最新二元一次方程组竞赛卷
二元一次方程组竞赛题集(答案 解析)

二元一次方程组典型例题【例1】已知方程组的解x,y满足方程5x-y=3,求k的值.【思考与分析】本题有三种解法,前两种为一般解法,后一种为巧解法.(1)由已知方程组消去k,得x与y的关系式,再与5x-y=3联立组成方程组求出x,y的值,最后将x,y的值代入方程组中任一方程即可求出k的值.(2)把k当做已知数,解方程组,再根据5x-y=3建立关于k的方程,便可求出k的值.(3)将方程组中的两个方程相加,得5x-y=2k+11,又知5x-y=3,所以整体代入即可求出k的值.把代入①,得,解得k=-4.解法二:①×3-②×2,得17y=k-22,解法三:①+②,得5x-y=2k+11.又由5x-y=3,得2k+11=3,解得k=-4.【小结】解题时我们要以一般解法为主,特殊方法虽然巧妙,但是不容易想到,有思考巧妙解法的时间,可能这道题我们已经用一般解法解了一半了,当然,巧妙解法很容易想到的话,那就应该用巧妙解二元一次方程组能力提升讲义知识提要1. 二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a 的解的情况有以下三种:① 当212121c c b b a a ==时,方程组有无数多解。
(∵两个方程等效) ② 当212121c c b b a a ≠=时,方程组无解。
(∵两个方程是矛盾的) ③ 当2121b b a a ≠(即a 1b 2-a 2b 1≠0)时,方程组有唯一的解: ⎪⎪⎩⎪⎪⎨⎧--=--=1221211212211221b a b a a c a c y b a b a b c b c x (这个解可用加减消元法求得)2. 方程的个数少于未知数的个数时,一般是不定解,即有无数多解,若要求整数解,可按二元一次方程整数解的求法进行。
3. 求方程组中的待定系数的取值,一般是求出方程组的解(把待定系数当己知数),再解含待定系数的不等式或加以讨论。
第五章二元一次方程组测试题.docx

第五章二元一次方程组5.1认识二元一次方程组基础导练1、在方程(T)5x-3y 4,②7x-∣y = 5, @4.0' + x-6y 0, (Sβχ-(y-2) -1,⑤x2+3,τ = 2,⑥5x」= 9,⑦四-XZl = IO中,是二元一次方程的有 __________ 、F 3 22、已知方程2√"γ产=3是关于*,y的二元一次方程,则/Ii=,n =、3、在(1) (2)仁:,(3) {:/中,是方程2x + y = 5 的解;是方程3κ-2y = 4的解:姥方程组广一广5的I3.v-2y≡4解、4、若[;:]是方程3χ+.=5的一个解,则a=、5、若A.1是方程组的解,则Qa= 、6、关于x、y的二元一次方程4x+3y=2()的所有非负整数解是、7、若一个二元一次方程的一个解为I"?则这个方程可以LV=T是、(只要求写出一个)8、把方程5Λ-37=6变形,用X表示y应为,用j,表示*应为、9、下列方程组属于二元一次方程组的是()10、若方程a*-3y=4x+5处二元一次方程,则a的取值范围处()A、aNo B > «≠ 3 C¼ a≠4D¼ a≠5IK以下各组中,是方程组F = 3'的解的是()A、尸:B、尸:C、D、12、小丽只带了2元和5元两种人民币,买了一件物品只付了27元,则付款的方法有()A、一种B、两种C、三种【)、四种能力提升13、已知2x÷5y-3=0,则代数式9—4χ-IOy=、14、若∣α-3∣与+ 互为相反数,则α + 3⅛ 、15、现有1角、5角、1元硬币各10枚,从中取出15枚,共值7元、1 角、5角、1元硬币分别取____________ 枚,枚,枚、16、若是方程5*+9y=0的解,且吁0,则()A、见〃同号B、见〃异号C、儡〃可能同号也可能异号D、无法确定17、方程x+2p=7在自然数范围内的解有()A、一个Bs二个C、三个D、四个18、某校初二(3)班40名同学为“希望工程”捐款,共捐款IOO元,捐款情况如下表:表格中捐款2元和3元的人数不小心被墨水污染已看不清楚,若设捐款2 元的有X名,捐款3元的有y名同学,根据题意,可得方程组()A j∙r + 2∙v = 27 B !*+「= 27 C 卜+ y = 27 D y + )∙ = 27■ ' [2x + 3y = 66 、∣2.r + 3y=IOO 八∣3κ + 22 = 66'13.T + 2y = IOO 19、已知方程S+3)ΛM Js-2)/"+竺=6是关于*, y的二元一次方程,求a, b, c的值、20.甲、乙两人共同解方程组]:::;::,;由于甲同学看错了方程①中X =-4的&得到方程组的解为 3 ,乙看错Γ方程②中的仇得到方程组的解),=—为{::9、请计算代数式叫产•的值、参考答案1、5Λ-3y=4, 7x-→∙=53x-(y-2)=l, —-2Ξ!=∣O2、m=-1, n=23、⑴ ⑶;⑵ ⑶:⑶4、15、-76、{;::;7、*-y=3(答案不唯一〉8、,-短刀9 9、B 10、Iy = O 3 5 5C 11、A 12、C 13.3 14、—3 15.5,7,3 16、B 17、D 18、A 19、a=3, b≈~2, C=O 20、-1、。
二元一次方程组培优竞赛测试题(2)

二元一次方程组测试题姓名: 得分:一、选择题(每小题3分,共30分):1、若二元一次方程组⎩⎨⎧=---=-043,1y nx y mx 的解中,y =0,则m ∶n 等于( ).(A)3∶4(B)-3∶4(C)-1∶4(D)-1∶122、已知x =3t +1,y =2t -1,用含x 的式子表示y ,其结果是( ).(A)31-=x y (B)21+=y x (C)352-=x y(D)312--=x y3、方程1132=+++--y x y x 的整数解的个数是( ). A .1个 B .2个 C .3个 D .4个4、方程组0ax by mx ny +=⎧⎨+=⎩有不等于零的解的条件是( )(A ) 0a ≠ (B )0b ≠ (C )am =bn (D )an =bm5、已知方程组 ||10||12x x y y x y ++=⎧⎨+-=⎩,则x+y 的值为()(A )185 (B )195 (C )4 (D )2156、已知:一等腰三角形的两边长x y 、满足方程组23328x y x y -=⎧⎨+=⎩,,则此等腰三角形的周长为( )A.5B.4C.3D.5或47、小龙和小刚两人玩“打弹珠”游戏,小龙对小刚说:“把你珠子的一半给我,我就有10颗珠子”.小刚却说:“只要把你的31给我,我就有10颗”,如果设小刚的弹珠数为x 颗,小龙的弹珠数为y 颗,则列出的方程组是( )A .⎩⎨⎧=+=+303202y x y xB .⎩⎨⎧=+=+103102y x y xC .⎩⎨⎧=+=+103202y x y xD .⎩⎨⎧=+=+303102y x y x8、如果⎩⎨⎧=-=21y x 是方程组⎩⎨⎧=-=+10cy bx by ax 的解,那么,下列各式中成立的是…( )(A )a +4c =2 (B )4a +c =2 (C )a +4c +2=0 (D )4a +c +2=09、若方程组⎪⎩⎪⎨⎧=+=+52243y bax y x 与⎪⎩⎪⎨⎧=-=-5243y x by x a 有相同的解,则a 、b 的值为( ) (A )2,3 (B )3,2 (C )2,-1 (D )-1,210、若2a +5b +4z =0,3a +b -7z =0,则a +b -c 的值是( )(A )0 (B )1 (C )2 (D )-1 选择题答题卡二、填空题(每小题3分,共15分)11、已知(k -2)x|k |-1-2y =1,则k ______ 时,它是二元一次方程;k =______ 时,它是一元一次方程.12、已知m 为正整数,二元一次方程组210320mx y x y +=⎧⎨-=⎩有整数解,即x 、y 均为整数,则2m =______.13、如图是由9个等边三角形拼成的六边形,若已知中间的小等边三角形的边长是1,则六边形 的周长是_________.14、某种商品价格为每件33元,某人身边只带有2元和5元两种面值的人民币各若干张,买了一件这种商品. 若无需找零钱,则他的付款方式有____ 种(指付出2元和5元钱的张数);付款方式付出的张数最少的是 ____ 张。
第五章二元一次方程组单元测试卷(原卷版)

第五章 二元一次方程组单元测试本试卷满分120分,试题共26题.答卷前,请认真读题!一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列方程中,是二元一次方程的是( ) A .y =3x ﹣1B .xy =1C .x +1y =2D .x+y+z =12.已知3x −y2=1,用含x 的式子表示y 下列正确的是( ) A .y =6x ﹣2 B .y =2﹣6xC .y =﹣1+3xD .y =−12−32x3.解方程组{2x +y =7①x −y =2②的最佳方法是( )A .代入法消去y ,由①得y =7﹣2xB .代入法消去x ,由②得x =y+2C .加减法消去y ,①+②得3x =9D .加减法消去x ,①﹣②×2得3y =34.若{x =2y =−1是二元一次方程mx+2y =4的解,则m 的值是( )A .3B .﹣3C .2D .﹣25.一次函数y =x+1和一次函数y =2x ﹣2的图象的交点坐标是(3,4),据此可知方程组{x −y =−12x −y =2的解为( ) A .{x =3y =4B .{x =4y =3C .{x =−3y =−4D .{x =−4y =−36.对于实数x ,y :规定一种运算:x △y =ax+by (a ,b 是常数).已知2△3=11,5△(﹣3)=10.则a ,b 的值为( ) A .a =3,b =35B .a =2,b =3C .a =3,b =53D .a =3,b =27.已知实数a ,b 满足:(a ﹣b+3)2+√a +b −1=0,则a 2022+b 6等于( ) A .65B .64C .63D .628.若二元一次方程组51cx ay x y -=⎧⎨+=⎩和23151x y ax by -=⎧⎨+=⎩解相同,则可通过解方程组( )求得这个解.A .151cx ay x y -=⎧⎨+=⎩B .51cx ay ax by -=⎧⎨+=⎩C .23151x y x y -=⎧⎨+=⎩D .23151x y ax by -=⎧⎨+=⎩9.在解方程组2574x y x y -=⎧⎨-=⎩●★时,小明由于粗心把系数●抄错了,得到的解是13103x y ⎧=-⎪⎪⎨⎪=-⎪⎩.小亮把常数★抄错了,得到的解是916x y =-⎧⎨=-⎩,则原方程组的正确解是( )A .11x y =⎧⎨=⎩B .11x y =-⎧⎨=⎩C .11x y =⎧⎨=-⎩D .12x y =⎧⎨=⎩10.同型号的甲、乙两辆车加满气体燃料后均可行驶210km ,它们各自单独行驶并返回的最远距离是105km .现在它们都从A 地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A 地,而乙车继续行驶,到B 地后再行驶返回A 地.则B 地最远可距离A 地( ) A .120kmB .140kmC .160kmD .180km二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.由方程组{x +m =−4y −3=m 可得x 与y 之间的关系式是 (用含x 的代数式表示y ).12.已知{x =ay =b 是二元一次方程4x ﹣7y =8的一个解,则代数式17﹣8a+14b 的值是 . 13.如果4a 2x ﹣3y b 4与−23a 3b x+y 是同类项,则xy = .14.已知直线y =x+b 和y =ax ﹣3交于点P (2,1),则关于x 的方程x+b =ax ﹣3的解为 . 15.二元一次方程组{x +y =52x −y =1的解为{x =2y =3,则一次函数y =5﹣x 与y =2x ﹣1的交点坐标为 .16.在关于m ,n 的方程()()284370m n m n λ+-++-=中,能使λ无论取何值时,方程恒成立的m ,n 的和为 .17.一次函数y =kx+b (k 、b 是常数)当自变量x 的取值为1≤x ≤5时,对应的函数值的范围为﹣2≤y ≤2,则此一次函数的解析式为 .18.如图,两个形状、大小完全相同的大长方形内放入五个如图③的小长方形后分别得到图①、图②,已知大长方形的长为a ,则图①中阴影部分的周长与图②中阴影部分的周长的差是______.(用含a 的式子表示)三、解答题(本大题共8小题,共66分.解答时应写出文字说明、证明过程或演算步骤) 19.(6分)解方程组:(1){2x −3y =54x −5y =7; (2){x+3y 2=355(x −2y)=−4.20.(6分)《九章算术》中有记载:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十,问甲、乙持钱各几何?大意是:今有甲、乙两人持钱不知有多少.若甲得到乙所有钱的12,则有50钱;若乙得到甲所有钱的23,则也有50钱,问甲、乙各持钱多少?请解答此问题.21.(6分)直线l 1:y =2x+1与直线l 2:y =mx+4相交于点P (1,b ). (1)求b 、m 的值,并结合图象求关于x 、y 的方程组{2x −y =−1mx −y =−4的解.(2)垂直于x 轴的直x =a 与直线l 1,l 2分别交于点C 、D ,若线段CD 的长为2,求a 的值.22.(6分)已知关于x ,y 的二元一次方程组 32129x y k x y +=+⎧⎨-=⎩的解互为相反数,求k 的值.23.(8分)如图,直线l 1:y =x+1与直线l 2:y =mx+n 相交于点P (1,b ). (1)求b 的值;(2)不解关于x 、y 的方程组{y =x +1y =mx +n ,请你直接写出它的解;(3)直线l 3:y =nx+m 是否也经过点P ?请说明理由.24.(10分)阅读材料:善于思考的小强同学在解方程组{2x +5y =3①4x +11y =5②时,采用了一种“整体代换”解法:解:将方程②变形:4x+10y+y =5,即2(2x+5y )+y =5…③,把方程①代入③得:2×3+y =5即y =﹣1,把y =﹣1代入方程①,得x =4,所以方程组的解为{x =4y =−1.请你解决以下问题(1)模仿小强同学的“整体代换”法解方程组{3x +4y =166x +9y =25;(2)已知x ,y 满足方程组{x 2+xy +3y 2=113x 2−5xy +9y 2=49;(i )求xy 的值;(ii )求出这个方程组的所有整数解.25.(12分)某商场计划用50000元从厂家购进60台新型电子产品,已知该厂家生产三种不同型号的电子产品,设甲、乙型设备应各买入x ,y 台,其中每台的价格、销售获利如下表:甲型 乙型 丙型 价格(元/台) 900 700 400 销售获利(元/台)20016090(1)购买丙型设备 60﹣x ﹣y 台(用含x ,y 的代数式表示);(2)若商场同时购进三种不同型号的电子产品(每种型号至少有一台),恰好用了50000元,则商场有哪几种购进方案?(3)在第(2)题的基础上,则应选择哪种购进方案,为使销售时获利最大?并求出这个最大值.26.(12分)已知点A (0,4)、C (﹣2,0)在直线l :y =kx+b 上,l 和函数y =﹣4x+a 的图象交于点B (1)求直线l 的表达式;(2)若点B 的横坐标是1,求关于x 、y 的方程组{y =kx +by =−4x +a 的解及a 的值.(3)若点A 关于x 轴的对称点为P ,求△PBC 的面积.。
二元一次方程组竞赛经典题集(修改)

二元一次方程组竞赛题集【点拨】含字母系数的一次方程组的解法和数字系数的方程组的解法相同,但注意求解时需要讨论字母系数的取值情况.对于x 、y 的方程组中,ai> bi 、Ci 、生、b2> C2均为已知数,且有一个不等于零,则①■' '/时,原方程组有惟一解;②②— p 1——时,原方程组有无穷多组解;③小〃x'J 时,原方程组无解.2 (1)有惟一一组解;(2)无解;(3)有无穷多组解?2、已知矢于乂,y 的方程组“、'⑺当a, b 满足什么条件时,方程组有唯一解,无解,有无数解? xy b3、已知方程组3X 47'2有无穷多个解,试求a 、b 的值。
9x ay b4、已知矢于x 、y 的二元一次方程(a — i ) x+( a+ 2) y -2 a+5= 0,当a 每取一个值时,都可得到一个方程'而这些方程有一与bi 、82与b2都至少6【例1】k 、b 为何值时,方程组y kx b (3k1)x个公共解,求这个公共解;并证明对于任何a 值‘它都能使方程成立。
5、若方程组aix by C ”” 口 xi4的解是7ax5by 9c 的解。
‘求方程组 7a 2x 5b 2y 9c 2若a 、c 、d 是整数,b 是正整数,且满足A . — iB . — 5 C. 0 D.4x 3y 6 有整数解,求m 的值6x my266z求2x:c c 的值7z 0x 2 5y 2 7z 26、 已知m 是整数,方程组4x 3y 7、口如 v\/-7 主 n n亠2y a+b=c, b+c=d , c+d=a 5 那么 a+b+c+d 的最大值是(拓展提咼:2玄4-3尸斤r1、已知方程组丨弘-4尸斤十M的解x, y满足方程5x-y二3,求k的值.\mx\-y~A-r①2、解方程组3、某种商品价格为每件3 3元,某人身边只带有2元和5元两种面值的人民币各若干张,买了一件这种商品.若无需找零钱,则付款方式有哪几种(指付出2元和5元钱的张数)?哪种付款方式付出的张数最少?4、某屮学新建了一栋4层的教学大楼,每层楼有8间教室,这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同•安全检查屮,对4道门进行了训练:当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生;当同时开启一道正门和一道侧门时,4分钟可以通过800名学生•(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况时因学生拥挤,出门的效率将降低20%.安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离.假设这栋教学大楼每间教室最多有45名学生,问:建造的这4道门是否符合安全规定?请说明理由.张强两次共购买香蕉50千克(第二次多于第一次),共付款264元,请问张强第一次、第二次分别购买香蕉多少千克?6、用如图1屮的长方形和正方形纸板做侧面和底面,做成如图2的竖式和横式两种无盖纸盒0张正方形纸板和2 000张长方形纸板,问两种纸盒各做多少个,恰好将库存的纸板用完?二元一次方程组竞赛题集(答案+解析)2卡+ 3 ;二斤「【例1】已知方程组的解x, y满足方程5x・y=3,求k的值.3x-4y=k+ll【思考与分析】本题有三种解法,前两种为一般解法,后一种为巧解法(1)由已知方程组消去k,得x与y的矢系式,再与5x・y=3联立组成方程组求出x, y的值,最后将x, y的值代入方程组中任一方程即可求出k的值.(2)把k当做已知数,解方程组,再根据5x-y=3 建立矢于k的方程,便可求出k的值.(3)将方程组中的两个方程相加,得5x-y=2k+11 ,又知5x-y=3,所以整体代入即可求出k的值.2即十了尸上F①L②5 x -7^=3.③打一込’得2片十3汽(一爷一)屯解得k=-4.解法一:②得x-7y=l[.®③电注「得34尸-52,解得尸-需■-把尸一等代入③「得弘十令-二蓟解得戈备艳法二:① X 3—(2)X2,得17y=k-22 ,把尸台孚代人①•得2用祖骨注,杷〃斗学-和尸苓-代人③,得〃号铲—上萨£解得匕二解法三:①+②,得5x-y=2k+U.又由5x-y二3,得2k+ll二3,解得k二-4.【小结】解题时我们要以一般解法为主,特殊方法虽然巧妙,这但是不容易想到,有思考巧妙解法的时间,可能道题我们已经用一般解法解了一半了,当然,巧妙解法很容易想到的话,那就应该用巧妙解法了.现在仓库里有10 0【例2】某种商品价格为每件3 3元,某人身边只带有2元和5元两种面值的人民币各若干张,买了一件这种商品.若无需找零钱,则付款方式有哪几种(指付出2元和5元钱的张数)?哪种付款方式付出的张数最少?【思考与分析】本题我们可以运用方程思想将此问题转化为方程来求解.我们先找出问题中的数量关系,再找出最主要的数量关系,构建等式.然后找出已知量和未知量设元,列方程组求解最后,比较各个解对应的x+y的值,即可知道哪种付款方式付岀的张数最少解:设付出2兀钱的张数为x,付出5兀钱的张数为y,则x, y 的取值均为自然数•依题意可得方程: 因为5y 个位上的数只可能是0或5,所以2x 个位上数应为3或8付出4张2元钱和5张5元钱;付出9张2元钱和3张5元钱;付出14张2元钱和1张5元钱.其中第一种付款方式付出的张数最少|皿“严4①【例3】解方程组丨岔柘尸&②【思考与分析】本例是一个含字母系数的方程组•解含字母系数的方程组同解含字母系数的方程一样,在方程两边同时乘以或除以字母表示的系数时,也需要弄清字母的取值是否为零 解:由①,得y 二4 — mx, 把③代入②,得2x+5 (4 — mx)二8,解得 (2 — 5m) x 二-i2,当 2— 5m 二 0,故当m A —时,原方程组的解为【小结】含字母系数的一次方程组的解法和数字系数的方程组的解法相同,但注意求解时需要讨论字母系数的取值情况.对于X 、y 的方程组中,加、bi 、Ci 、82、b2、C2均为已知数,且 与bi 、82与b?都至少有一个不等于零,则① 一产汁时,原方程组有惟一解;2x+5y=33. 又因为2 x 是偶数,所以2 x 个位上的数是&从而此方程的解为:浴二9,日4.y=5PFLs=9 ,得 x+y=12;由尸3答:付款方式有3种,分别 •得x +y=15.所以第一种付款方式付出的张数最少是:2当不详0,,明f 程无解 琲籐第无畸旷2 〃将第入③,得"3-8八1②时,原方程组有无穷多组解;通口2③引1 〃〃时,原方程组无解•G 02 G2分钟内可以通过560名道侧门大小也相同•安全检查中,对4道门进行了训练:当同时开启一道正门和两道侧门时,学生;当同时开启一道正门和一道侧门时,4分钟可以通过800名学生•(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查屮发现,紧急情况时因学生拥挤,岀门的效率将降低20%.安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离.假设这栋教学大楼每间教室最多有45名学生,问:建造的这4道门是否符合安全规定?请说明理由2( *+27)=560A根据题意,【思考与解】(1)设平均每分钟一道正门可通过x名学生,一道侧门可以通过y名学生.所以平均每分钟一道正门可以通过学生120人,一道侧门可以通过学生80人.(2)这栋楼最多有学生4X 8X 45二1440 (人).拥挤时5分钟4道门能通过5X 2 X( 120+80)X( 1-20%) =1600 (人)因为16001440,所以建造的4道门符合安全规定.答:平均每分钟一道正门和一道侧门各可以通过120名学生、80名学生;建造的这4道门符合安全规定【例5】某水果批发市场香蕉的价格如下表:张强两次共购买香蕉50千克(第二次多于第一次),共付款264元,请问张强第一次、第二次分别购买香蕉多少千克?【思考与分析】要想知道张强第一次、第二次分别购买香蕉多少千克,我们可以从香蕉的价格和张强买的香蕉的千克数以及付的钱数来入手•通过观察图表我们可知香蕉的价格分三段,分别是6元、5元、4元.相对应的香蕉的千克数也分为三段,我们可以假设张强两次买的香蕉的千克数分别在某段范围内,利用分类讨论的方法求得张强第一次、第二次分别购买香蕉的千克数.综合①②③可知,张强第一次购买香蕉 14千克,第二次购买香蕉36千克. 答:张强第一次、第二次分别购买香蕉14千克、36千克.【反思】我们在做这道题的时候,一定要考虑周全,不能说想出了一种情况就认为万事大吉了,要进行分类讨论,考虑所有的 可能性,看有几种情况符合题意【例6】用如图1屮的长方形和正方形纸板做侧面和底面,做成如图2的竖式和横式两种无盖纸盒 0 0 0张正方形纸板和2 000张长方形纸板,问两种纸盒各做多少个,恰好将库存的纸板用完?□ □ 00E 1因2【思考与分析】我们已经知道已知量有正方形纸板的总数1000,长方形纸板的总数20 0 0,未知量是竖式纸盒的个数和横式纸盒的个数•而且每个竖式纸盒和横式纸盒都要用一定数量的正方形纸板和长方形纸板做成,如果我们知 道这两种纸盒分别要用多少张正方形纸板和长方形纸板,就能建立起如下的等量关系: 每个竖式纸盒要用的正方形纸板数— X 竖式纸盒个数 +每个横式纸盒要用的正方形纸板数 X 横式纸盒个数二二正方形纸板的总数每个竖式纸盒要用的长方形纸板数 X 竖式纸盒个数 +每个横式纸盒要用的长方形纸板数 X 横式纸盒个数二二长方形纸板的总数通过观察图形,可知每个竖式纸盒分别要用1张正方形纸板和4张长方形纸板,每个横式纸盒分别要用2张正方形纸板和3张长 方形纸板.解:由题中的等量关系我们可以得到下面图表所示的关系解:设张强第一次购买香蕉 x 千克,①当 0<xw 20, yw40时,由题意,第二次购买香蕉 y 千克•由题意,得0<x<25.%-14「解得□ ct +5y=2ti4.②当 0<xw 20, y 〉40时,由题意,(与0〈xw 20, y< 40相矛盾,不合题意,舍去)③当20<x<25时, 25<y<30 •此时张强用去的款项为 尸15x+5y 二5 (x+y )二5X 50二25(X264 (不合题意,舍去) 现在仓库里有1X+2r=1000,(D5 y=2000,解得y=400. 牡£尸2000.②设竖式纸盒做x个,横式纸盒做y个.根据题意,得a=200,所以方程组的解为17_4OO因为200和oo均为自然数,所以这个解符合题意把y二400 代入①,得x+800二1000,解得x二200.答:竖式纸盒做2 0 0个,横式纸盒做4 0 0个,恰好将库存的纸板用完。
二元一次方程组测试卷

二元一次方程组测试卷一、选择题(每题3分,共30分)1. 下列方程中,是二元一次方程的是()A. x + (1)/(y)=2B. xy = 9C. 3x - 2y = 4D. x^2+y = 62. 方程2x + y = 9在正整数范围内的解有()A. 1组。
B. 2组。
C. 3组。
D. 4组。
3. 若x = 2 y = 1是关于x、y的二元一次方程ax - 3y = 1的解,则a的值为()A. 2.B. -2.C. 5.D. -5.4. 二元一次方程组x + y = 5 x - y = 3的解是()A. x = 4 y = 1B. x = 1 y = 4C. x = 2 y = 3D. x = 3 y = 25. 用代入法解方程组y = 1 - x x - 2y = 4时,代入正确的是()A. x - 2 - x = 4B. x - 2 - 2x = 4C. x - 2 + 2x = 4D. x - 2 + x = 46. 已知x = m y = n和x = n y = m是方程2x - 3y = 1的解,则m - n的值为()A. 1.B. -1.C. 0.D. 2.7. 若方程组ax + by = 2 ax - by = 2与2x + 3y = 4 4x - 5y = -6的解相同,则a,b的值为()A. a = (23)/(11) b = (4)/(11)B. a = (23)/(11) b = -(4)/(11)C. a = -(23)/(11) b = (4)/(11)D. a = -(23)/(11) b = -(4)/(11)8. 某班有x名学生,其中女生人数占45%,则男生人数为()A. 0.45xB. 0.55xC. (x)/(0.45)D. (x)/(0.55)9. 甲、乙两人练习跑步,如果乙先跑10米,则甲跑5秒就可追上乙;如果乙先跑2秒,则甲跑4秒就可追上乙,设甲的速度为x米/秒,乙的速度为y米/秒,下列方程组正确的是()A. 5x = 5y + 10 4x = 4y + 2yB. 5x - 5y = 10 4x - 2x = 4yC. 5x + 10 = 5y 4x - 4y = 2D. 5x - 5y = 10 4x - 4y = 2y10. 关于x,y的方程组3x - y = m x + my = n的解是x = 1 y = 1,则| m - n|的值是()A. 5.B. 3.C. 2.D. 1.二、填空题(每题3分,共15分)1. 若x^2m - 1+5y^3n - 2m=7是二元一次方程,则m=_ ,n=_ 。
二元一次方程组测试题.docx

二元一次方程组测试题1. 解下列二元一次方程组,并找出x和y的值:\[\begin{cases}x + y = 5 \\2x - y = 1\end{cases}\]2. 已知方程组:\[\begin{cases}3x + 2y = 8 \\2x - 3y = -7\end{cases}\]求x和y的值。
3. 判断下列方程组是否有解,并说明理由:\[\begin{cases}x + y = 1 \\x + y = 2\end{cases}\]4. 解方程组并找出所有可能的解:\[\begin{cases}x - 3y = 4 \\4x + y = 1\end{cases}\]5. 给定方程组:\[\begin{cases}x + y = a \\2x - y = b\end{cases}\]其中a和b是已知数,求x和y的表达式。
6. 解下列方程组,并找出x和y的值:\[\begin{cases}3x + 5y = 15 \\5x - 3y = 11\end{cases}\]7. 已知方程组:\[\begin{cases}x + 2y = 6 \\3x - y = 1\end{cases}\]求x和y的值。
8. 解下列方程组,并找出x和y的值:\[\begin{cases}2x + 3y = 10 \\4x - y = 8\end{cases}\]9. 判断下列方程组是否有无穷多解,并说明理由: \[\begin{cases}x + y = 3 \\2x + 2y = 6\end{cases}\]10. 解下列方程组,并找出x和y的值:\[\begin{cases}x - 2y = 1 \\3x + y = 5\end{cases}\]。
专题01 二元一次方程组(五大题型)(题型专练)(解析版)

专题01 二元一次方程组(五大题型)【题型1 二元一次方程的概念】【题型2 根据二元一次方程的定义求参数】【题型3 二元一次方程的解】【题型4 解二元一次方程】【题型5 二元一次方程组的概念】【题型1 二元一次方程的概念】1.(2023春•浦北县月考)下列选项中,是二元一次方程的是( )A.y=x B.x+y2=2C.x﹣y D.x+y=z 【答案】A【解答】解:A.y=x是二元一次方程,故此选项符合题意;B.x+y2=2是二元二次方程,故此选项不合题意;C.x﹣y不是等式,不是方程,故此选项不合题意;D.x+y=z是三元二次方程,故此选项不合题意.故选:A.2.(2023春•松北区期末)下列方程中,属于二元一次方程的是( )A.3x2+y=8B.x﹣1=﹣4C.x+y﹣2=0D.x﹣y﹣z=10【答案】C【解答】解:A.方程3x2+y=8的最高次数是2,选项A不符合题意;B.方程x﹣1=﹣4是一元一次方程,选项B不符合题意;C.方程x+y﹣2=0是二元一次方程,选项C符合题意;D.方程x﹣y﹣z=10是三元一次方程,选项D不符合题意.故选:C.3.(2023春•任丘市期末)在下列方程中,是二元一次方程的为( )A.2x﹣6=y B.y﹣1=5C.yz=8D.【答案】A【解答】解:A.该方程是二元一次方程,故符合题意;B.该方程是一元一次方程,故不符合题意;C.该方程符合二元二次方程的定义,故不符合题意;D.该方程不是整式方程,故不符合题意.故选:A.4.(2023春•连山区月考)下列方程中,二元一次方程的个数为( )①xy=1;②2x=3y;③;④x2+y=3;⑤.A.1个B.2个C.3个D.4个【答案】B【解答】解:∵2x=3y,是二元一次方程;xy=1,,x2+y=3不是二元一次方程,∴所有方程中,只有方程①和方程⑤共2个二元一次方程,故选:B.【题型3 二元一次方程的解】11.(2023春•云阳县期末)下列哪对x ,y 的值是二元一次方程x +2y =6的解( )A .B .C .D .【答案】C【解答】解:A .当x =﹣2,y =﹣2,得x +2y =﹣6,那么x =﹣2,y =﹣2不是x +2y =6的解,故A 不符合题意.B .当x =0,y =2,得x +2y =4,那么x =0,y =2不是x +2y =6的解,故B 不符合题意.C .当x =2,y =2,得x +2y =2+4=6,那么x =2,y =2是x +2y =6的解,故C 符合题意.D .当x =3,y =1,得x +2y =3+2=5,那么x =3,y =1不是x +2y =6的解,故D 不符合题意.故选:C .12.(2023春•丹徒区期末)是下面哪个二元一次方程的解( )A .y =﹣x +2B .x ﹣2y =1C .x =y ﹣2D .2x ﹣3y =1【答案】D【解答】解:把x =5代入A ,得y =﹣5+2=﹣3,所以不是二元一次方程A 的解;把x =5代入B ,得y =(5﹣1)÷2=2,所以不是二元一次方程B 的解;把x =5代入C ,得y =5+2=7,所以不是二元一次方程C 的解;把x =5代入D ,得y =(10﹣1)÷3=3,所以是二元一次方程D 的解.故选:D .13.已知21x y =ìí=î是二元一次方程3kx y -=的一个解,那么k 的值是( )A .1k =B .2k =C .1k =-D .2k =-【答案】B【分析】本题主要考查二元一次方程的解,熟练掌握二元一次方程的解的定义是解题的关键.【详解】解:把21x y =ìí=î代入二元一次方程3kx y -=得:213k -=,解得:2k =;故选:B .14.下列四组数值是二元一次方程26x y -=的解的是( )A .26x y =ìí=îB .42x y =ìí=îC .24x y =ìí=-îD .23x y =ìí=î【答案】B【分析】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.将各项中x与y的值代入方程检验即可.【详解】解:A、把26xy=ìí=î代入方程得:左边462=-=-,右边6=,左边¹右边,不符合题意;B、把42xy=ìí=î代入方程得:左边826=-=,右边6=,左边=右边,符合题意;C、把24xy=ìí=-î代入方程得:左边448=+=,右边6=,左边¹右边,不符合题意;D、把23xy=ìí=î代入方程得:左边431=-=,右边6=,左边¹右边,不符合题意;故选:B.15.(2023•西山区校级开学)二元一次方程2x+y=8的正整数解有( )A.1组B.2组C.3组D.4组【答案】C【解答】解:由2x+y=8得:y=8﹣2x,当x=1时,y=6;当x=2时,y=4;当x=3时,y=2;∴二元一次方程2x+y=8的正整数解有3组,故选:C.16.(2023春•霸州市期末)已知关于x,y的二元一次方程●x﹣2y=4中x的系数让墨迹盖住了,但是知道它一组解是,那么●的值是( )A.2B.1C.﹣3D.﹣2【答案】C【解答】解:设•=a,由题意得:﹣2a﹣2=4,解得:a=﹣3,【题型4 解二元一次方程】19.(2023春•怀安县期末)已知二元一次方程3x﹣y=6,用x表示y的式子为( )A.y=3x+6B.y=﹣3x﹣6C.y=3x﹣6D.y=﹣3x+6【解答】解:移项,得﹣y=6﹣3x,系数化1,得y=3x﹣6.故选:C.20.(2023春•天津期末)把二元一次方程2x﹣3y=4写成用含y的式子表示x的形式,正确的是( )A.B.C.D.【答案】A【解答】解:2x﹣3y=4,2x=4+3y,x=,故选:A.21.(2023春•浠水县校级期末)把方程3x+y﹣1=0改写成用含x的式子表示y的形式,正确的是( )A.x=B.x=C.y=3x﹣1D.y=1﹣3x【答案】D【解答】解:3x+y﹣1=0,y=1﹣3x.故选:D.22.(2023春•梁园区期末)把方程2x+y=3改写成用含x的代数式表示y的形式为( )A.y=2x+3B.y=2x﹣3C.y=﹣2x+3D.y=﹣2x﹣3【答案】C【解答】解:方程2x+y=3,解得:y=﹣2x+3.故选:C.23.(2022秋•朝阳区校级期末)已知方程2x+y=6,用含x的代数式表示y,则y= 6﹣2x .【答案】6﹣2x.【解答】解:2x+y=6,移项,得y=6﹣2x.故答案为:6﹣2x.∴二元一次方程24x y +=的正整数解为21x y =ìí=î,故答案为:21x y =ìí=î.【题型5 二元一次方程组的概念】26.(2023春•攸县期中)下列方程组是二元一次方程组的是( )A .B .C .D .【答案】C【解答】解:A 、有3个未知数,不是二元一次方程组,故A 不符合题意;B 、有2个未知数,但是最高次数是2,不是二元一次方程组,故B 不符合题意;C 、有两个未知数,方程的次数是1次,所以是二元一次方程组,故C 符合题意;D 、有两个未知数,第二个方程不是整式方程,不是二元一次方程组,故D 不符合题意.故选:C .27.(2023春•威海期末)下列方程组中,是二元一次方程组的是( )A .B .C .D .【答案】C【解答】解:A .第一个方程是二次方程,不是二元一次方程组,故本选项不符合题意;B .含有三个未知数,不是二元一次方程组,故本选项不符合题意;C .是二元一次方程组,故本选项符合题意;D .第二个方程是分式方程,不是二元一次方程组,故本选项不符合题意;故选:C .28.(2023春•东兰县期末)下列方程组中,是二元一次方程组的是( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二元一次方程组竞赛卷
一、选择题(每题3分,共30分)
1.下列方程组中,是二元一次方程组的是 ( )
(A ) 2311089x y x y ⎧+=⎨-=-⎩ (B )426xy x y =⎧⎨+=⎩ (C )21734x y y x
-=⎧⎪⎨-=-⎪⎩ (D )24795x y x y +=⎧⎨-=⎩ 2.二元一次方程组⎩⎨⎧==+x
y y x 2,102的解是 ( )
(A )⎩⎨⎧==;3,4y x (B )⎩⎨⎧==;6,3y x (C )⎩⎨⎧==;4,2y x (D )⎩⎨⎧==.
2,4y x 3.根据图1所示的计算程序计算y 的值,若输入2=x ,则输出的y 值是( )
(A )0 (B )2- (C )2 (D )4
4.如果2315a b 与114
x x y a b ++-是同类项,则x ,y 的值是( ) (A )⎩⎨⎧==31y x (B )⎩⎨⎧==22y x (C )⎩⎨⎧==21y x (D )⎩⎨⎧==3
2y x 5.已知12x y =⎧⎨=⎩ 是方程组120.
ax y x by +=-⎧⎨-=⎩, 的解,则a +b = ( ).
(A )2 (B )-2 (C )4 (D )-4
6.如图2,AB ⊥BC ,∠ABD 的度数比∠DBC 的度数的两倍少15°,设∠ABD 和∠DBC 的度数分别为x 、y ,那么下面可以求出这两个角的度数的方程组是
( )
(A )9015x y x y +=⎧⎨=-⎩ (B )90215
x y x y +=⎧⎨=-⎩
(C )90152x y x y +=⎧⎨=-⎩ (D )290215x x y =⎧⎨=-⎩ A D B
C
图2 y ° x °
7.如果二元一次方程组⎩
⎨⎧=+=-a y x a y x 3的解是二元一次方程0753=--y x 的一个解,那么a 的值是( )
(A )3 (B )5 (C )7 (D )9
8. 若的一个解是方程02=+⎩
⎨⎧==y x b y a x ,()b a a ,,0则≠的符号为 ( ) A 、b a ,同号 B 、b a ,异号 C 、b a ,可能同号可能异号 D 、0,0=≠b a
9.已知:关于y x ,的方程组y x ,a
y x a y x -⎩⎨⎧-=++-=+则3242的值为 ( )
A 、-1
B 、1-a
C 、0
D 、1
10. 6年前,A 的年龄是B 的3倍,现在A 的年龄是B 的2倍,则A 现在的年龄为( )
A 、12
B 、18
C 、24
D 、30
二、填空题(每小题4分,共20分)
11.若关于x ,y 的二元一次方程组23-12-2x y k x y +=⎧⎨+=⎩
的解满足x +y =1,则k 的取值范围是 .
12.一个两位数的十位数字与个位数字的和为8,若把这个两位数加上18,正好等于将这个两位数的十位数字与个位数字对调后所组成的新两位数,则原来的两位数为_______.
13.甲、乙两人练习跑步,如果乙先跑10米,则甲跑5秒就可追上乙;如果乙先跑2秒,则甲跑4秒就可追上乙,若设甲的速度为x 米/秒,乙的速度为y 米/秒,则列方程组为
___________________________.
14.利用两块长方体木块测量一张桌子的高度.首先按图(1)方式放置,再交换两木块的位置,按图(2)方式放置.测量的数据如图,则
桌子的高度是( )
A 、74cm
B 、75cm
C 、76cm
D 、77cm
15.某果品商店进行组合销售,甲种搭配:2千克A 水果,4千克B 水果;乙种搭配:3千克A 水果,8千克B 水果,1千克C 水果;丙种搭配:2千克A 水果,6千克B 水果,1千克C 水果.已知A 水果每千克2元,B 水果每千克1.2元,C 水果每千克10元。
某天该商店销售这三种搭配水果共441.2元,其中A 水果的销售额为116元,则C 水果的销售额为__________元。
三、解答题(16、 17题每小题6分,18、19题每题10分,20题12分)
16.用代入法解方程组 ⎩⎨⎧-=--=-.
2354,42y x y x
17. 用适当方法解方程组
(1) ⎪⎩⎪⎨⎧=-+=+1
323241y x x y (2)⎩⎨⎧=+=+572317631723y x y x
18. 甲、乙两位同学在解方程组⎩⎨⎧-=-=+2
27by ax by ax 时,甲看错了第一个方程解得
⎩⎨⎧-==11y x ,乙看错了第二个方程解得⎩
⎨⎧-=-=62y x ,求b a ,的值。
19. 某家商店的账目记录显示,某天卖出78支笔和42个备课本,收入258元;另一天,以相同的价格卖出同样的56个备课本和104支笔,收入518元。
这个记录有误吗?如果有误,请说明理由。
20.已知用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好没辆车都装满货物。
根据以上信息,解答下列问题:
(1)1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?
(2)请你帮该物流公司设计租车方案。
(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少的租车费。