用和作用。

3. 引导学生理解曲柄的运动规律和力学特性。

技能目标:1. 培养学生运用曲柄知识解决实际问题的能力。

2. 提高学生通过观察、实验和计算分析曲柄运动的能力。

3. 培养学生团队协作和沟通交流的能力。

情感态度价值观目标:1. 激发学生对机械原理和机构设计的兴趣,培养探索精神。

2. 培养学生严谨的科学态度和良好的工程意识。

3. 引导学生关注曲柄在生活中的应用,提高对科技创新的认识。

课程性质:本课程属于机械设计基础学科,通过曲柄课程设计,使学生掌握曲柄相关知识,提高解决实际问题的能力。

学生特点:学生已具备一定的机械基础知识,对曲柄有一定了解,但尚未深入探讨其应用和设计。

教学要求:结合学生特点,注重理论与实践相结合,提高学生的动手能力和创新能力。

通过课程目标分解,确保学生能够达到预定的学习成果,为后续教学设计和评估提供依据。

二、教学内容1. 曲柄的基本概念:介绍曲柄的定义、构成要素及其在机构中的作用。

参考教材章节:第三章第三节2. 曲柄的分类与构造:分析不同类型的曲柄及其构造特点,如单拐曲柄、双拐曲柄等。

参考教材章节:第三章第四节3. 曲柄的运动规律:讲解曲柄的运动特点、运动方程及运动规律。

参考教材章节:第四章第一节4. 曲柄的力学分析:探讨曲柄在运动过程中的力学特性,如受力分析、扭矩计算等。

参考教材章节:第四章第二节5. 曲柄的应用实例:分析曲柄在汽车、机械臂等实际工程中的应用案例。

参考教材章节:第五章6. 曲柄的设计方法:介绍曲柄的设计原则、步骤和计算方法。

参考教材章节:第六章教学内容安排与进度:第一课时:曲柄的基本概念、分类与构造第二课时:曲柄的运动规律第三课时:曲柄的力学分析第四课时:曲柄的应用实例第五课时:曲柄的设计方法三、教学方法1. 讲授法:通过生动的语言和形象的表达,讲解曲柄的基本概念、分类、运动规律和力学分析等理论知识,为学生奠定扎实的理论基础。

汽车设计课程设计计算说明书曲柄连杆机构受力分析

汽车设计课程设计计算说明书曲柄连杆机构受力分析

一、课程设计要求根据转速、缸内压力、曲柄连杆机构结构参数,计算发动机运转过程中曲柄连杆机构受力,完成计算报告,绘制曲柄连杆机构零件图。

1.1 计算要求掌握连杆往复惯性质量与旋转离心质量折算方法;掌握曲轴旋转离心质量折算方法;掌握活塞运动速度一阶、二阶分量计算方法;分析活塞侧向受力与往复惯性力及相应设计方案;分析连杆力及相应设计方案;采用C语言编写曲柄连杆机构受力分析计算程序;完成曲柄连杆机构受力计算说明书。

1.2 画图要求活塞侧向力随曲轴转角变化连杆对曲轴推力随曲轴转角变化连杆轴承受力随曲轴转角变化主轴承受力随曲轴转角变化活塞、连杆、曲轴零件图(任选其中两个)二、计算参数2.1 曲轴转角及缸内压力参数曲轴转速为7000 r/min,缸内压力曲线如图1所示。

图1 缸内压力曲线2.2发动机参数本计算过程中,对400汽油机进行运动和受力计算分析,发动机结构及运动参数如表1所示。

表1 发动机主要参数参数指标 发动机类型 汽油机 缸数 1 缸径D mm 91 冲程S mm 63 曲柄半径r mm 31.5 连杆长l mm 117 偏心距e mm 0 排量 mL 400 活塞组质量'm kg 0.425 连杆质量''m kg 0.46 曲轴旋转离心质量k m kg 0.231 标定功率及相应转速 kw/(r/min )17/7500 最高爆发压力 MPa5~6MPa三、计算内容和分析图3.1 运动分析 3.1.1曲轴运动近似认为曲轴作匀速转动,其转角,t t t n 37006070002602πππα=⋅==s rad s rad dt d /04.733/3700≈==παω3.1.2活塞运动规律图2 中心曲轴连杆机构简图1)活塞位移 111cos cos x r αβλλ⎡⎤⎛⎫⎛⎫=+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,其中()()⎥⎦⎤⎢⎣⎡-+-⋅=⎥⎦⎤⎢⎣⎡-+-≈⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+-⎪⎭⎫ ⎝⎛+≈-=-≈-=-==⋅=≈==t t r r x l r l r 04.733cos 14685.3104.733cos 15.31)2cos 1(4)cos 1(sin 2111cos 11)2cos 1(21sin sin 211)sin 1(sin 1cos sin sin /sin 27.01175.31/2222221222αλααλλαλαααλαλββαλαβλ又活塞位移曲线如图3所示图3 活塞位移曲线2)活塞速度 ⎪⎭⎫ ⎝⎛+==αλαω2sin 2sin r dt dx v()αλαωα2cos cos +=r d dv令0=αd dv, 有()01cos 2cos 2cos cos 2=-+=+αλααλα,︒≈⎥⎥⎦⎤⎢⎢⎣⎡-+⎪⎭⎫ ⎝⎛==-+84.6412141arccos 021cos 21cos 2max2λλααλα曲轴转角解得最大活塞速度时的即最大活塞速度 ⎪⎭⎫⎝⎛+=max max max 2sin 2sin αλαωr vsm s rad mm /86.2326.169sin 11725.3163.84sin /37005.31≈⎪⎭⎫⎝⎛︒⨯+︒⋅⨯=π平均活塞速度 s m r mm n r Sn v m /7.1430min/70005.31230230=⋅⋅=⋅==活塞速度曲线如图4所示图4 活塞速度曲线3)活塞加速度 ()αλαωαα2cos cos 2+=⋅==r dtd d dv dt dv j()αλαωα2sin 2sin 2+-=r d dj令0=αd dj,有 ()0cos 41sin cos sin 4sin 2sin 2sin =+=+=+αλαααλααλα,由0sin =α,即︒=0α或︒=180α时,得正、负最大加速度:),得第二>时(仅当,得当由418.175)41arccos(0cos 41/3.12356)1(,/6.21496)1(22180220λλααλλωλωαα ≈-='=+-≈--=≈+===s m r j s m r j个负最大加速度,即()αλαωα'+'='2cos cos 2r j()[]2222/4.12418811cos 2cos sm r r -≈⎪⎭⎫ ⎝⎛+-=-'+'=λλωαλαω 活塞加速度曲线如图5所示图5 活塞加速度曲线3.1.3连杆运动规律 1)连杆摆动角由αλβsin sin =,得()αλβsin arcsin = ()λβλβ-==arcsin arcsin min max2)连杆摆动角速度 dtd βω=1 αλαλωβαλωβωαλωββαλβ221sin 1cos cos cos cos cos sin sin -===⇒=⋅⇒=dt d dt d 3)连杆摆动角加速度 ⎪⎪⎭⎫⎝⎛-==αλαλωωε2211sin 1cos dt d dt d ()()232222sin 1sin 1αλαλλω---=3.2 受力分析 3.2.1 活塞气体力活塞气体力 ()h g g F p p P ⋅-=010 N其中:g p 缸内气体压力 bar (1bar=5101⨯pa);0p 大气压力 一般取0p =1bar ;04.65104911042222≈⨯⋅=⨯=--ππD F h cm 2活塞气体力曲线如图6所示图6 活塞气体力曲线3.2.2 往复惯性力往复运动质量 '''3.0m m m j ⋅+=,连杆质量—活塞组质量,—m m ''' 563.046.03.0425.0=⨯+= kg 往复惯性力 ()2cos cos2j j P m r ωαλα=-⋅⋅+⋅ 往复惯性力曲线如图7所示图7 往复惯性力曲线3.2.3 活塞侧压力及连杆力气体压力与往复惯性力作用在气缸中心线上,将往复惯性力用单位活塞面积的力计量,则合成的单位活塞面积的力为:()αλαω2cos cos 2+-=+=hj g j g F r m p p p pk t p p l n 、、、对曲轴连杆机构的作用如右图所示。

冲压机构曲柄连杆机构课程设计

冲压机构曲柄连杆机构课程设计

冲压机构曲柄连杆机构课程设计近年来,随着工业的不断发展和机械制造技术的进步,冲压机在现代制造业中扮演着越来越重要的角色。

而冲压机的核心部件——曲柄连杆机构,更是其实现高效、精密加工的关键。

对于冲压机构曲柄连杆机构的课程设计显得尤为重要。

在进行课程设计的过程中,首先需要全面评估曲柄连杆机构的结构和工作原理。

曲柄连杆机构是由曲柄、连杆和曲柄轴等部件组成的,通过这些部件之间的配合协作,将旋转运动转化为直线运动。

在课程中,应当深入浅出地介绍这些部件的功能和联系,让学生全面理解曲柄连杆机构的构成和工作原理。

在课程设计中需要充分考虑曲柄连杆机构在冲压机中的应用。

冲压机是一种广泛应用于金属加工领域的机械设备,而曲柄连杆机构则是其核心驱动部件。

课程设计应当结合实际案例,引导学生深入了解曲柄连杆机构在冲压机中的作用和重要性,包括在不同工艺条件下曲柄连杆机构的运动规律、受力特点等方面的应用。

在撰写课程设计文章时,需要对冲压机构曲柄连杆机构的相关理论知识进行总结和回顾性的阐述。

通过对该知识体系的梳理和总结,可以帮助学生全面、深刻地理解该主题,并在实际工程应用中灵活运用相关知识。

我个人认为在课程设计中,也可以结合一些实际案例或工程项目,来展示曲柄连杆机构在冲压机中的具体应用场景,这样能更好地帮助学生理解和掌握相关知识。

在冲压机构曲柄连杆机构的课程设计中,应当从简到繁,由浅入深地探讨该主题,让学生在学习过程中逐步理解和掌握相关知识。

也需要注重对实际应用的引导和讲解,以便学生将理论知识灵活运用到实际工程中。

通过这样一种课程设计的方式,可以更好地帮助学生全面、深刻地理解冲压机构曲柄连杆机构的相关知识,并为将来的工程实践奠定坚实的基础。

总结起来,对于冲压机构曲柄连杆机构的课程设计,应当重视其结构和工作原理、在冲压机中的应用、以及对相关理论知识的总结和回顾,以期帮助学生全面、深刻、灵活地理解和掌握相关知识。

也应充分展示个人对该主题的理解和观点,为学生提供更多的思考和启发。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

曲柄连杆机构课程
设计
目录
目录 (1)
第1章绪论 (3)
第2章活塞组的设计 (4)
2.1 活塞的设计 (4)
2.1.1 活塞的材料 (4)
2.1.2 活塞头部的设计 (4)
2.1.3 活塞裙部的设计 (5)
2.2 活塞销的设计 (5)
2.2.1 活塞销的结构 (5)
第3章连杆组的设计 (6)
3.1 连杆的设计 (6)
3.1.1 连杆材料的选用 (6)
3.1.2 连杆长度的确定 (6)
3.1.3 连杆小头的结构设计 (6)
3.1.4 连杆杆身的结构设计 (6)
3.1.5 连杆大头的结构设计 (6)
3.2 连杆螺栓的设计 (7)
第4章曲轴的设计 (8)
4.1 曲轴的结构型式和材料的选择 (8)
4.1.1 曲轴的结构型式 (8)
4.1.2 曲轴的材料 (8)
4.2 曲轴的主要尺寸的确定和结构细节设计 (8)
4.2.1 曲柄销的直径和长度 (8)
4.2.2 主轴颈的直径和长度 (9)
4.2.3 曲柄 (9)
4.2.4 平衡重 (9)
4.2.5 油孔的位置和尺寸 (10)
4.2.6 曲轴两端的结构 (10)
第5章曲柄连杆机构的创立 (11)
5.1 活塞的创立 (11)
5.2 连杆的创立 (11)
5.3 曲轴的创立 (11)
第六章曲柄连杆机构静力学分析 (13)
6.1 活塞的静力分析 (13)
6.2 连杆的静力分析 (13)
第1章绪论
曲柄连杆机构是发动机的传递运动和动力的机构,经过它把活塞的往复直线运动转变为曲轴的旋转运动而输出动力。

因此,曲柄连杆机构是发动机中主要的受力部件,其工作可靠性就决定了发动机工作的可靠性。

随着发动机强化指标的不断提高,机构的工作条件更加复杂。

在多种周期性变化载荷的作用下,如何在设计过程中保证机构具有足够的疲劳强度和刚度及良好的动静态力学特性成为曲柄连杆机构设计的关键性问题[1]。

经过设计,确定发动机曲柄连杆机构的总体结构和零部件结构,包括必要的结构尺寸确定、运动学和动力学分析、材料的选取等,以
满足实际生产的需要。

在传统的设计模式中,为了满足设计的需要须进行大量的数值计算,同时为了满足产品的使用性能,须进行强度、刚度、稳定性及可靠性等方面的设计和校核计算,同时要满足校核计算,还需要对曲柄连杆机构进行动力学分析。

为了真实全面地了解机构在实际运行工况下的力学特性,本文采用了多体动力学仿真技术,针对机构进行了实时的,高精度的动力学响应分析与计算,因此本研究所采用的高效、实时分析技术对提高分析精度,提高设计水平具有重要意义,而且能够更直观清晰地了解曲柄连杆机构在运行过程中的受力状态,便于进行精确计算,对进一步研究发动机的平衡与振动、发动机增压的改造等均有较为实用的应用价值。

本文以捷达EA113汽油机的相关参数作为参考,对四缸汽油机的曲柄连杆机构的主要零部件进行了结构设计计算,并对曲柄连杆机构进行了有关运动学和动力学的理论分析与计算机仿真分析。

相关文档
最新文档