二元一次方程组竞赛卷--资料
最新初一下学期数学 二元一次方程组考试试卷及答案百度文库

最新初一下学期数学 二元一次方程组考试试卷及答案百度文库一、选择题1.某校运动员分组训练,若每组7人,则余3人:若每组8人,则缺5人.设运动员人数为x 人,组数为y 组,则可列方程为( )A .7385y x y x =+⎧⎨=+⎩B .7385y x y x =+⎧⎨+=⎩C .7385y x y x =-⎧⎨+=⎩D .7385y x y x =-⎧⎨=+⎩2.二元一次方程组7317x y x y +=⎧⎨+=⎩的解是( )A .52x y =⎧⎨=⎩B .25x y =⎧⎨=⎩C .61x y =⎧⎨=⎩D .16x y =⎧⎨=⎩3.已知559375a b a b +=⎧⎨+=⎩,则-a b 等于( )A .8B .83C .2D .14.阅读理解:a ,b ,c ,d 是实数,我们把符号a b c d称为22⨯阶行列式,并且规定:a b a d b c c d=⨯-⨯,例如,323(2)2(1)62412=⨯--⨯-=-+=---.二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解可以利用22⨯阶行列式表示为x y D x DD y D⎧=⎪⎪⎨⎪=⎪⎩,其中1122a D a b b =,1122x b a D c b =,1122y a c D a c =.问题:对于用上面的方法解二元一次方程组3137x y x y -=⎧⎨+=⎩时,下面的说法错误..的是( ). A .311013D -==B .10x D =C .方程组的解为12x y =⎧⎨=⎩D .20y D =-5.方程()()218235m nm xn y ---++=是二元一次方程,则( )A .23m n =⎧⎨=⎩B .23m n =-⎧⎨=-⎩C .23m n =⎧⎨=-⎩D .23m n =-⎧⎨=⎩6.二元一次方程组2 213xyax y+=⎧⎪⎨+=⎪⎩的解也是方程36x y-=-的解,则a等于()A.-3 B.13-C.3 D.137.下列方程组是三元一次方程组的是()A.123x yy zz x+=⎧⎪+=⎨⎪-=⎩B.2310x y zx yzy z++=⎧⎪-=⎨⎪-=⎩C.22154x yy zx z⎧+=⎪+=⎨⎪-=⎩D.563x yw zz x+=⎧⎪+=⎨⎪+=⎩8.将一张面值50元的人民币,兑换成5元和2元的零钱,兑换方案有()A.4种B.5种C.6种D.7种9.如图,在单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上,斜边长分别为2,4,6,…的等腰直角三角形,若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,1),A3(0,0),则依图中所示规律, A2019的坐标为()A.(﹣1008,0)B.(﹣1006,0)C.(2,﹣504)D.(2,-506)10.巴广高速公路在5月10日正式通车,从巴中到广元全长约为126km.一辆小汽车,一辆货车同时从巴中,广元两地相向开出,经过45分钟相遇,相遇时小汽车比货车多行6km,设小汽车和货车的速度分别为xkm/h,ykm/h,则下列方程组正确的是()A.()()45126456x yx y⎧+=⎪⎨-=⎪⎩B.()312646x yx y⎧+=⎪⎨⎪-=⎩C.()()31264456x yx y⎧+=⎪⎨⎪-=⎩D.()()31264364x yx y⎧+=⎪⎪⎨⎪-=⎪⎩11.《九章算术》是我国东汉初年编订的一部数学经典著作在它的“方程”一章里,一次方程组是由算筹布置而成的《九章算术》中的算筹图是竖排的,现在我们把它改为横排,如图1、图2图中各行从左到右列出的算筹数分别表示未知数,x y的系数与相应的常数项把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是2+327214x yx y=⎧⎨+=⎩类似地,图2所示的算筹图我们可以表述为( )A .2+164322x y x y =⎧⎨+=⎩B .2+164327x y x y =⎧⎨+=⎩C .2+114322x y x y =⎧⎨+=⎩D .2+114327x y x y =⎧⎨+=⎩12.下列四组数值中,方程组02534a b c a b c a b c ++=⎧⎪-+=-⎨⎪--=-⎩的解是( )A .011a b c =⎧⎪=⎨⎪=-⎩B .121a b c =-⎧⎪=⎨⎪=-⎩C .112a b c =-⎧⎪=⎨⎪=-⎩D .123a b c =⎧⎪=-⎨⎪=⎩二、填空题13.为了应对疫情对经济的冲击,增加就业岗位,某区在5月份的时候开设了一个夜市,分为餐饮区、百货区和杂项区三个区域,三者摊位数量之比5:4:3,市场管理处对每个摊位收取50元/月的管理费,到了6月份,市场管理处扩大夜市规模,并将新增摊位数量的12用于餐饮,结果餐饮区的摊位数量占到了夜市总摊位数量的920,同时将餐饮区、百货区和杂项区每个摊位每月的管理费分别下调了10元、20元和30元,结果市场管理处6月份收到的管理费比5月份增加了112,则百货区新增的摊位数量与该夜市总摊位数量之比是______.14.某餐厅以A 、B 两种食材,利用不同的搭配方式推出了两款健康餐,其中,甲产品每份含200克A 、200克B ;乙产品每份含200克A 、100克B .甲、乙两种产品每份的成本价分别为A 、B 两种食材的成本价之和,若甲产品每份成本价为16元.店家在核算成本的时候把A 、B 两种食材单价看反了,实际成本比核算时的成本多688元,如果每天甲销量的4倍和乙销量的3倍之和不超过120份,那么餐厅每天实际成本最多为______元. 15.若m 35223x y m x y m +--+-199199x y x y =---+m =________.16.某科技公司推出一款新的电子产品,该产品有三种型号.通过市场调研后,按三种型号受消费者喜爱的程度分别对A 型、B 型、C 型产品在成本的基础上分别加价20%,30%,45%出售(三种型号的成本相同).经过一个季度的经营后,发现C 型产品的销量占总销量的37,且三种型号的总利润率为35%.第二个季度,公司决定对A 型产品进行升级,升级后A 产品的成本提高了25%,销量提高了20%;B 、C 产品的销量和成本均不变,且三种产品在二季度成本基础上分别加价20%,30%,45%出售,则第二个季度的总利润率为______.17.已知x m y n =⎧⎨=⎩是方程组20234x y x y -=⎧⎨+=⎩的解,则3m +n =_____.18.小明、小红和小光共解出了100道数学题目,每人都解出了其中的60道题目,如果将其中只有1人解出的题目叫做难题,2人解出的题目叫做中档题,3人都解出的题目叫做容易题,那么难题比容易题多________道.19.如图,长方形ABCD 被分成8块,图中的数字是其中5块的面积数,则图中阴影部分的面积是____﹒20.有甲、乙、丙三种货物,若购买甲3件、乙7件、丙1件,共315元;若购买甲4件、乙10件、丙1件,共420元,现在购买甲、乙、丙各1件,共需_____元.21.一个二元一次方程和一个二元二次方程组成的二元二次方程组的解是24x y =⎧⎨=⎩和24x y =-⎧⎨=-⎩,试写出符合要求的方程组________(只要填写一个即可). 22.为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮.其中,甲种粗粮每袋装有3千克A 粗粮,1千克B 粗粮,1千克C 粗粮;乙种粗粮每袋装有1千克A 粗粮,2千克B 粗粮,2千克C 粗粮.甲、乙两种袋装粗粮每袋成本价分别为袋中,,A B C 三种粗粮的成本价之和.已知A 粗粮每千克成本价为6元,甲种粗粮每袋售价为58.5元,利润率为30%,乙种粗粮的利润率为20%.若这两种袋装粗粮的销售利润率达到24%,则该电商销售甲、乙两种袋装粗粮的数量之比是____________________. (-=100%⨯商品的售价商品的成本价商品的利润率商品的成本价)23.若(x ﹣y +3)2+=0,则x +y 的值为______.24.若m 1,m 2,…m 2016是从0,1,2这三个数中取值的一列数,若m 1+m 2+…+m 2016=1546, (m 1﹣1)2+(m 2﹣1)2+…+(m 2016﹣1)2=1510,则在m 1,m 2,…m 2016中,取值为2的个数为____.三、解答题25.某校规划在一块长AD 为18 m 、宽AB 为13 m 的长方形场地ABCD 上,设计分别与AD ,AB 平行的横向通道和纵向通道,其余部分铺上草皮,如图所示,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM∶AN=8∶9,问通道的宽是多少?26.规定:二元一次方程ax by c +=有无数组解,每组解记为(),P x y ,称(),P x y 为亮点,将这些亮点连接得到一条直线,称这条直线是亮点的隐线,答下列问题: (1) 已知()()()1,2,4,3,3,1A B C ---,则是隐线326x y +=的亮点的是 ; (2) 设()10,2,1,3P Q ⎛⎫-- ⎪⎝⎭是隐线26t x hy +=的两个亮点,求方程()22144265t x t h y ⎛⎫+-++= ⎪⎝⎭中,x y 的最小的正整数解; (3)已知,m n 是实数, 且27m n +=,若(),P m n 是隐线23x y s -=的一个亮点,求隐线s 中的最大值和最小值的和.27.在平面直角坐标系中,O 为坐标原点,点A 的坐标为(a,a ),点B 的坐标(b,c ),且a 、b 、c 满足34624a b c a b c +-=⎧⎨-+=-⎩.(1)若a 没有平方根,判断点A 在第几象限并说明理由.(2)连AB 、OA 、OB ,若△OAB 的面积大于5而小于8,求a 的取值范围;(3)若两个动点M (2m,3m-5),N(n-1,-2n-3),请你探索是否存在以两个动点M 、N 为端点的线段MN ∥AB ,且MN=AB .若存在,求出M 、N 两点的坐标;若不存在,请说明理由. 28.阅读下面资料:小明遇到这样一个问题:如图1,对面积为a 的△ABC 逐次进行以下操作:分别延长AB 、BC 、CA 至A 1、B 1、C1,使得A 1B =2AB ,B 1C =2BC ,C1A =2CA ,顺次连接A 1、B 1、C 1,得到△A 1B 1C 1,记其面积为S 1,求S 1的值.小明是这样思考和解决这个问题的:如图2,连接A 1C 、B 1A 、C 1B ,因为A 1B =2AB ,B 1C =2BC ,C 1A =2CA ,根据等高两三角形的面积比等于底之比,所以11∆∆=A BC B CA S S =11∆∆=A BC C AB S S =2S △ABC =2a ,由此继续推理,从而解决了这个问题.(1)直接写出S 1= (用含字母a 的式子表示). 请参考小明同学思考问题的方法,解决下列问题:(2)如图3,P为△ABC内一点,连接AP、BP、CP并延长分别交边BC、AC、AB于点D、E、F,则把△ABC分成六个小三角形,其中四个小三角形面积已在图上标明,求△ABC的面积.(3)如图4,若点P为△ABC的边AB上的中线CF的中点,求S△APE与S△BPF的比值. 29.学校捐资购买了一批物资120吨打算支援山区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)车型甲乙丙汽车运载量(吨/辆)5810汽车运费(元/辆)400500600(1)若全部物资都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?(2)若该学校决定用甲、乙、丙三种汽车共15辆同时参与运送,你能求出参与运送的三种汽车车辆数吗?(甲、乙、丙三种车辆均要参与运送)30.百脑汇商场中路路通商店有甲、乙两种手机内存卡,买2个甲内存卡和1个乙内存卡用了90元,买3个甲内存卡和2个乙内存卡用了160元.(1)求甲、乙两种内存卡每个各多少元?(2)如果小亮准备购买甲.乙两种手机内存卡共10个,总费用不超过350元,且不低于300元,问有几种购买方案,哪种方案费用最低?(3)某天,路路通售货员不小心把当天上午卖的甲、乙种手机内存卡的销售量统计单丢失了,但老板记得每件甲内存卡每个赚10元,乙内存卡每个赚15元,一上午售出的内存卡共赚了100元,请你帮助老板算算有几种销售方案?并直接写出销售方案.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D根据关键语句“若每组7人,余3人”可得方程7y +3−x ;“若每组8人,则缺5人.”可得方程8y−5=x ,联立两个方程可得方程组. 【详解】解:设运动员人数为x 人,组数为y 组,由题意得: 列方程组为7385y x y x -⎧⎨+⎩== 故选D . 【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,抓住关键语句,列出方程.2.A解析:A 【分析】方程组利用加减消元法求出解即可. 【详解】解:7317x y x y +=⎧⎨+=⎩①②,②﹣①得:2x =10, 解得:x =5,把x =5代入①得:y =2, 则方程组的解为52x y =⎧⎨=⎩. 故选:A . 【点睛】本题考查了二元一次方程组的解法以及二元一次方程组的解的定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.本题还可以利用代入法求解.3.C解析:C 【分析】把两个方程的左右两边分别相减,求出a-b 的值是多少即可. 【详解】 解:559375a b a b +⎧⎨+⎩=①=②①-②,可得 2(a-b )=4, ∴a-b=2.【点睛】此题主要考查了解二元一次方程组,关键是注意观察,找出解决问题的简便方法.4.D解析:D 【分析】分别根据行列式的定义计算可得结论. 【详解】 A 、3113D -==3×3-(-1)×1=10,计算正确,不符合题意;B 、D x =1×3-(-1)×7=10,计算正确,不符合题意;C 、方程组的解:x=102011010y ==,=2,计算正确,不符合题意. D 、D y =3×7-1×1=20,计算错误,符合题意; 故选:D . 【点睛】此题考查二元一次方程组的解,理解题意,直接运用公式计算是解题的关键.5.D解析:D 【分析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程. 【详解】由题意得21181m n ⎧-=⎨-=⎩且2030m n -≠⎧⎨+≠⎩,解得2m =-,3n =, 故选D . 【点睛】主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.6.C解析:C 【分析】把2x y +=与36x y -=-组成方程组,求出x ,y 的值,再代入方程213ax y +=,即可解答. 【详解】由题意得:236x y x y +=⎧⎨-=-⎩,解得:13x y =-⎧⎨=⎩,把13x y =-⎧⎨=⎩代入方程213ax y +=,得:()21313a⨯-+⨯=,解得:3a =. 故选:C . 【点睛】本题考查了二元一次方程组的解,方程组的解为能使方程组中两方程都成立的未知数的值.7.A解析:A 【分析】根据三元一次方程组的定义来求解,对A 、B 、C 、D 四个选项进行一一验证. 【详解】A 、满足三元一次方程组的定义,故A 选项正确;B 、含未知数项的次数为2次,∴不是三元一次方程,故B 选项错误;C 、未知数的次数为2次,∴不是三元一次方程,故C 选项错误;D 、含有四个未知数,不满足三元一次方程组的定义,故D 选项错误; 故选:A . 【点睛】本题主要考查了三元一次方程组的定义,清楚三元一次方程组必须满足“三元”和“一次”两个要素是关键.8.C解析:C 【分析】设可以兑换m 张5元的零钱,n 张2元的零钱,根据零钱的总和为50元,即可得出关于m ,n 的二元一次方程,结合m ,n 均为非负整数,即可得出结论. 【详解】设可以兑换m 张5元的零钱,n 张2元的零钱, 依题意,得:5m+2n =50, ∴m =10﹣25n . ∵m ,n 均为非负整数, ∴当n =0时,m =10; 当n =5时,m =8; 当n =10时,m =6;当n =15时,m =4; 当n =20时,m =2; 当n =25时,m =0. ∴共有6种兑换方案. 故选:C . 【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.9.A解析:A 【分析】用题中已知条件观察所给例子、图形,找出规律,再运用规律解决问题. 【详解】依题意列出前面几个n A 的坐标如下表对于n A ,当n 除以4余1时,n A 的纵坐标为0,横坐标32n +; 当n 除以4余2时,n A 的纵坐标为n2,横坐标1; 当n 除以4余3时,n A 的纵坐标为0,横坐标32n --; 当n 除以4,整除时,n A 的纵坐标为2n,横坐标2. 运用发现规律,当n=2019时,2019除以4,余3,故点2019A 的纵坐标为0,横坐标为2019310082--=-,所以点2019A 的坐标为(-1008,0) . 故选:A . 【点睛】 本题是探索规律题型.探索规律的思维模式是:观察前几例做出猜想,再验证猜想,这个过程反复进行,直到发现规律.本题的解决不仅要观察点的坐标的变化,还要观察图形中点的位置变化.10.D解析:D 【解析】设小汽车的速度为xkm/h ,则45分钟小汽车行进的路程为34xkm ;设货车的速度为ykm/h ,则45分钟货车行进的路程为34ykm .由两车起初相距126km ,则可得出34(x+y )=126; 又由相遇时小汽车比货车多行6km ,则可得出34(x-y )=6.可得出方程组31264364x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩()(). 故选:D .点睛:学生在分析解答此题时需注意弄清题意,明白所要考查的要点.另外,还需注意单位的换算,避免粗心造成失误.11.D解析:D【分析】由图1可得1个竖直的算筹数算1,一个横的算筹数算10,每一横行是一个方程,第一个数是x 的系数,第二个数是y 的系数,第三个数是相加的结果:前面的表示十位,后面的表示个位,由此可得图2的表达式.【详解】第一个方程x 的系数为2,y 的系数为1,相加的结果为11;第二个方程x 的系数为4,y 的系数为3,相加的结果为27,所以可列方程组为:2114327x y x y +=⎧⎨+=⎩. 故选D .【点睛】 此题主要考查了由实际问题列二元一次方程组,关键是读懂图意,得到所给未知数的系数及相加结果.12.B解析:B【解析】分析:首先利用②-①和②+③得出关于a 和b 的二元一次方程组,从而求出a 和b 的值,然后将a 和b 代入任何一个式子得出c 的值,从而得出方程组的解.详解:0? 25?34? a b c a b c a b c ++=⎧⎪-+=-⎨⎪--=-⎩①②③,②-①可得:a -2b=-5 ④, ②+③可得:5a -2b=-9 ⑤,④-⑤可得:-4a=4,解得:a=-1, 将a=-1代入④可得:b=2,将a=-1,b=2代入①可得:c=-1,∴方程组的解为:121a b c =-⎧⎪=⎨⎪=-⎩,故选B .点睛:本题主要考查的是三元一次方程组的解法,属于基础题型.消元法的使用是解决这个问题的关键.二、填空题13.【分析】由题意设月份的餐饮区、百货区和杂项区三者摊位数量分别为,再假设新增摊位数量为,则餐饮区新增摊位数量为,进而根据条件得出n 和m 的关系,利用市场管理处月份收到的管理费比月份增加了建立关系式,解析:3:20【分析】由题意设5月份的餐饮区、百货区和杂项区三者摊位数量分别为5,4,3n n n ,再假设新增摊位数量为m ,则餐饮区新增摊位数量为12m ,进而根据条件得出n 和m 的关系,利用市场管理处6月份收到的管理费比5月份增加了112建立关系式,进行代入分析即可得出答案.【详解】 解:由题意设5月份的餐饮区、百货区和杂项区三者摊位数量分别为5,4,3n n n , 则5月份的管理费为:(543)50600n n n n ++⨯=(元),6月份的管理费为:1(1)60065012n n +⨯=(元), 再假设新增摊位数量为m ,则餐饮区新增摊位数量为12m , 由餐饮区的摊位数量占到了夜市总摊位数量的920,可得: 91(12)5202n m n m +⨯=+,化简后可得:8m n =, 即有新增摊位数量为8n ,餐饮区新增摊位数量为4n ,且6月份下调后的餐饮区、百货区和杂项区每个摊位每月的管理费分别为:40元、30元、20元,由此可得百货区和杂项区6月份的管理费为:650(54)40290n n n n -+⨯=(元), 百货区和杂项区没新增摊位数量时管理费为:430320180n n n ⨯+⨯=(元), 则百货区和杂项区新增的摊位数量管理费为:290180110n n n -=(元),当百货区新增3n ,杂项区新增n 时,满足条件,所以百货区新增的摊位数量与该夜市总摊位数量之比是3:(128)3:203:20n n n n n +==.故答案为:3:20.【点睛】本题考查不定方程的应用,注意掌握根据条件得出n 和m 的关系以及利用市场管理处6月份收到的管理费比5月份增加了112建立关系式,进行代入分析是解答本题的关键. 14.824【分析】先求出100克A 原料和100克B 原料的成本和,再设100克A 原料的成本为m 元,则100克B 种原料的成本为元,生产甲产品x 份,乙产品y 份,根据题意列方程求出【详解】解:∵甲产品每解析:824【分析】先求出100克A 原料和100克B 原料的成本和,再设100克A 原料的成本为m 元,则100克B 种原料的成本为(8)m -元,生产甲产品x 份,乙产品y 份,根据题意列方程求出【详解】解:∵甲产品每份含200克A 、200克B ,甲产品每份成本价为16元∴100克A 原料和100克B 原料的成本为8元设100克A 原料的成本为m 元,则100克B 种原料的成本为(8)m -元,生产甲产品x 份,乙产品y 份,根据题意可得出:[]4312016(28)162(8)688x y x m m y x m m y +≤⎧⎨++-=+-++⎩整理得出:4344my y =+∴餐厅每天实际成本16(8)1612344W x m y x y =++=++∵43120x y +≤∴1612480x y +≤∴餐厅每天实际成本的最大值为:480344824+=(元).故答案为:824.【点睛】本题考查的知识点是二元一次方程组的应用,读懂题意,理清题目中的各关系量是解此题的关键.15.201【分析】根据能开平方的数一定是非负数,得199-x-y≥0,x-199+y≥0,所以199-x-y=x-199+y=0,即x+y=199①,从而有=0,再根据算术平方根的非负性可得出3x+解析:201【分析】根据能开平方的数一定是非负数,得199-x-y≥0,x-199+y≥0,所以199-x-y=x-199+y=0,即x+y=199,再根据算术平方根的非负性可得出3x+5y-2-m=0②,2x+3y-m=0③,联立①②③解方程组可得出m的值.【详解】解:由题意可得,199-x-y≥0,x-199+y≥0,∴199-x-y=x-199+y=0,∴x+y=199①.=0,∴3x+5y-2-m=0②,2x+3y-m=0③,联立①②③得,1993520 230x yx y mx y m+=⎧⎪+--=⎨⎪+-=⎩①②③,②×2-③×3得,y=4-m,将y=4-m代入③,解得x=2m-6,将x=2m-6,y=4-m代入①得,2m-6+4-m=199,解得m=201.故答案为:201.【点睛】本题考查了算术平方根的非负性以及方程组的解法,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.16.34%【分析】由题意得出A型、B型、C型三种型号产品利润率分别为20%,30%,45%,设A 型、B型、C型三种型号产品原来的成本为a,A产品原销量为x,B产品原销量为y,C产品原销量为z,由题意解析:34%【分析】由题意得出A型、B型、C型三种型号产品利润率分别为20%,30%,45%,设A型、B 型、C型三种型号产品原来的成本为a,A产品原销量为x,B产品原销量为y,C产品原销量为z,由题意列出方程组,解得13x zy z⎧=⎪⎨⎪=⎩;第二个季度A产品成本为(1+25%)a=54a,B、C的成本仍为a,A产品销量为(1+20%)x=65x,B产品销量为y,C产品销量为z,则第二个季度的总利润率为:5620%30%45%455645a x ay aza x ay az⨯⨯++⨯++=34%.【详解】解:由题意得:A型、B型、C型三种型号产品利润率分别为20%,30%,45%,设A型、B型、C型三种型号产品原来的成本为a,A产品原销量为x,B产品原销量为y,C产品原销量为z,由题意得:20%ax30%ay45%az35%a(x y z)3(x y z)z7++=++⎧⎪⎨++=⎪⎩,解得:13x zy z⎧=⎪⎨⎪=⎩,第二个季度A产品的成本提高了25%,成本为:(1+25%)a=54a,B、C的成本仍为a,A产品销量为(1+20%)x=65x,B产品销量为y,C产品销量为z,∴第二个季度的总利润率为:5620%30%45%455645a x ay aza x ay az⨯⨯++⨯++=0.30.30.451.5x y zx y z++++=10.30.30.45311.53z z zz z z⨯++⨯++=34%,故答案为:34%.【点睛】本题考查了利用二元一次方程组解实际问题,正确理解题意,设出未知数列出方程组是解题的关键.17.4【分析】将方程组的解代入得的新的二元一次方程,然后观察发现,运用作差法即可完成解答.【详解】解:把代入方程组得:,①+②得:3m+n=4,故答案为4【点睛】本题考查了方程组的解解析:4【分析】将方程组的解代入20234x y x y -=⎧⎨+=⎩得的新的二元一次方程,然后观察发现,运用作差法即可完成解答.【详解】解:把x m y n =⎧⎨=⎩代入方程组得: 20234m n m n -=⎧⎨+=⎩①②, ①+②得:3m +n =4,故答案为4【点睛】本题考查了方程组的解的作用.将方程组的解代入方程组的解后,可以求出未知数,然后进行计算;但认真观察整体变换求得的结果,准确率更高.18.【分析】本题可设x 道难题,y 道中档题,z 道容易题,因为小明、小林和小颖共解出100道数学题,所以x+y+z =100①,又因每人都解出了其中的60道,只有1人解出的题叫做难题,2人解出的题叫做中档解析:【分析】本题可设x 道难题,y 道中档题,z 道容易题,因为小明、小林和小颖共解出100道数学题,所以x+y+z =100①,又因每人都解出了其中的60道,只有1人解出的题叫做难题,2人解出的题叫做中档题,3人都解出的题叫做容易题,所以有x+2y+3z =180②,①×2-②,得x-z =20,所以难题比容易题多20道.【详解】设x 道难题,y 道中档题,z 道容易题。
二元一次方程组专项练习100道

二元一次方程组练习题100道(卷一)(范围:代数: 二元一次方程组)一、判断1、⎪⎩⎪⎨⎧-==312y x 是方程组⎪⎪⎩⎪⎪⎨⎧=-=-910326523y x y x 的解 …………( ) 2、方程组⎩⎨⎧=+-=5231y x xy 的解是方程3x -2y =13的一个解( )3、由两个二元一次方程组成方程组一定是二元一次方程组( )4、方程组⎪⎪⎩⎪⎪⎨⎧=-++=+++25323473523y x y x ,可以转化为⎩⎨⎧-=--=+27651223y x y x ( )5、若(a 2-1)x 2+(a -1)x +(2a -3)y =0是二元一次方程,则a 的值为±1( )6、若x +y =0,且|x |=2,则y 的值为2 …………( )7、方程组⎩⎨⎧=+-=+81043y x xm my mx 有唯一的解,那么m 的值为m ≠-5 …………( )8、方程组⎪⎩⎪⎨⎧=+=+623131y x y x 有无 …………( )9、x +y =5且x ,y 的绝对值都小于5的整数解共有5组 …………( ) 10、方程组⎩⎨⎧=+=-3513y x y x 的解是方程x +5y =3的解,反过来方程x +5y =3的解也是方程组⎩⎨⎧=+=-3513y x y x 的解 ………( ) 11、若|a +5|=5,a +b =1则32-的值为b a ………()12、在方程4x -3y =7里,如果用x 的代数式表示y ,则437yx +=( ) 二、选择:13、任何一个二元一次方程都有( ) (A )一个解; (B )两个解; (C )三个解;(D )无数多个解;14、一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有( ) (A )5个 (B )6个(C )7个(D )8个15、如果⎩⎨⎧=+=-423y x ay x 的解都是正数,那么a 的取值范围是( )(A )a <2; (B )34->a ; (C )342<<-a ; (D )34-<a ;16、关于x 、y 的方程组⎩⎨⎧=-=+m y x my x 932的解是方程3x +2y =34的一组解,那么m 的值是( )(A )2;(B )-1; (C )1; (D )-2;17、在下列方程中,只有一个解的是( ) (A )⎩⎨⎧=+=+0331y x y x(B )⎩⎨⎧-=+=+2330y x y x(C )⎩⎨⎧=-=+4331y x y x(D )⎩⎨⎧=+=+3331y x y x18、与已知二元一次方程5x -y =2组成的方程组有无数多个解的方程是( ) (A )15x -3y =6 (B )4x -y =7(C )10x +2y =4(D )20x -4y =319、下列方程组中,是二元一次方程组的是( )(A )⎪⎩⎪⎨⎧=+=+9114y x y x(B )⎩⎨⎧=+=+75z y y x(C )⎩⎨⎧=-=6231y x x(D )⎩⎨⎧=-=-1y x xyy x20、已知方程组⎩⎨⎧-=+=-135b y ax y x 有无数多个解,则a 、b 的值等于( )(A )a =-3,b =-14 (B )a =3,b =-7 (C )a =-1,b =9(D )a =-3,b =1421、若5x -6y =0,且xy ≠0,则yx yx 3545--的值等于( )(A )32 (B )23 (C )1 (D )-122、若x 、y 均为非负数,则方程6x =-7y 的解的情况是( ) (A )无解(B )有唯一一个解 (C )有无数多个解(D )不能确定23、若|3x +y +5|+|2x -2y -2|=0,则2x 2-3xy 的值是( ) (A )14(B )-4(C )-12(D )1224、已知⎩⎨⎧-==24y x 与⎩⎨⎧-=-=52y x 都是方程y =kx +b 的解,则k 与b 的值为( )(A )21=k ,b =-4 (B )21-=k ,b =4(C )21=k ,b =4 (D )21-=k ,b =-4三、填空:25、在方程3x +4y =16中,当x =3时,y =________,当y =-2时,x =_______ 若x 、y 都是正整数,那么这个方程的解为___________; 26、方程2x +3y =10中,当3x -6=0时,y =_________;27、如果0.4x -0.5y =1.2,那么用含有y 的代数式表示的代数式是_____________; 28、若⎩⎨⎧-==11y x 是方程组⎩⎨⎧-=-=+1242a y x b y ax 的解,则⎩⎨⎧==______________b a ; 29、方程|a |+|b |=2的自然数解是_____________; 30、如果x =1,y =2满足方程141=+y ax ,那么a =____________; 31、已知方程组⎩⎨⎧-=+=+my x ay x 26432有无数多解,则a =______,m =______;32、若方程x -2y +3z =0,且当x =1时,y =2,则z =______; 33、若4x +3y +5=0,则3(8y -x )-5(x +6y -2)的值等于_________;□x +5y =13 ①34、若x +y =a ,x -y =1同时成立,且x 、y 都是正整数,则a 的值为________; 35、从方程组)0(030334≠⎩⎨⎧=+-=--xyz z y x z y x 中可以知道,x :z =_______;y :z =________;36、已知a -3b =2a +b -15=1,则代数式a 2-4ab +b 2+3的值为__________; 四、解方程组37、⎪⎪⎩⎪⎪⎨⎧=-=-1332343n m nm ; 38、)(6441125为已知数a a y x a y x ⎩⎨⎧=-=+; 39、⎪⎪⎩⎪⎪⎨⎧=++=+125432y x yx y x ; 40、⎪⎩⎪⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x ; 41、⎪⎪⎩⎪⎪⎨⎧++=++=+=+6253)23(22)32(32523233y x y x yx y x ; 42、⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x ; 43、⎪⎩⎪⎨⎧=-+-=-+=-+3113y x z x z y z y x ; 44、⎪⎩⎪⎨⎧=+=+=+101216x z z y y x ;45、⎪⎩⎪⎨⎧=-+=+-=-+35351343z y x z y x z y x ; 46、⎪⎩⎪⎨⎧=+-==30325:3:7:4:z y x z x y x ;五、解答题:47、甲、乙两人在解方程组 时,甲看错了①式中的x 的系数,解得⎪⎪⎩⎪⎪⎨⎧==475847107y x ;乙看错了方程②中的y 的系数,解得⎪⎪⎩⎪⎪⎨⎧==19177681y x ,若两人的计算都准确无误,请写出这个方程组,并求出此方程组的解;48、使x +4y =|a |成立的x 、y 的值,满足(2x +y -1)2+|3y -x |=0,又|a |+a =0,求a 的值; 49、代数式ax 2+bx +c 中,当x =1时的值是0,在x =2时的值是3,在x =3时的值是28,试求出这个代数式;50、要使下列三个方程组成的方程组有解,求常数a 的值。
二元一次方程组竞赛题集(答案 解析)

二元一次方程组典型例题【例1】已知方程组的解x,y满足方程5x-y=3,求k的值.【思考与分析】本题有三种解法,前两种为一般解法,后一种为巧解法.(1)由已知方程组消去k,得x与y的关系式,再与5x-y=3联立组成方程组求出x,y的值,最后将x,y的值代入方程组中任一方程即可求出k的值.(2)把k当做已知数,解方程组,再根据5x-y=3建立关于k的方程,便可求出k的值.(3)将方程组中的两个方程相加,得5x-y=2k+11,又知5x-y=3,所以整体代入即可求出k的值.把代入①,得,解得k=-4.解法二:①×3-②×2,得17y=k-22,解法三:①+②,得5x-y=2k+11.又由5x-y=3,得2k+11=3,解得k=-4.【小结】解题时我们要以一般解法为主,特殊方法虽然巧妙,但是不容易想到,有思考巧妙解法的时间,可能这道题我们已经用一般解法解了一半了,当然,巧妙解法很容易想到的话,那就应该用巧妙解二元一次方程组能力提升讲义知识提要1. 二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a 的解的情况有以下三种:① 当212121c c b b a a ==时,方程组有无数多解。
(∵两个方程等效) ② 当212121c c b b a a ≠=时,方程组无解。
(∵两个方程是矛盾的) ③ 当2121b b a a ≠(即a 1b 2-a 2b 1≠0)时,方程组有唯一的解: ⎪⎪⎩⎪⎪⎨⎧--=--=1221211212211221b a b a a c a c y b a b a b c b c x (这个解可用加减消元法求得)2. 方程的个数少于未知数的个数时,一般是不定解,即有无数多解,若要求整数解,可按二元一次方程整数解的求法进行。
3. 求方程组中的待定系数的取值,一般是求出方程组的解(把待定系数当己知数),再解含待定系数的不等式或加以讨论。
七年级下学期数学《 二元一次方程组考试试题》含答案.百度文库

七年级下学期数学《 二元一次方程组考试试题》含答案.百度文库一、选择题1.某校运动员分组训练,若每组7人,则余3人:若每组8人,则缺5人.设运动员人数为x 人,组数为y 组,则可列方程为( )A .7385y x y x =+⎧⎨=+⎩B .7385y x y x =+⎧⎨+=⎩C .7385y x y x =-⎧⎨+=⎩D .7385y x y x =-⎧⎨=+⎩2.古代一歌谣:栖树一群鸦,鸦树不知数:三个坐一棵,五个地上落;五个坐一棵,闲了一棵树.请你动脑筋,鸦树各几何?若设乌鸦有x 只,树有y 棵,由题意可列方程组( )A .3551y xy x +=⎧⎨-=⎩B .3551y xy x -=⎧⎨=-⎩C .15355x y y x ⎧+=⎪⎨⎪=-⎩D .5315x y x y -⎧=⎪⎪⎨⎪=-⎪⎩3.《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x 尺,绳子长为y 尺,则所列方程组正确的是( )A . 4.50.51y x y x =-⎧⎨=+⎩B . 4.521y x y x =+⎧⎨=-⎩C . 4.50.51y x y x =+⎧⎨=+⎩D . 4.521y x y x =-⎧⎨=-⎩4.二元一次方程2x+3y=15的正整数解的个数是( )A .1个B .2个C .3个D .4个5.下列各组数是二元一次方程371x y y x +=⎧⎨-=⎩的解是( )A .12x y =⎧⎨=⎩B .01x y =⎧⎨=⎩ C .70x y =⎧⎨=⎩D .12x y =⎧⎨=-⎩6.六(2)班学生进行小组合作学习,老师给他们分组:如果每组6人,那么会多出3人;如果每组7人,那么有一组少4人.如果六(2)班学生数为x 人,分成y 组,那么可得方程组为( ) A .6374y x y x =-⎧⎨=+⎩B .6374y x y x =+⎧⎨=+⎩C .6374x yx y +=⎧⎨-=⎩D .6374y x y x =+⎧⎨+=⎩7.已知10a b +=,6a b -=,则22a b -的值是( ) A .12B .60C .60-D .12-8.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路,她去学校共用了16分钟,假设小颖上坡路的平均速度是3千米/小时,下坡路的平均速度是5千米/小时,若设小颖上坡用了min x ,下坡用了min y ,根据题意可列方程组( )A .35120016x y x y +=⎧⎨+=⎩B .35 1.2606016x y x y ⎧+=⎪⎨⎪+=⎩ C .35 1.216x y x y +=⎧⎨+=⎩D .351200606016x y x y ⎧+=⎪⎨⎪+=⎩ 9.甲是乙现在的年龄时,乙10岁,乙是甲现在的年龄时,甲25岁,那么( ) A .甲比乙大5岁 B .甲比乙大10岁 C .乙比甲大10岁D .乙比甲大5岁10.某工厂现有95个工人,一个工人每天可做8个螺杆或22个螺母,两个螺母和一个螺杆为一套,现在要求工人每天做的螺杆和螺母完整配套而没有剩余,若设安排x 个工人做螺杆,y 个工人做螺母,则列出正确的二元一次方程组为( ) A .; B .; C .; D .11.由方程组71x m y m +⎧⎨-⎩==可得出x 与y 的关系式是( )A .x+y=8B .x+y=1C .x+y=-1D .x+y=-8 12.若x m﹣n ﹣2y m+n ﹣2=2007,是关于x ,y 的二元一次方程,则m ,n 的值分别是( )A .m=1,n=0B .m=0,n=1C .m=2,n=1D .m=2,n=3二、填空题13.如图,在平面直角坐标系xOy 中,对正方形ABCD 及其内部的每个点进行如下操作:把每个点的橫、纵坐标都乘以同一种实数a ,将得到的点先向右平移m 个单位,再向上平移n 个单位(m >0,n >0),得到正方形A ′B ′C ′D ′及其内部的点,其中点A ,B 的对应点分别为A ′,B ′,则a =_____,m =_____,n =_____.若正方形ABCD 内部的一个点F 经过上述操作后得到的对应点F ′与点F 重合,则点F 的坐标为_____.14.三位先生A 、B 、C 带着他们的妻子a 、b 、c 到超市购物,至于谁是谁的妻子现在只能从下列条件来推测:他们6人,每人花在买商品的钱数(单位:元)正好等于商品数量的平方,而且每位先生都比自己的妻子多花48元钱,又知先生A 比b 多买9件商品,先生B 比a 多买7件商品.则先生C 购买的商品数量是________.15.有甲乙丙三堆苹果共432个,第一次从甲堆中拿出乙堆的个数给乙,第二次从乙堆中拿出丙堆的个数放入丙堆,第三次从丙堆中拿出现在的甲堆个数放入甲堆,最后甲乙丙三堆苹果数相等,则甲堆原来有____个苹果.16.已知对任意a b ,关于x y ,的三元一次方程()()a b x a b y a b --+=+只有一组公共解,求这个方程的公共解_____________.17.将108个苹果放到一些盒子中,盒子有三种规格:一种可以装10个苹果,一种可以装9个苹果,一种可以装6个苹果,要求每种规格都要有且每个盒子均恰好装满,则不同的装法总数为_____.18.2018年10月21日,重庆市第八届中小学艺术工作坊在渝北区空港新城小学体育馆开幕,来自全重庆市各个区县共二十多个工作坊集中展示了自己的艺术特色.组委会准备为现场展示的参赛选手购买三种纪念品,其中甲纪念品5元/件,乙纪念品7元/件,丙纪念品10元/件.要求购买乙纪念品数量是丙纪念品数量的2倍,总费用为346元.若使购买的纪念品总数最多,则应购买纪念品共_____件.19.如图,长方形ABCD 被分成若干个正方形,已知32cm AB =,则长方形的另一边AD =_________cm .20.在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收人,经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,是根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的916种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的1940.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是____.21.已知三个方程构成的方程组230xy y x --=,350yz z y --=,520xz x z --=,恰有一组非零解x a =,y b =,z c =,则222a b c ++=________. 22.a 与b 互为相反数,且4a b -=,那么211a ab a ab -+++=_______.23.对任意一个三位数n ,如果n 满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F (n ).例如n =123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F (123)=6. (1)计算:F (241)=_________,F (635)=___________ ;(2)若s ,t 都是“相异数”,其中s =100x +32,t =150+y (1≤x ≤9,1≤y ≤9,x ,y 都是正整数),规定:()()F s k F t =,当F (s )+F (t )=18时,则k 的最大值是___. 24.若m 1,m 2,…m 2016是从0,1,2这三个数中取值的一列数,若m 1+m 2+…+m 2016=1546, (m 1﹣1)2+(m 2﹣1)2+…+(m 2016﹣1)2=1510,则在m 1,m 2,…m 2016中,取值为2的个数为____.三、解答题25.为了节能减排,我市某校准备购买某种品牌的节能灯,已知3只A 型节能灯和5只B 型节能灯共需50元,2只A 型节能灯和3只B 型节能灯共需31元. (1)求1只A 型节能灯和1只B 型节能灯的售价各是多少元?(2)学校准备购买这两种型号的节能灯共200只,要求A 型节能灯的数量不超过B 型节能灯的数量的3倍,请设计出最省钱的购买方案,并说明理由. 26.[阅读材料]善于思考的小明在解方程组253(1)4115(2)x y x y +=⎧⎨+=⎩时,采用了一种“整体代换”的解法:解:将方程(2)变形:4105x y y ++=,即()2255(3)x y y ++=,把方程(1)代入(3)得:235y ⨯+=, 所以1y =-,将1y =-代入(1)得4x =, 所以原方程组的解为41x y =⎧⎨=-⎩.[解决问题](1)模仿小明的“整体代换”法解方程组3259419x y x y -=⎧⎨-=⎩,(2)已知x ,y 满足方程组2222321250425x xy y x xy y ⎧-+=⎨++=⎩,求224x y +的值. 27.当,m n 都是实数,且满足28m n =+,就称点21,2n P m +⎛⎫- ⎪⎝⎭为“爱心点”. (1)判断点()5,3A 、()4,8B 哪个点为“爱心点”,并说明理由;(2)若点(),4A a -、()4,B b 是“爱心点”,请判断A 、B 两点的中点C 在第几象限?并说明理由;(3)已知P 、Q 为有理数,且关于x 、y的方程组3x y qx y q⎧+=+⎪⎨-=-⎪⎩解为坐标的点(),B x y 是“爱心点”,求p 、q 的值.28.对x ,y 定义一种新运算T ,规定()22,ax byT x y a y+=+(其中a ,b 是非零常数且0x y +≠),这里等式右边是通常的四则运算.如:()223193,1314a b a b T ⨯+⨯+==+,()24,22am bT m m +-=-. (1)填空:()4,1T =_____(用含a ,b 的代数式表示); (2)若()2,02T -=-且()5,16T -=. ①求a 与b 的值;②若()()310,33,310T m m T m m --=--,求m 的值. 29.平面直角坐标系中,A (a ,0),B (0,b ),a ,b 满足2(25)220a b a b ++++-=,将线段AB 平移得到CD ,A ,B 的对应点分别为C ,D ,其中点C 在y 轴负半轴上.(1)求A ,B 两点的坐标;(2)如图1,连AD 交BC 于点E ,若点E 在y 轴正半轴上,求BE OEOC-的值; (3)如图2,点F ,G 分别在CD ,BD 的延长线上,连结FG ,∠BAC 的角平分线与∠DFG 的角平分线交于点H ,求∠G 与∠H 之间的数量关系.30.为鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息,请解答: 自来水销售价格 每户每月用水量 单位:元/吨15吨及以下a超过15吨但不超过25吨的部分 b超过25吨的部分5(1)小王家今年3月份用水20吨,要交水费___________元;(用a ,b 的代数式表示) (2)小王家今年4月份用水21吨,交水费48元;邻居小李家4月份用水27吨,交水费70元,求a ,b 的值.(3)在第(2)题的条件下,若交水费76.5元,求本月用水量.(4)在第(2)题的条件下,小王家5月份用水量与4月份用水量相同,却发现要比4月份多交9.6元钱水费,小李告诉小王说:“水价调整了,表中表示单位的a ,b 的值分别上调了整数角钱(没超过1元),其他都没变.”到底上调了多少角钱呢?请你帮小王求出符合条件的所有可能情况.31.为了拉动内需,全国各地汽车购置税补贴活动正式开始.重庆长安汽车经销商在出台前一个月共售出长安SUV 汽车SC35的手动型和自动型共960台,政策出台后的第一月售出这两种型号的汽车共1228台,其中手动型和自动型汽车的销售量分别比政策出台前一个月增长30%和25%.(1)在政策出台前一个月,销售的手动型和自动型汽车分别为多少台;(2)若手动型汽车每台价格为9万元,自动型汽车每台价格为10万元.根据汽车补贴政策,政府按每台汽车价格的5%给购买汽车的用户补贴,问政策出台后的第一个月,政府对这1228台汽车用户共补贴了多少万元.32.某商贸公司有A 、B 两种型号的商品需运出,这两种商品的体积和质量分别如下表所示:体积(立方米/件) 质量(吨/件) A 型商品0.8 0.5 B 型商品21(1)已知一批商品有A 、B 两种型号,体积一共是20立方米,质量一共是10.5吨,求A 、B 两种型号商品各有几件?(2)物资公司现有可供使用的货车每辆额定载重3.5吨,容积为6立方米,其收费方式有以下两种:①按车收费:每辆车运输货物到目的地收费600元; ②按吨收费:每吨货物运输到目的地收费200元.现要将(1)中商品一次或分批运输到目的地,如果两种收费方式可混合使用,商贸公司应如何选择运送、付费方式,使其所花运费最少,最少运费是多少元? 33.如图,已知()0,A a ,(),0Bb ,且满足|4|60a b -++=.(1)求A 、B 两点的坐标;(2)点(),C m n 在线段AB 上,m 、n 满足5n m -=,点D 在y 轴负半轴上,连CD 交x 轴的负半轴于点M ,且MBC MOD S S ∆∆=,求点D 的坐标;(3)平移直线AB ,交x 轴正半轴于E ,交y 轴于F ,P 为直线EF 上第三象限内的点,过P 作PG x ⊥轴于G ,若20PAB A ∆=,且12GE =,求点P 的坐标.34.已知:用3辆A 型车和2辆B 型车载满货物一次可运货17吨;用2辆A 型车和3辆B 型车载满货物一次可运货l8吨,某物流公刊现有35吨货物,计划同时租用A 型车a 辆,B 型车b 辆,一次运完,且恰好每辆车都载满货物. 根据以上信息,解答下列问题:(1)l 辆A 型车和l 辆B 型车都载满货物一次可分别运货多少吨? (2)请你帮该物流公司设计租车方案;(3)若A 型车每辆需租金200元/次,B 型车每辆需租金240元/次,请选出最省钱的租车方案,并求出最少租车费.35.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.如表是该市居民“一户一表”生活用水及提示计费价格表的部分信息: (说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费用)已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元. (1)求 a 、 b 的值;(2)随着夏天的到来,用水量将增加.为了节省开支,小王计划把6月份的水费控制在不超过家庭月收入的2%.若小王家的月收入为9200元,则小王家6月份最多能用水多少吨?自来水销售价格 污水处理价格 每户每月用水量 单价:元/吨 单价:元/吨 17吨以下a 0.80 超过17吨但不超过30吨部分b 0.80 超过30吨的部分6.000.8036.甲、乙两人共同解方程组51542ax y x by +=⎧⎨-=-⎩①②.解题时由于甲看错了方程①中的a ,得到方程组的解为31x y =-⎧⎨=-⎩;乙看错了方程②中的b ,得到方程组的54x y =⎧⎨=⎩,试计算a 2017+(110-b)2018的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据关键语句“若每组7人,余3人”可得方程7y +3−x ;“若每组8人,则缺5人.”可得方程8y−5=x ,联立两个方程可得方程组. 【详解】解:设运动员人数为x 人,组数为y 组,由题意得: 列方程组为7385y x y x -⎧⎨+⎩== 故选D . 【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,抓住关键语句,列出方程.2.D解析:D 【分析】根据“三个坐一棵,五个地上落;五个坐一棵,闲了一棵树”,即可得出关于x ,y 的二元一次方程组,此题得解. 【详解】解:设乌鸦有x 只,树有y 棵,依题意,得:5315xyxy-⎧=⎪⎪⎨⎪=-⎪⎩.故选:D.【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.3.C解析:C【分析】根据题中的等量关系即可列得方程组.【详解】设木头长为x尺,绳子长为y尺,∵用一根绳子去量一根木头的长、绳子还剩余4.5尺,∴y=x+4.5,∵将绳子对折再量木头,则木头还剩余1尺,∴0.5y=x+1,故选:C.【点睛】此题考查二元一次方程组的实际应用,正确理解题意找到题目中绳子和木头之间的等量关系是解题的关键.4.B解析:B【详解】解:2x+3y=15,解得:x=3152y-+,当y=1时,x=6;当y=3时,x=3,则方程的正整数解有2对.故选:B5.A解析:A【解析】分析:所谓“方程组”的解,指的是该数值满足方程组中的每一方程.此题直接解方程组或运用代入排除法作出选择.详解:∵y﹣x=1,∴y=1+x.代入方程x+3y=7,得:x+3(1+x)=7,即4x=4,∴x=1,∴y=1+x=1+1=2.∴解为12x y =⎧⎨=⎩.故选A .点睛:本题要注意方程组的解的定义.6.A解析:A 【分析】设学生数为x 人,分成y 组,根据组数和总人数的数量关系建立方程组求解即可. 【详解】设学生数为x 人,分成y 组,由题意知如果每组6人,那么多出3人,可得出:63y x =-, 如果每组7人,组数固定,那么有一组少4人,可得出:74y x =+,故有:6374y x y x =-⎧⎨=+⎩.故选:A . 【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.7.B解析:B 【分析】先利用加减消元法解方程组106a b a b +=⎧⎨-=⎩可得a 、b 的值,再代入求值即可得.【详解】由题意得:106a b a b +=⎧⎨-=⎩,解得82a b =⎧⎨=⎩,则22222864460a b -==-=-, 故选:B . 【点睛】本题考查了解二元一次方程组、有理数的乘方和减法运算,掌握方程组的解法是解题关键.8.B解析:B 【分析】根据路程=时间乘以速度得到方程35 1.26060x y +=,再根据总时间是16分钟即可列出方程组.【详解】∵她去学校共用了16分钟,∴x+y=16,∵小颖家离学校1200米, ∴35 1.26060x y +=, ∴35 1.2606016x y x y ⎧+=⎪⎨⎪+=⎩, 故选:B.【点睛】此题考查二元一次方程组的实际应用,正确理解题意列出方程组,注意时间单位,这是解题中容易出现错误的地方.9.A解析:A【分析】设甲现在的年龄是x 岁,乙现在的年龄是y 岁,根据已知甲是乙现在的年龄时,乙10岁.乙是甲现在的年龄时,甲25岁,可列方程求解.【详解】解:甲现在的年龄是x 岁,乙现在的年龄是y 岁,由题意可得:1025x y y x y x -=-⎧⎨-=-⎩即210225x y x y -=-⎧⎨-=⎩由此可得,3()15x y -=,∴5x y -=,即甲比乙大5岁.故选:A .【点睛】本题考查了二元一次方程组的应用,重点考查理解题意的能力,甲、乙年龄无论怎么变,年龄差是不变的.10.C解析:C【解析】试题分析:设安排x 个工人做螺杆,y 个工人做螺母,根据“工厂现有95个工人”和“一个工人每天可做8个螺杆或22个螺母,两个螺母和一个螺杆为一套”列出方程组即可得到95{16220x y x y +=-= . 故选:C 点睛:此题主要考查了由实际问题抽象出二元一次方程组,关键是弄清题意,找出合适的等量关系,列出方程组.11.A解析:A【分析】将第二个方程代入第一个方程消去m 即可得.【详解】71x m y m +⎧⎨-⎩=①=②,将②代入①,得:x+y-1=7,则x+y=8,故选A . 【点睛】本题考查了解一元一次方程和二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.12.C解析:C【分析】根据二元一次方程的定义,列出关于m 、n 的方程组,然后解方程组即可.【详解】解:根据题意,得121m n m n -=⎧⎨+-=⎩, 解得21m n =⎧⎨=⎩. 故选:C .二、填空题13.(1,4)【分析】首先根据点A 到A′,B 到B′的点的坐标可得方程组 , ,解可得a 、m 、n 的值,设F 点的坐标为(x ,y ),点F′点F 重合可列出方程组,再解可得F 点坐标.【详解】由点A 解析:1212(1,4) 【分析】首先根据点A到A′,B到B′的点的坐标可得方程组312a mn-+=-⎧⎨=⎩,322a mn+=⎧⎨=⎩,解可得a、m、n的值,设F点的坐标为(x,y),点F′点F重合可列出方程组,再解可得F点坐标.【详解】由点A到A′,可得方程组312a mn-+=-⎧⎨=⎩;由B到B′,可得方程组322a mn+=⎧⎨=⎩,解得12122amn⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩,设F点的坐标为(x,y),点F′点F重合得到方程组1122122x xy y ⎧+=⎪⎪⎨⎪+=⎪⎩,解得14 xy=⎧⎨=⎩,即F(1,4),故答案为:12,12,2,(1,4).【点睛】本题主要考查了坐标与图形变化-平移以及二元一次方程组的应用,关键是正确理解题意,根据点的坐标列出方程组.14.7件.【分析】设一对夫妻,丈夫买了x件商品,妻子买了y件商品,列出关于x、y的二元二次方程,再根据x、y都是正整数,且x+y与x-y有相同的奇偶性,即可得出关于x、y的二元一次方程组,求出x、y解析:7件.【分析】设一对夫妻,丈夫买了x件商品,妻子买了y件商品,列出关于x、y的二元二次方程,再根据x、y都是正整数,且x+y与x-y有相同的奇偶性,即可得出关于x、y的二元一次方程组,求出x、y的值,再找出符合x-y=9和x-y=7的情况即可进行解答.【详解】解:设一对夫妻,丈夫买了x 件商品,妻子买了y 件商品.则有x 2-y 2=48,即(x 十y )(x-y )=48.∵x 、y 都是正整数,且x+y 与x-y 有相同的奇偶性,又∵x+y >x-y ,48=24×2=12×4=8×6,∴242x y x y +⎧⎨-⎩==或124x y x y +⎧⎨-⎩==或86x y x y +⎧⎨-⎩==. 解得x=13,y=11或x=8,y=4或x=7,y=1.符合x-y=9的只有一种,可见A 买了13件商品,b 买了4件.同时符合x-y=7的也只有一种,可知B 买了8件,a 买了1件.∴C 买了7件,c 买了11件.故答案为:7件.【点睛】此题考查了非一次不定方程的性质.解题的关键是理解题意,根据题意列方程,还要注意分类讨论思想的应用.15.【分析】可设甲堆原来有x 个苹果,乙堆原来有y 个苹果,丙堆原来有z 个苹果,根据等量关系:甲乙丙三堆苹果共432个,第一次从甲堆中拿出乙堆的个数给乙,第二次从乙堆中拿出丙堆的个数放入丙堆,第三次从丙解析:【分析】可设甲堆原来有x 个苹果,乙堆原来有y 个苹果,丙堆原来有z 个苹果,根据等量关系:甲乙丙三堆苹果共432个,第一次从甲堆中拿出乙堆的个数给乙,第二次从乙堆中拿出丙堆的个数放入丙堆,第三次从丙堆中拿出现在的甲堆个数放入甲堆,最后甲乙丙三堆苹果数相等,列出方程即可求解.【详解】解:设甲堆原来有x 个苹果,乙堆原来有y 个苹果,丙堆原来有z 个苹果,依题意有 ()432x y z x y x y y y z z z x y ++=⎧⎨-+-=+-=+--⎩, 解得19812688x y z =⎧⎪=⎨⎪=⎩.故甲堆原来有198个苹果.故答案为:198.【点睛】考查了三元一次方程组的应用,在解决实际问题时,若未知量较多,要考虑设三个未知数,但同时应注意,设几个未知数,就要找到几个等量关系列几个方程.16.【分析】先把原方程化为的形式,再分别令a ,b 的系数为0,即可求出答案.【详解】解:由已知得:∴两式相加得:,即,把代入得到,,故此方程组的解为:.故答案为:.【点睛】本题主要考解析:01x y =⎧⎨=-⎩【分析】先把原方程化为(1)(1)0a x y b x y ---++=的形式,再分别令a ,b 的系数为0,即可求出答案.【详解】解:由已知得:(1)(1)0a x y b x y ---++=∴1010x y x y --=⎧⎨++=⎩两式相加得:20x =,即0x =,把0x =代入10x y --=得到,1y =-,故此方程组的解为:01x y =⎧⎨=-⎩. 故答案为:01x y =⎧⎨=-⎩. 【点睛】 本题主要考查的知识点是三元一次方程组的问题,运用三元一次方程组的解法的知识进行计算,即可解答.17.【分析】先列出方程10x+9y+6z =108,再根据x ,y ,z 是正整数,进行计算即可得出结论.【详解】解:设装10个苹果的有x 盒,装9个苹果的有y 盒,装6个苹果的有z 盒, ∵每种规格都要有且解析:【分析】先列出方程10x+9y+6z =108,再根据x ,y ,z 是正整数,进行计算即可得出结论.【详解】解:设装10个苹果的有x盒,装9个苹果的有y盒,装6个苹果的有z盒,∵每种规格都要有且每个盒子均恰好装满,∴0<x<10,0<y≤11,0<z≤15,且x,y,z都是整数,则10x+9y+6z=108,∴x=1089610--y z=3(3632)10--y z,∵0<x<10,且为整数,∴36﹣3y﹣2z是10的倍数,即:36﹣3y﹣2z=10或20或30,当36﹣3y﹣2z=10时,y=2623-z,∵0<y≤11,0<z≤15,且y,z都为整数,∴26﹣2z=3或6或9或12或15或18或21或24,∴z=232(舍)或z=10或z=172(舍)或z=7或z=112(舍)或z=4或z=52(舍)或z=1,当z=10时,y=2,x=3,当z=7时,y=4,x=3,当z=4时,y=8,x=3当z=1时,y=8,x=3,当36﹣3y﹣2z=20时,y=1623-z,∵0<y≤11,0<z≤15,且y,z都为整数,∴16﹣2z=3或6或9或12或15或18或21或24,∴z=132(舍)或z=5或z=72(舍)或z=2或z=12(舍)当z=5时,y=2,x=6,当z=2时,y=4,x=6,当36﹣3y﹣2z=30时,y=623-z,∵0<y≤11,0<z≤15,且y,z都为整数,∴6﹣2z=3,∴z=32(舍)即:满足条件的不同的装法有6种,故答案为6.【点睛】此题主要考查了三元一次方程,整除问题,分类讨论时解本题的关键.18.62【分析】设购买甲纪念品x件,丙纪念品y件,则购进乙纪念品2y件,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为非负整数,即可求出x,y的值,进而可得出(x+y+2y)解析:62【分析】设购买甲纪念品x件,丙纪念品y件,则购进乙纪念品2y件,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为非负整数,即可求出x,y的值,进而可得出(x+y+2y)的值,取其最大值即可得出答案.【详解】设购买甲纪念品x件,丙纪念品y件,则购进乙纪念品2y件,依题意,得:5x+7×2y+10y=346,∴x=346245y-,∵x,y均为非负整数,∴346﹣24y为5的整数倍,∴y的尾数为4或9,∴504xy=⎧⎨=⎩,269xy=⎧⎨=⎩,214xy=⎧⎨=⎩,∴x+y+2y=62或53或44.∵62>53>44,∴最多可以购买62件纪念品.故答案为:62.【点睛】本题主要考查二元一次方程的实际应用,根据题意,求出x,y的非负整数解,是解题的关键.19.【解析】【分析】可以设最小的正方形的边长为x,第二小的正方形的边长为y,根据已知AB=CD=32cm,可得到两个关于x、y的方程,求方程组即可得解,然后求长方形另一边AD的长即可.【详解】解析:768 43【解析】【分析】可以设最小的正方形的边长为x,第二小的正方形的边长为y,根据已知AB=CD=32cm,可得到两个关于x、y的方程,求方程组即可得解,然后求长方形另一边AD的长即可.【详解】设最小的正方形的边长为x,第二小的正方形的边长为y,将各个正方形的边长都用x和y 表示出来(如图),根据AB=CD=32cm,可得:64332 2532y x y xx y-+-⎧⎨+⎩==解得:x=12843cm,y=22443cm.长方形的另一边AD=3y-x+y=4y-x=76843cm.故答案为:768 43【点睛】本题考查了二元一次方程组的应用和正方形的性质,解题的关键是读懂图意根据矩形的性质列出方程组并求解.20.3:20【解析】【分析】设该村已种药材面积x,余下土地面积为y,还需种植贝母的面积为z,则总面积为(x+y),川香已种植面积x、贝母已种植面积x、黄连已种植面积x,依题意列出方程组,用y的代数解析:3:20【解析】【分析】设该村已种药材面积x,余下土地面积为y,还需种植贝母的面积为z,则总面积为(x+y),川香已种植面积13x、贝母已种植面积14x、黄连已种植面积512x,依题意列出方程组,用y的代数式分别表示x、y,然后进行计算即可.【详解】解:设该村已种药材面积x,余下土地面积为y,还需种植贝母的面积为z,则总面积为(x+y ),川香已种植面积13x 、贝母已种植面积14x 、黄连已种植面积512x 依题意可得,5919()121640191:3:43164x y x y x y y z x z ⎧+=+⎪⎪⎨⎡⎤⎛⎫⎛⎫⎪+--+= ⎪ ⎪⎢⎥⎪⎝⎭⎝⎭⎣⎦⎩①② 由①得32x y =③ 将③代入②得38z y =∴贝母的面积与该村种植这三种中药材的总面积之比=3383202y z x y y y ==++ 故答案为3:20.【点睛】本题考查了三元一次方程组,正确找出等量关系并列出方程是解题的关键21.152【解析】【分析】先把xy-2y-3x=0,yz-3z-5y=0,xz-5x-2z=0建立三元方程组,再利用代入法求出x ,y ,z 的值,再根据x=a ,y=b ,z=c 求出a2+b2+c2的值.解析:152【解析】【分析】先把xy-2y-3x=0,yz-3z-5y=0,xz-5x-2z=0建立三元方程组,再利用代入法求出x ,y ,z 的值,再根据x=a ,y=b ,z=c 求出a 2+b 2+c 2的值.【详解】xy 2y 3x 0--=,yz 3z 5y 0--=,xz 5x 2z 0--=组成方程组得230350520xy y x yz z y xz x z --=⎧⎪--=⎨⎪--=⎩①②③, 由①得:x=23y y -④, 把④代入③整理得:-10y+6z=0,∴z=53y ,把z=53y 代入②得:253y -5y-5y=0, 解得:y 1=0 (舍去),y 2=6, ∴z=53×6=10, x=2663⨯-=4, 又∵x=a ,y=b ,z=c ,∴a 2+b 2+c 2=x 2+y 2+z 2=42+62+102=16+36+100=152,故答案为152.【点睛】本题考查了解三元方程组;解题的关键是通过建立三元方程组,再运用代入法进行消元求出方程组的解.22.7或3【解析】【分析】解此题可设b=-a ,求出a ,b 的值,然后代入代数式求解即可.【详解】由题意得,解得:或,当a=2,b=-2时,=7;当a=-2,b=2时,=3,故答案为:7或解析:7或3【解析】【分析】解此题可设b=-a ,求出a ,b 的值,然后代入代数式求解即可.【详解】 由题意得04a b a b +=⎧⎨-=⎩, 解得:22a b =⎧⎨=-⎩或22a b =-⎧⎨=⎩, 当a=2,b=-2时,2a ab 1 a ab 1-+++=7; 当a=-2,b=2时,2a ab 1a ab 1-+++=3, 故答案为:7或3.【点睛】本题考查了解二元一次方程组以及代数式求值,正确求出a、b的值是解题的关键. 23.14【解析】分析:(1)根据F(n)的定义式,分别将n=241和n=635代入F(n)中,即可求出结论;(2)由s=100x+32、t=150+y结合F(s)+F(t)=18解析:14 54【解析】分析:(1)根据F(n)的定义式,分别将n=241和n=635代入F(n)中,即可求出结论;(2)由s=100x+32、t=150+y结合F(s)+F(t)=18,即可得出关于x、y的二元一次方程,解之即可得出x、y的值,再根据“相异数”的定义结合F(n)的定义式,即可求出F(s)、F(t)的值,将其代入k=()()F sF t中,找出最大值即可.详解::(1)F(241)=(421+142+214)÷111=7;F(635)=(365+536+653)÷111=14.(2)∵s,t都是“相异数”,s=100x+32,t=150+y,∴F(s)=(302+10x+230+x+100x+23)÷111=x+5,F(t)=(510+y+100y+51+105+10y)÷111=y+6.∵F(t)+F(s)=18,∴x+5+y+6=x+y+11=18,∴x+y=7.∵1≤x≤9,1≤y≤9,且x,y都是正整数,∴16xy=⎧⎨=⎩或25xy=⎧⎨=⎩或34xy=⎧⎨=⎩或43xy=⎧⎨=⎩或52xy=⎧⎨=⎩或61xy=⎧⎨=⎩.∵s是“相异数”,∴x≠2,x≠3.∴y≠1,y≠5.∴16xy=⎧⎨=⎩或43xy=⎧⎨=⎩或52xy=⎧⎨=⎩,∴()()612F sF t⎧=⎪⎨=⎪⎩或()()99F sF t⎧=⎪⎨=⎪⎩或()()108F sF t⎧=⎪⎨=⎪⎩,∴k=()()F sF t=12或k=()()F sF t=1或k=()()F sF t=54,∴k的最大值为54.点睛: 本题考查了二元一次方程的应用,解题的关键是:(1)根据F(n)的定义式,求出F(241)、F(635)的值;(2)根据s=100x+32、t=150+y结合F(s)+F(t)=18,找出关于x、y的二元一次方程.24.520【解析】试题分析:解决此题可以先设0有a个,1有b个,2有c个,根据据题意列出方程组求解即可.设0有a个,1有b个,2有c个,由题意得,解得,故取值为2的个数为502个考点:(1解析:520【解析】试题分析:解决此题可以先设0有a个,1有b个,2有c个,根据据题意列出方程组求解即可.设0有a个,1有b个,2有c个,由题意得,解得,故取值为2的个数为502个考点:(1)、规律型:(2)、数字的变化类.三、解答题25.(1)1只A型节能灯的售价是5元,1只B型节能灯的售价是7元;(2)当购买A 型号节能灯150只,B型号节能灯50只时最省钱,见解析.【分析】(1)根据题意可以列出相应的二元一次方程组,从而可以解答本题;(2)根据题意可以得到费用与购买A型号节能灯的关系式,然后根据一次函数的性质即可解答本题.【详解】解:(1)设1只A型节能灯的售价是x元,1只B型节能灯的售价是y元,。
2020-2021学年浙江七年级数学下第二章《二元一次方程组》竞赛题(解析版)

2020-2021学年浙江七年级数学下第二章《二元一次方程组》竞赛题一、选择题(本大题共10小题,共30.0分)1.方程(m−2016)x|m| − 2015+(n+4)y|n| − 3=2018是关于x、y的二元一次方程,则()A. m=±2016;n=±4B. m=2016,n=4C. m=−2016,n=−4D. m=−2016,n=4【答案】D【解析】【分析】此题主要考查了二元一次方程的定义,关键是掌握二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.根据二元一次方程的定义可得:|m|−2015=1,|n|−3=1且m−2016≠0,n+4≠0,求出m、n的值.【解答】解:由题意得:|m|−2015=1,|n|−3=1,解得:m=±2016,n=±4,∵m−2016≠0,n+4≠0,解得:m≠2016,n≠−4,∴m=−2016,n=4.故选D.2.若k为整数,则使得方程(k−1999)x=2001−2000x的解也是整数的k值有()A. 4个B. 8个C. 12个D. 16个【答案】D【解析】【分析】本题主要考查了二元一次方程的解的定义,要会用代入法判断二元一次方程的解.该题,主要用的是排除法.先把原方程变形为(k−1999)x+2000x=2001,得出x=2001k+1然后求出2001的因数有16个.【解答】解:原方程变形得:(k −1999)x +2000x =2001, ∴x =2001k+1,∵k 为整数,∴2001的因数有:1,3,23,29,69,87,667,2001,−1,−3,−23,−29,−69,−87,−667,−2001. ∴共有16个. 故选D .3. 方程组{a 1x +b 1y =c 1a 2x +b 2y =c 2的解为{x =4y =6,则方程组{4a 1x +3b 1y =5c14a 2x +3b 2y =5c 2的解为( )A. {x =4y =6B. {x =5y =6C. {x =5y =10D. {x =10y =15【答案】C 【解析】 【分析】本题考查二元一次方程组,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.根据方程组解的定义即可判断;把第二个方程组的两个方程的两边都除以5,即可得到一个关于x ,y 的方程组,即可求解. 【解答】解:∵方程组{a 1x +b 1y =c 1a 2x +b 2y =c 2的解为{x =4y =6,∴将第二个方程组的两个方程的两边都除以5,可得{45x =435y =6∴{x =5y =10, 故选C .4. 设实数x 、y 满足{|x |+2y =11x −|y |=8,则13x −y =( ).A. 2或143B. 2C. 2或−10D. −10【答案】B 【解析】【分析】本题主要考查的是二元一次方程组的解法,绝对值,代数式求值,运用了整体代入法的有关知识,对x 、y 分类后化简绝对值,得二元一次方程组,求解后再计算13x −y 即可. 【解答】解:(1)当x >0,y >0时, 原方程组可化为{x +2y =11x −y =8 解得{x =9y =1(与x >0,y >0相符) ∴ 13x −y =2(2)当x >0,y <0时, 原方程组可化为{x +2y =11x +y =8解得{x =5y =3(与x >0,y <0不符,解不成立) (3)当x <0,y >0时, 原方程组可化为{−x +2y =11x −y =8 解得与x <0,y >0不符,解不成立) (4)当x <0,y <0时, 原方程组可化为{−x +2y =11x +y =8解得{x =53y =193(x <0,y <0不符,解不成立)故选B .5. 已知关于x,y 的二元一次方程(2+3m )x +(2m −1)y −8−3m =0,当m 每取一个值时就得到一个方程,而这些方程有一个公共解,则这个公共解是( )A. {x =197,y =−187.B. {x =719,y =−718.C. {x =1,y =−2D. {x =−1y =2【答案】A 【解析】 【分析】本题考查了二元一次方程的解以及解二元一次方程.解法一:当m 每取一个值就得到一个方程,而这些方程有一个公共解,说明方程中不含m 的项,即含m 的项的系数相加为0,则可以得到关于x,y 的二元一次方程组,它的解就是这些方程的公共解.解法二:本题也可以采用特殊值法,即取两个m 的不同值,得到两个方程,联立方程组,求出来的解就是这些方程的公共解. 【解答】 解:法一:已知 (2+3m )x +(2m −1)y −8−3m =0, 整理2x +3mx +2my −y −8−3m =0, m (3x +2y −3)+2x −y −8=0, 根据题意,得{3x +2y −3=0,2x −y −8=0, 解得{x =197,y =−187.故这个公共解是{x =197,y =−187. 故选A . 法二:令m =1,得 5x +y −11=0. 令m =0,得 2x −y −8=0.联立方程组,得{5x +y −11=0,2x −y −8=0解得 {x =197,y =−187.故这个公共解是{x =197,y =−187.故选A .6. 已知关于x ,y 的方程组{x +2y =k +22x −3y =3k −1,以下结论:①当x =1,y =2时,k =3;②当k =0时,方程组的解也是y −x =17的解;③存在实数k ,使x +y =0;④不论k 取什么实数,x +9y 的值始终不变,其中正确的是( )A. ②③B. ①②③C. ②③④D. ①②③④【答案】C 【解析】 【分析】本题主要考查解二元一次方程组的能力,熟练掌握解二元一次方程组的解法和二元一次方程的解的定义是解题的关键. 【解答】解:①把x =1,y =2代入原方程可得:{1+2×2=k +22×1−3×2=3k −1, 解出{k =3k =−1,故①不正确;②当k =0时,原方程组可整理得:{x +2y =22x −3y =−1, 解得:{x =47y =57,把{x =47y =57代入y −x =17得: y −x =57−47=17,即②正确;③解方程组{x +2y =k +22x −3y =3k −1得: {x =9k +47y =−k +57, 若x +y =0, 则9k+47+−k+57=0,解得:k =−98,即存在实数k ,使得x +y =0, 即③正确;④解方程组{x +2y =k +22x −3y =3k −1得: {x =9k +47y =−k +57, ∴x +9y =9k+47+9×−k+57=7,∴不论k 取什么实数,x +9y 的值始终不变,故④正确. 故选C .7. 爸爸开车带着小明在公路上匀速行驶,小明每隔一段时间看到的里程碑上的数如下则小明9:00时看到的两位数是( )A. 54B. 45C. 36D. 27【答案】D 【解析】 【试题解析】 【分析】本题考查了二元一次方程组的运用,及二元一次方程组的解法.正确理解题意并列出方程组是解题的关键.设小明9:00时看到的两位数,十位数为x ,个位数为y ,根据两位数之和为9可列一个方程,再根据匀速行驶,9:00~9:45时行驶的里程数除以时间等于9:45~12:00时行驶的里程数除以时间列出第二个方程,解方程组即可. 【解答】解:设小明9时看到的两位数,十位数为x ,个位数为y ,即为10x +y ;则9:45时看到的两位数为x +10y ,9:00~9:45时行驶的里程数为:(10y +x)−(10x +y);则12:00时看到的数为100x +y ,9:45~12:00时行驶的里程数为:(100x +y)−(10y +x);由题意列方程组得:{x +y =910y+x−(10x+y)34=100x+y−(10y+x)94,解得:{x =2y =7,所以9:00时看到的两位数是27, 故选:D .8. 某校七年级(1)班同学为“希望工程”共捐款206元,捐款情况如下表所示:由于不小心被墨水污染,表格中捐款4元和5元的人数已经看不清楚.根据已有的信息推断,捐款4元和5元的人数不可能为 ( )A. 6,24B. 8,22C. 11,20D. 16,16【答案】B 【解析】 【试题解析】 【分析】考查了二元一次方程整数解的应用,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程求出整数解.通过理解题意可知本题只存在一个等量关系,即捐款总数=206,结合实际情况解应用题. 【解答】解:设捐款4元的人数为x ,捐款5元的人数是y , 依题意得:2×6+4x +5y +10×5=206,解得y =144−4x5=4×36−x 5.所以y 为4的倍数, ∵xy 均为非负整数,∴{x =1y =28,{x =6y =24,{x =11y =20,{x =16y =16,{x =21y =12,{x =26y =8,{x =31y =4,{x =36y =0, 故捐款4元和5元的人数不可能为8,22. 故选:B .9. 若4x −3y −6z =0,x +2y −7z =0(xyz ≠0),则5x 2+2y 2−z 22x 2−3y 2−10z 2的值等于( )A. −12B. −192C. −15D. −13【答案】D【解析】解:由{4x −3y −6z =0x +2y −7z =0 解得{x =3zy =2z , 代入5x 2+2y 2−z 22x 2−3y 2−10z 2=45z 2+8z 2−z 218z 2−12z 2−10z 2=−13,故选:D .先由{4x −3y −6z =0x +2y −7z =0解得{x =3z y =2z.,再代入5x 2+2y 2−z 22x 2−3y 2−10z 2即可.本题的实质是考查三元一次方程组的解法,通过解方程组,了解把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.解三元一次方程组的关键是消元.解题之前先观察方程组中的方程的系数特点,认准易消的未知数,消去未知数,组成该未知数的二元一次方程组.10. 已知整数x ,y ,z ,满足x ≤y <z ,且{|x +y |+|y +z |+|z +x |=4,|x −y |+|y −z |+|z −x |=2,那么x 2+y 2+z 2的值等于( ).A. 2B. 14C. 2或14D. 14或17【答案】A 【解析】 【分析】本题考查了三元一次方程组的解法以及代数式求值,解题关键是利用加减消元法结合x 、y 、z 为整数的条件求出x 、y 、z 的值.根据x ≤y <z 对第二个方程去绝对值化简,可得出z =x +1,再根据x ,y ,z 是整数且y <z 得出x =y ,将z =x +1和x =y 代入第一个方程可求出x 的值,进而得出y 和z 的值代入计算即可得出答案. [详解]解:∵x ≤y <z ,∴|x −y |=y −x, |y −z |=z −y, |z −x |=z −x,因而第二个方程可化简为:2z −2x =2, 即z =x +1.∴|x −y |+|y −z |=1.又∵ y <z,且y,z 为整数, ∴|y −z |≥1.∴|x −y |=0.∴x =y .方程|x +y |+|y +z |+|z +x |=4中, 把x =y 代入得,2|x |+2|x +z |=4.∴|x |+|x +z |=2把z =x +1代入上式,得|x |+|2x +1|=2. ∴|x |=1,即x =±1.|2x +1|=1,即x =0或 x =−1.∴x =−1. ∴z =x +1=0. ∴y =x =−1.∴x 2+y 2+z 2=(−1)2+(−1)2+0=2.故选A .二、填空题(本大题共8小题,共24.0分)11. 已知{x =3y =4是方程ax +by =7的一个解,求方程组{x +y =3a +4b +1x −y =−8b −6a −2的解为:___________. 【答案】{x =−4y =12 【解析】 【分析】本题考查的是二元一次方程的解及二元元一次方程组的解法有关知识,先把方程的解代入ax +by =7中,得出3a +4b =1,然后再代入解答. 【解答】解:把{x =3y =4代入ax +by =7中可得3a +4b =7,把3a +4b =7代入方程组中可得{x +y =8x −y =−16,解得:{x =−4y =12.故答案为{x =−4y =1212. 4x a+2b−5−2y 3a−b−3=8是二元一次方程,那么4a +b =______.【答案】10【解析】解:由意义可知:{a +2b −5=13a −b −3=1解得:{a =2b =2∴4a +b =10, 故答案为:10根据二元一次方程的定义即可求出a 与b 的值.本题考查二元一次方程的定义,解题的关键是正确理解二元一次方程的定义,本题属于基础题型.13. 如果{x =2y =3是方程组{ax +by =7bx +ay =−2的解,那么代数式a 2−b 2的值为______.【答案】−9【解析】解:把{x =2y =3代入方程组{ax +by =7bx +ay =−2中,可得:{2a +3b =72b +3a =−2,解得:{a =−4b =5,把a =−4,b =5代入a 2−b 2=16−25=−9, 故答案为:−9把x 与y 的值代入方程组求出a 与b 的值,代入原式计算即可得到结果.此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.14. 若关于x 、y 的二元一次方程组{3x −my =52x +ny =6的解是{x =1y =2,则关于a 、b 的二元一次方程组{3(a +b )−m (a −b )=52(a +b )+n (a −b )=6的解是_____.【答案】{a =32b =−12【解析】 【分析】此题考查了二元一次方程组的解,加减消元法解二元一次方程组,方程组的解即为能使方程组中两方程成立的未知数的值,将{x =1y =2代入{3x −my =52x +ny =6求出m 与n 的值,再将m 与n 的值代入所求不等式组即可求出解. 【解答】解:将{x =1y =2代入{3x −my =52x +ny =6得:{3−2m =52+2n =6, 解得:{m =−1n =2, 将{m =−1n =2代入{3(a +b )−m (a −b )=52(a +b )+n (a −b )=6得:{3(a +b )+(a −b )=52(a +b )+2(a −b )=6, 解得:{a =32b =−12.15. 已知关于x ,y 的方程组{3x +y =244x +ay =18有正整数解,则整数a 的值为____.【答案】−1 【解析】 【分析】此题考查了二元一次方程组与二元一次方程的整数解.根据题意可以先求出第一个方程的正整数解,然后将正整数解逐一代入a =18−4x y即可求解.【解答】解:由3x +y =24得,y =24−3x , ∵关于x ,y 的方程组有正整数解,∴该方程组正整数解有{x =1y =21或{x =2y =18或{x =3y =15或{x =4y =12或{x =5y =9或{x =6y =6或{x =7y =3, 又由4x +ay =18得a =18−4x y(x 、y 为正整数)将上述方程组的正整数解逐一代入,当{x =6y =6时,a =−1(符合题意) 故答案为:−1.16. 在解关于x ,y 的方程组{ax +by =2cx −7y =8时,老师告诉同学们正确的解是{x =3y =−2,粗心的小勇由于看错了系数c ,因而得到的解为{x =−2y =2,则abc 的值为多少? 【答案】−40 【解析】 【分析】本题是解二元一次方程的逆向思维,把所求得的x 、y 的值代入方程即可求出c 的值,然后再利用算错的学生的答案找到另一方程,与代入得到的方程组成方程组,解出a 、b 的值,最后代入求值即可. 【解答】解:将{x =3y =−2代入{ax +by =2cx −7y =8中的第二个方程,解得:c =−2.将两组解代入重组关于a 、b 的二元一次方程组{3a −2b =2−2a +2b =2,解得{a =4b =5.解得abc =4×5×(−2)=−40. 故答案为−40.17. 现安排一批工人完成一项工作,如果这批工人同时开始工作,且每个工人的工作效率相同,那么9 ℎ可以完工;如果开始先安排1人做,以后每隔t(ℎ)(t 为整数)增加1人,且每个人都一直做到工作全部完成,结果最后一个人做的时间是第1人做的时间的15,那么第一人做的时间是__________h . 【答案】15【解析】 【分析】本题考查了工程问题中工作总量=工作效率×工作时间的运用,列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,解答时根据条件建立方程组是关键. 设总共有n 个工人完成这项工程,第1个工人用了x 小时,第2个工人用了(x −t)小时,第3个工人用了(x −2t)小时,…,第n 个工人用了[x −(n −1)t]小时,由这n 个人完成的工作时间之和为9n 建立方程,及最后一个人做的时间是第1人时间的15建立方程,从而构成方程组,求出其解即可. 【解答】解:设总共有n 个工人完成这项工程,第1个工人用了x 小时,第2个工人用了(x −t)小时,第3个工人用了(x −2t)小时,…,第n 个工人用了[x −(n −1)t]小时. 由题意,得{x +(x −t )+(x −2t )+...+x −(n −1)t =9n①x =5[x −(n −1)t ]②,由①得2x =18+(n −1)t ③ 由②得x =5x −5(n −1)t5(n −1)t =4x (n −1)t =45x④将④代入③:2x =18+45x10x =90+4x 6x =90x =15. 故答案为15.18. 如图,宽为50cm 的大长方形由10个完全相同的小长方形拼成,则一个小长方形的面积为___cm 2.【答案】400 【解析】 【分析】本题主要考查了二元一次方程组的应用,解答本题关键是弄清题意,看懂图示,找出合适的等量关系,列出方程组.由题意可知本题存在两个等量关系,即小长方形的长+小长方形的宽=50cm ,小长方形的长+小长方形宽的4倍=小长方形长的2倍,根据这两个等量关系可列出方程组,进而求出小长方形的长与宽,最后求得小长方形的面积. 【解答】解:设一个小长方形的长为xcm ,宽为ycm , 则可列方程组{x +y =50x +4y =2x ,解得{x =40y =10,则一个小长方形的面积=40cm ×10cm =400cm 2. 故答案为400.三、解答题(本大题共6小题,共48.0分)19. 请你根据所学的二元一次方程(组)的有关知识,解答下列问题:(1)下面四对数值:①{x =−1y =−7;②{x =3y =1;③{x =12y =4;④{x =−3y =−1,其中,满足二元一次方程2x −y =5的值是_______;(只填序号)(2)已知二元一次方程2x −y =5与−3x +4y =−5有一个公共解,求这个公共解; (3)若有关于x ,y 的二元一次方程(1−m)x +my =3−2m ,无论m 取何值,总有确定的一对x ,y 的值满足此方程,求出这对值. 【答案】解:(1)①② ;(2){2x −y =5①−3x +4y =−5②,解得:{x =3y =1;(3)∵(1−m)x +my =3−2m , ∴ x −mx +my −3+2m =0, 即m(2−x +y)+(x −3)=0, ∵m 可取任意值则{2−x +y =0x −3=0 ,∴{x =3y =1 . 【解析】 【分析】本题考查了二元一次方程的解以及加减消元法解二元一次方程组.(1)将各组数据代入2x −y =5,判定即可; (2)解关于x 、y 的二元一次方程组即可;(3)将二元一次方程(1−m)x +my =3−2m 化为m(2−x +y)+(x −3)=0,因为无论m 取何值,总有确定的一对x ,y 的值满足此方程,所以可得{2−x +y =0x −3=0 ,解得即可. 【解答】解:(1)①{x =−1y =−7代入方程,左边=2×(−1)+7=5=左边;②{x =3y =1代入方程,左边=2×3−1=5=左边;③{x =12y =4代入方程,左边=2×12−4=−2≠左边; ④{x =−3y =−1代入方程,左边=2×(−3)−(−1)=−5≠左边;∴①②是方程程2x −y =5的解, 故答案为①②; (2)见答案; (3)见答案.20. 已知关于x ,y 的方程组{x +2y −6=0x −2y +mx +5=0(1)请直接写出方程x +2y −6=0的所有正整数解; (2)若方程组的解满足x +y =0,求m 的值;(3)无论实数m 取何值,方程x −2y +mx +5=0总有一个固定的解,请直接写出这个解?(4)若方程组的解中x 恰为整数,m 也为整数,求m 的值. 【答案】解:(1)方程x +2y −6=0,2x +y =6, 解得:y =6−2x ,当y =1时,x =4;当y =2时,x =2,方程x +2y −6=0的所有正整数解为:{x =2y =2,{x =4y =1;(2)由题意得:{x +y =0x +2y −6=0,解得{x =−6y =6,把{x =−6y =6代入x −2y +mx +5=0,解得m =−136; (3)x −2y +mx +5=0,(1+m)x −2y =−5, ∴当x =0时,y =2.5, 即固定的解为:{x =0y =2.5,(4){x +2y −6=0 ①x −2y +mx +5=0 ②,①+②得:2x −6+mx +5=0, (2+m)x =1, x =12+m ,∵x 恰为整数,m 也为整数, ∴2+m 是1的约数, 2+m =1或−1, m =−1或−3.【解析】(1)将x 做已知数求出y ,即可确定出方程的正整数解.(2)将x +y =0与原方程组中的第一个方程组成新的方程组,可得x 、y 的值,再代入第二个方程中可得m 的值;(3)当含m 项为零时,取x =0,代入可得固定的解;(4)求出方程组中x 的值,根据x 恰为整数,m 也为整数,确定m 的值.此题考查了解二元一次方程的整数解和二元一次方程组的解,熟练掌握运算法则和求方程组的解是本题的关键.21. 解方程组{x 1+x 2=x 2+x 3=x 3+x 4=⋯…=x 2019+x 2020=x 2020+x 2021=1x 1+x 2+x 3+⋯…+x 2019+x 2020+x 2021=2021 【答案】解:{x 1+x 2=x 2+x 3=x 3+x 4=⋯…=x 2019+x 2020=x 2020+x 2021=1 ①x 1+x 2+x 3+⋯…+x 2019+x 2020+x 2021=2021 ②由①得:x 1=x 3=x 5=⋯…=x 2017=x 2019=x 2021, x 2=x 4=x 6=⋯…=x 2018=x 2020,因为1到2021中,奇数有1011个,偶数有1010个, 则可得方程组解得:{x 1=1011x 2=−1010. 故x 1=x 3=x 5=⋯…=x 2017=x 2019=x 2021=1011,x 2=x 4=x 6=⋯…=x 2018=x 2020=−1010【解析】本题考查的是解二元一次方程组有关知识,先寻找x 1,x 3,x 5,……,x 2017,x 2019,x 2021及x 2,x 4,x 6,……,x 2018,x 2020彼此间的联系,然后根据这些联系重新联立组成新的方程组,解方程组即可得解.22. 阅读探索:解方程组{(a −1)+2(b +2)=6,2(a −1)+(b +2)=6.解:设a −1=x ,b +2=y ,原方程组可变为{x +2y =6,2x +y =6, 解得{x =2,y =2,即{a −1=2,b +2=2.∴{a =3,b =0. 此种解方程组的方法叫换元法.(1)拓展提高:运用上述方法解方程组{(a3−1)+2(b5+2)=4,2(a 3−1)+(b5+2)=5.(2)能力运用:已知关x ,y 的方程组{a 1x +b 1y =c 1,a 2x +b 2y =c 2的解为{x =5,y =3,求关于m ,n 的方程组{5a 1(m +3)+3b 1(n −2)=c 1,5a 2(m +3)+3b 2(n −2)=c 2的解.【答案】解:(1)设a3−1=x ,b5+2=y , 原方程组可变为{x +2y =42x +y =5,解得{x =2y =1,即{a 3−1=2b5+2=1,解得{a =9b =−5(2)设5(m +3)=x ,3(n −2)=y , 原方程组可变为{a 1x +b 1y =c 1,a 2x +b 2y =c 2. 由已知{x =5y =3,得{5(m +3)=53(n −2)=3, 解得{m =−2n =3.【解析】本题考查了解二元一次方程组,解题的关键是认真审题,理解阅读材料提供的换元法思路,准确换元.(1)拓展提高,观察阅读材料的解题方法,理解换元法; 设a3−1=x ,b5+2=y ,根据材料中的结论确定出关于x 与y 方程组,求出解得到x 与y 的值,即可求出a 与b 的值; (2)能力运用,设{5(m +3)=x3(n −2)=y,根据已知方程组的解确定出m 与n 的值即可.23. 数轴上有两个动点M ,N ,如果点M 始终在点N 的左侧,我们称M 是点N 的“追赶点”.如图,数轴上有两个点A ,B ,它们表示的数分别为−3,1.已知M 是点N 的“追赶点”,且点M ,N 表示的数分别为m ,n .(1)由题意易知,A 是点B 的“追赶点”,AB =1−(−3)=4(AB 表示线段AB 的长,以下相同);类似地,MN =__________;(2)在A ,M ,N 三点中,若其中一个点是另两个点所构成线段的中点,请用含m 的代数式来表示n .(3)若AM =BN ,MN =43BM ,求m 和n 的值. 【答案】解:(1)n −m(2)分为三种情况:①如解图1,当M 是AN 的中点时,AM =MN . 因为AM =m −(−3)=m +3,MN =n −m , 所以m +3=n −m . 所以n =2m +3;②如解图2,当A 是MN 的中点时,AM =AN . 因为AM =−3−m ,AN =n −(−3)=n +3, 所以−3−m =n +3. 所以n =−m −6;③如解图3,当N 是MA 的中点时,MN =AN. 因为MN =n −m ,AN =−3−n , 所以n −m =−3−n . 所以n =12m −32.综上所述,n =2m +3,n =−m −6或n =12m −32; (3)因为AM =BN ,所以|m +3|=|n −1|. 因为MN =43BM , 所以n −m =43|m −1|.所以分3种情况: ①当m >1时,因为n >m ,所以n >1. 所以可得{m +3=n −1n −m =43(m −1)解得{m =4n =8②当−3<m <1时,因为MN =43BM ,n >m ,n >1, 所以可得{m +3=n −1n −m =−43(m −1)解得{m =−2n =2③当m <−3时,同②可得n >1, 所以可得{−m −3=n −1n −m =−43(m −1)解得{m =−5n =3综上所述,{m =4n =8或{m =−2n =2或{m =−5n =3.【解析】 【分析】本题考查了列代数式,二元一次方程组的应用以及数轴上两点间的距离公式,解决该题型题目时,结合数量关系表示出线段的长度,再根据线段间的关系列出方程组是关键. (1)由两点间距离直接求解;(2)分①M 是A 、N 的中点;②当A 点是MN 点中点时;③N 是MA 的中点时,三种情况分别求解即可;(3)由已知可得|m +3|=|n −1|,n −m =43|m −1|,分情况求解即可. 【解答】解:(1)MN =n −m , 故答案为n −m ; (2)见答案; (3)见答案.24. 某工厂承接了一批纸箱加工任务,用如图1所示的长方形和正方形纸板(长方形的宽与正方形的边长相等)加工成如图所示的竖式与横式两种无盖的长方形纸箱.(加工时接缝材料不计)(1)若该厂购进正方形纸板1000张,长方形纸板2000张.问竖式纸盒,横式纸盒各加工多少个,恰好能将购进的纸板全部用完;(2)该工厂某一天使用的材料清单上显示,这天一共使用正方形纸板50张,长方形纸板a 张,全部加工成上述两种纸盒,且120<a <136,试求在这一天加工两种纸盒时,a 的所有可能值.【答案】(1)设加工竖式纸盒x 个,加工横式纸盒y 个, 根据题意得:{x +2y =10004x +3y =2000,解得:{x =200y =400.答:加工竖式纸盒200个,加工横式纸盒400个. (2)设加工竖式纸盒m 个,加工横式纸盒n 个, 根据题意得:{m +2n =504m +3n =a ,∴n =40−a5.∵n 、a 为正整数, ∴a 为5的倍数, 又∵120<a <136,∴满足条件的a 为:125,130,135.【解析】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)根据两种纸盒每个各需长方形和正方形纸板的张数结合长、正方形纸板的张数列出关于x 、y 的二元一次方程组;(2)通过解二元一次方程组用含a 的代数式表示出n 值.(1)设加工竖式纸盒x个,加工横式纸盒y个,根据两种纸盒每个各需长方形和正方形纸板的张数结合共用正方形纸板1000张、长方形纸板2000张,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设加工竖式纸盒m个,加工横式纸盒n个,根据两种纸盒每个各需长方形和正方形纸板的张数结合共用正方形纸板50张、长方形纸板a张,即可得出关于m、n的二元一次方程组,解之即可用含a的代数式表示出n值,再根据n、a为正整数结合120<a< 136即可求出a的值,此题得解.。
初一数学下册第二学期 二元一次方程组测试题及答案(共五套)

初一数学下册第二学期二元一次方程组测试题及答案(共五套)一、选择题1.某校运动员分组训练,若每组7人,则余3人:若每组8人,则缺5人.设运动员人数为x人,组数为y组,则可列方程为()A.7385y xy x=+⎧⎨=+⎩B.7385y xy x=+⎧⎨+=⎩C.7385y xy x=-⎧⎨+=⎩D.7385y xy x=-⎧⎨=+⎩2.三个二元一次方程2x+5y-6=0,3x-2y-9=0,y=kx-9有公共解的条件是k=( ) A.4 B.3 C.2 D.13.若实数x,y满足()229310-++++=x y x y,则2yx等于()A.1 B.-16 C.16 D.-14.已知关于x,y的两个方程组48312ax byx y-=-⎧⎨+=⎩和35180516ax byx y+=⎧⎨+=⎩具有相同的解,则a,b的值是()A.=202ab-⎧⎨=⎩B.=202ab⎧⎨=-⎩C.=202ab⎧⎨=⎩D.=202ab-⎧⎨=-⎩5.在“幻方拓展课程”探索中,小明在如图的3×3方格内填入了一些表示数的代数式,若图中各行、各列及对角线上的三个数之和都相等,则x﹣y=()A.2 B.4 C.6 D.86.下列方程组是三元一次方程组的是()A.123x yy zz x+=⎧⎪+=⎨⎪-=⎩B.2310x y zx yzy z++=⎧⎪-=⎨⎪-=⎩C.22154x yy zx z⎧+=⎪+=⎨⎪-=⎩D.563x yw zz x+=⎧⎪+=⎨⎪+=⎩7.中国象棋是中华民族的文化瑰宝,也是怡神益智的一种有益身心的活动,源远流长,趣味浓厚,千百年来长盛不衰.甲、乙制定比赛规定:胜一局得4分,平一局得1分,负一局得0分,甲共进行了9局比赛,得了12分,则甲获胜的可能种数有()A.2 B.3 C.4 D.58.方程组3453572x yx y+=⎧⎪⎨-+=-⎪⎩的解是()A.20.25xy=⎧⎨=-⎩B.4.53xy=-⎧⎨=⎩C.10.5xy=-⎧⎨=-⎩D.10.5xy=⎧⎨=⎩9.若二元一次方程3x -y =7,2x +3y =1,y =kx -9有公共解,则k 的取值为( ). A .3B .-3C .-4D .410.购买甲、乙两种笔记本共用70元.若甲种笔记本单价为5元,乙种笔记本单价为15元,且甲种笔记本数量是乙种笔记本数量的整数倍,则购笔记本的方案有( ) A .2种B .3种C .4种D .5种11.已知二元一次方程3x-y=5,给出下列变形①y=3x+5②53y x +=③-6x+2y=-10,其中正确的是( ) A .②B .②③C .①③D .①②12.《九章算术》中记载一问题如下:“今有共买鸡,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数、物价各多少?设有x 人,买鸡的钱数为y ,依题意可列方程组为( )A .8374x y x y +=⎧⎨+=⎩B .8374x yx y -=⎧⎨-=⎩C .8374x y x y +=⎧⎨-=⎩D .8374x y x y -=⎧⎨+=⎩二、填空题13.已知关于x ,y 的二元一次方程()()12120m x my m +++=﹣﹣,无论实数m 取何值,此二元一次方程都有一个相同的解,则这个相同的解是______.14.方程组31810x y zx y x y z =+⎧⎪+=⎨⎪++=⎩的解是________.15.冬季降至,贫困山区恶劣的地理环境加之其落后的交通条件,无疑将使得山区在漫长冬季里物资更加匮乏,“让冬天不冷让爱心永驻”,重庆市公益组织心驿家号召全市人民为贫困山区的孩子们捐赠过冬衣物,本次捐赠共收集了11600件棉衣、7500件羽绒服及防寒服若干,自愿者将所有衣物分成若干A 、B 、C 类组合,由自愿者们分别送往交通极其不便利的各个山区,一个A 类组合含有60件棉衣,80件防寒服和50件羽绒服;一个B 类组合含有40件棉衣,40件防寒服;一个C 类组合含有40件棉衣,60件防寒服,50件羽绒服;求防寒服一共捐赠了_____件. 16. 已知21x y =⎧⎨=⎩,是二元一次方程组81mx ny nx my +=⎧⎨-=⎩的解,则m+3n 的平方根为______. 17.观察表一,寻找规律,表二、表三、表四分别是从表一中截取的一部分,则a +b ﹣m =_____.18.有甲、乙、丙三种货物,若购买甲3件、乙7件、丙1件,共315元;若购买甲4件、乙10件、丙1件,共420元,现在购买甲、乙、丙各1件,共需_____元. 19.解三元一次方程组时,先消去z ,得二元一次方程组,再消去y ,得一元一次方程2x =3,解得x =,从而得y =_____,z =____. 20.若3x -5y -z =8,请用含x ,y 的代数式表示z ,则z =________.21.一个二元一次方程和一个二元二次方程组成的二元二次方程组的解是24x y =⎧⎨=⎩和24x y =-⎧⎨=-⎩,试写出符合要求的方程组________(只要填写一个即可). 22.已知|x ﹣z+4|+|z ﹣2y+1|+|x+y ﹣z+1|=0,则x+y+z=________.23.如图,三个全等的小矩形沿“横﹣竖﹣横”排列在一个边长分别为5.7,4.5的大矩形中,图中一个小矩形的周长等于_____.24.若方程123x y -=的解中,x 、y 互为相反数,则32x y -=_________ 三、解答题25.阅读以下内容:已知有理数m ,n 满足m+n =3,且3274232m n k m n +=-⎧⎨+=-⎩求k 的值.三位同学分别提出了以下三种不同的解题思路:甲同学:先解关于m ,n 的方程组3274232m n k m n +=-⎧⎨+=-⎩,再求k 的值;乙同学:将原方程组中的两个方程相加,再求k 的值;丙同学:先解方程组3232m n m n +=⎧⎨+=-⎩,再求k 的值.(1)试选择其中一名同学的思路,解答此题;(2)在解关于x ,y 的方程组()()11821a x by b x ay ⎧+-=⎪⎨++=⎪⎩①②时,可以用①×7﹣②×3消去未知数x ,也可以用①×2+②×5消去未知数y .求a 和b 的值. 26.当,m n 都是实数,且满足28m n =+,就称点21,2n P m +⎛⎫- ⎪⎝⎭为“爱心点”. (1)判断点()5,3A 、()4,8B 哪个点为“爱心点”,并说明理由;(2)若点(),4A a -、()4,B b 是“爱心点”,请判断A 、B 两点的中点C 在第几象限?并说明理由;(3)已知P 、Q 为有理数,且关于x 、y 的方程组333x y p q x y p q⎧+=+⎪⎨-=-⎪⎩解为坐标的点(),B x y 是“爱心点”,求p 、q 的值.27.如图,在平面直角坐标系xOy 中,点(,)A a b ,(,)B m n 分别是第三象限与第二象限内的点,将A ,B 两点先向右平移h 个单位,再向下平移1个单位得到C ,D 两点(点A 对应点C ).(1)写出C ,D 两点的坐标;(用含相关字母的代数式表示)(2)连接AD ,过点B 作AD 的垂线l ,E 是直线l 上一点,连接DE ,且DE 的最小值为1.①若1b n =-,求证:直线l x ⊥轴;②在平面直角坐标系中,任何一个二元一次方程的图象都是一条直线,这条直线上有无数个点,每一个点的坐标(,)x y 都是这个方程的一个解.在①的条件下,若关于x ,y 的二元一次方程px qy k +=(0pq ≠)的图象经过点B ,D 及点(,)s t ,判断s t +与m n +是否相等,并说明理由.28.为鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息,请解答: 自来水销售价格 每户每月用水量单位:元/吨15吨及以下a超过15吨但不超过25吨的部分b超过25吨的部分5(1)小王家今年3月份用水20吨,要交水费___________元;(用a,b的代数式表示)(2)小王家今年4月份用水21吨,交水费48元;邻居小李家4月份用水27吨,交水费70元,求a,b的值.(3)在第(2)题的条件下,若交水费76.5元,求本月用水量.(4)在第(2)题的条件下,小王家5月份用水量与4月份用水量相同,却发现要比4月份多交9.6元钱水费,小李告诉小王说:“水价调整了,表中表示单位的a,b的值分别上调了整数角钱(没超过1元),其他都没变.”到底上调了多少角钱呢?请你帮小王求出符合条件的所有可能情况.29.我国古代的“河图”是由33⨯的方格构成,每个方格内均有数目不同的点图,每一行、每一列以及每一条对角线上的三个点图的点数之和均相等.如图1,根据给出的“河图”的部分点图,可以得到:1515P++=⎧⎨++=⎩●●●●●●●●●●●●●●●●●●●●●●●●如图2,已知33⨯框图中每一行、每一列以及每一条对角线上的三个数的和均为3,求x y,的值并在图3中填出剩余的数字.30.阅读材料:我们把多元方程(组)的正整数解叫做这个方程(组)的“好解”例如:18xy=⎧⎨=⎩就是方程3x+y=11的一组“好解”;123xyz=⎧⎪=⎨⎪=⎩是方程组3206x y zx y z++=⎧⎨++=⎩的一组“好解”.(1)请直接写出方程x+2y=7的所有“好解”;(2)关于x,y,k的方程组1551070x y kx y k++=⎧⎨++=⎩有“好解“吗?若有,请求出对应的“好解”;若没有,请说明理由;(3)已知x,y为方程33x+23y=2019的“好解”,且x+y=m,求所有m的值.31.甲从A地出发步行到B地,乙同时从B地步行出发至A地,2小时后在中途相遇,相遇后,甲、乙步行速度都提高了1千米/小时.若设甲刚出发时的速度为a千米/小时,乙刚出发的速度为b 千米/小时.(1)A 、B 两地的距离可以表示为 千米(用含a ,b 的代数式表示); (2)甲从A 到B 所用的时间是: 小时(用含a ,b 的代数式表示); 乙从B 到A 所用的时间是: 小时(用含a ,b 的代数式表示).(3)若当甲到达B 地后立刻按原路向A 返行,当乙到达A 地后也立刻按原路向B 地返行.甲乙二人在第一次相遇后3小时36分钟又再次相遇,请问AB 两地的距离为多少? 32.小红用110根长短相同的小木棍按照如图所示的方式,连续摆正方形或六边形,要求相邻的图形只有一条公共边.(1)小红首先用m 根小木棍摆出了p 个小正方形,请你用等式表示,m p 之间的关系: ; (2)小红用剩下的小木棍摆出了一些六边形,且没有木棍剩余.已知他摆出的正方形比六边形多4个,请你求出摆放的正方形和六边形各多少个?(3)小红重新用50根小木棍,摆出了s 排,共t 个小正方形.其中每排至少含有1个小正方形,每排含有的小正方形的个数可以不同.请你用等式表示,s t 之间的关系,并写出所有,s t 可能的取值.33.如图,已知()0,A a ,(),0Bb ,且满足|4|60a b -++=.(1)求A 、B 两点的坐标;(2)点(),C m n 在线段AB 上,m 、n 满足5n m -=,点D 在y 轴负半轴上,连CD 交x 轴的负半轴于点M ,且MBC MOD S S ∆∆=,求点D 的坐标;(3)平移直线AB ,交x 轴正半轴于E ,交y 轴于F ,P 为直线EF 上第三象限内的点,过P 作PG x ⊥轴于G ,若20PAB A ∆=,且12GE =,求点P 的坐标.34.某学校为九年级数学竞赛获奖选手购买以下三种奖品,其中小笔记本每本5元,大笔记本每本7元,钢笔每支10元,购买的大笔记本的数量是钢笔数量的2倍,共花费346元,若使购买的奖品总数最多,则这三种奖品的购买数量各为多少?35.学校捐资购买了一批物资120吨打算支援山区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)(1)若全部物资都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?(2)若该学校决定用甲、乙、丙三种汽车共15辆同时参与运送,你能求出参与运送的三种汽车车辆数吗?(甲、乙、丙三种车辆均要参与运送)36.问题:有甲、乙、丙三种商品,①购甲3件、乙5件、丙7件共需490元钱;②购甲4件、乙7件、丙10件共需690元钱;③购甲2件,乙3件,丙1件共需170元钱. 求购甲、乙、丙三种商品各一件共需多少元?小明说:“可以根据3个条件列出三元一次方程组,分别求出购甲、乙、丙一件需多少钱,再相加即可求得答案.”小丽经过一番思考后,说:“本题可以去掉条件③,只用①②两个条件,仍能求出答案.” 针对小丽的发言,同学们进行了热烈地讨论.(1)请你按小明的思路解决问题.(2)小丽的说法正确吗?如果正确,请完成解答过程;如果不正确,请说明理由.(3)请根据上述解决问题中积累的经验,解决下面的问题:学校购买四种教学用具A、B、C、D,第一次购A教具1件、B教具3件、 C教具4件、D教具5件共花2018元;第二次购A教具1件、B教具5件、 C教具7件、D教具9件共花3036元. 求购A教具5件、B教具3件、 C教具2件、D教具1件共需多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据关键语句“若每组7人,余3人”可得方程7y+3−x;“若每组8人,则缺5人.”可得方程8y−5=x,联立两个方程可得方程组.【详解】解:设运动员人数为x 人,组数为y 组,由题意得: 列方程组为7385y x y x -⎧⎨+⎩== 故选D . 【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,抓住关键语句,列出方程.2.B解析:B 【分析】把2x 5y 60+-=,3x 2y 90--=,y kx 9=-组成方程组,求解即可. 【详解】 解:由题意可得:256032909x y x y y kx +-⎧⎪--⎨⎪-⎩===, ①×3-②×2得y=0, 代入①得x=3, 把x ,y 代入③, 得:3k-9=0, 解得k=3. 故选B. 【点睛】本题考查了解三元一次方程组,解题的关键是运用三元一次方程组的知识,把三个方程组成方程组求解.3.C解析:C 【分析】首先根据绝对值和偶次方的非负性求出x ,y 的值,然后代入2y x 中计算即可. 【详解】解:∵()229310-++++=x y x y , ∴290310x y x y -+=⎧⎨++=⎩,解得:41x y =-=⎧⎨⎩, 所以,22(4)16yx =-=,【点睛】本题主要考查了非负数的性质,即偶次方和绝对值的性质,熟练掌握相关性质是解答此题的关键.4.C解析:C【分析】联立不含a与b的方程组成方程组,求出方程组的解得到x与y的值,代入剩下的方程计算即可求出a与b的值.【详解】联立得:312 516 x yx y+=⎧⎨+=⎩,解得:26 xy=⎧⎨=⎩,将26xy=⎧⎨=⎩代入得:124530a ba b-=-⎧⎨+=⎩,解得:202ab=⎧⎨=⎩,故选:C.【点睛】本题考查了同解二元一次方程组,熟练掌握二元一次方程组的解法是解题的关键.5.C解析:C【分析】由图中各行、各列及对角线上的三个数之和都相等,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再将其代入(x-y)中即可求出结论.【详解】依题意得:22226 x y yx y-=+⎧⎨-=-+⎩,解得:82 xy=⎧⎨=⎩,∴x﹣y=8﹣2=6.故选:C.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.6.A【分析】根据三元一次方程组的定义来求解,对A 、B 、C 、D 四个选项进行一一验证. 【详解】A 、满足三元一次方程组的定义,故A 选项正确;B 、含未知数项的次数为2次,∴不是三元一次方程,故B 选项错误;C 、未知数的次数为2次,∴不是三元一次方程,故C 选项错误;D 、含有四个未知数,不满足三元一次方程组的定义,故D 选项错误; 故选:A . 【点睛】本题主要考查了三元一次方程组的定义,清楚三元一次方程组必须满足“三元”和“一次”两个要素是关键.7.B解析:B 【分析】设甲获胜x 局,平y 局,则负()9x y --局,根据题意得出关于x 和y 的二元一次方程,由x ,y ,()9x y --均为整数即可得出结论. 【详解】解:设甲获胜x 局,平y 局,则负()9x y --局, 根据题意可得:412x y +=,即124y x =-, 当1x =时,8y =,90x y --=; 当2x =时,4y =,93x y --=; 当3x =时,0y =,96x y --=; 当4x =时,4y =-(舍);综上所述,获胜的场数可能为1,2,3,共3种可能, 故选:B . 【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.8.D解析:D 【分析】整理后①×7+②×2得出41x=41,求出x ,把x 的值代入①求出y 即可. 【详解】 解:整理得:34510143x y x y +=⎧⎨-=⎩①②,①×7+②×2得:41x=41, ∴x=1,把x=1代入①得:3+4y=5,∴y=0.5,∴方程组的解是:10.5x y =⎧⎨=⎩, 故选D .【点睛】本题考查了解二元一次方程组,关键是把二元一次方程组转化成一元一次方程,解题时要根据方程组的特点进行有针对性的计算.9.D解析:D【分析】先利用方程3x-y=7和2x+3y=1组成方程组,求出x 、y ,再代入y=kx-9求出k 值.【详解】解:由题意,得:37,23 1.x y x y -=⎧⎨+=⎩ 解得:2,1.x y =⎧⎨=-⎩将21x y =⎧⎨=-⎩代入y=kx-9中,得:-1=2k-9, 解得:k=4.故选D.【点睛】本题考查二元一次方程组和三元一次方程组的解法,有加减法和代入法两种,一般选用加减法解二元一次方程组较简单.10.A解析:A【解析】【分析】设购买甲种笔记本x 个,则乙种笔记本y 个,利用购甲、乙两种笔记本共用70元得到x=14-3y ,利用143y y-=14y –3为整数可判断y=1,2,7,14,然后求出对应x 的值从而得到购笔记本的方案.【详解】设购买甲种笔记本x 个,购买乙种笔记本y 个,根据题意得5x +15y =70,则x =14–3y , 因为143y y -为整数,而143y y-=14y –3,所以y=1,2,7,14,当y=1时,x=11;当y=2时,x=4;y=7和y=14舍去,所以购笔记本的方案有2种.故选A.【点睛】本题考查了二元一次方程的解,分析题意,找到关键描述语,找到合适的等量关系,特别是确定甲种笔记本数量和乙种笔记本数量关系,然后利用整除性确定方案.11.B解析:B【分析】根据等式基本性质进行分析即可.【详解】用x表示y为y=3x-5,故①不正确;用y表示x为53yx+=,故②正确;方程两边同乘以-2可得-6x+2y=-10,故③正确.故选B.【点睛】考核知识点:二元一次方程.12.D解析:D【分析】一方面买鸡的钱数=8人出的总钱数-3钱,另一方面买鸡的钱数=7人出的总钱数+4钱,据此即可列出方程组.【详解】解:设有x人,买鸡的钱数为y,根据题意,得:8374x y x y-=⎧⎨+=⎩.【点睛】本题考查的是二元一次方程组的应用,正确理解题意、根据买鸡的总钱数不变列出方程组是解题关键.二、填空题13.【分析】将方程整理成关于m的一元一次方程,若无论实数m取何值,此二元一次方程都有一个相同的解,则与m无关,从而令m的系数为0,从而得关于x和y的二元一次方程组,求解即可.【详解】将(m+1)解析:11x y =-⎧⎨=⎩【分析】将方程整理成关于m 的一元一次方程,若无论实数m 取何值,此二元一次方程都有一个相同的解,则与m 无关,从而令m 的系数为0,从而得关于x 和y 的二元一次方程组,求解即可.【详解】将(m+1)x+(2m-1)y+2-m=0整理得:mx+x+2my-y+2-m=0,即m (x+2y-1)+x-y+2=0, 因为无论实数m 取何值,此二元一次方程都有一个相同的解,所以21020x y x y +-=⎧⎨-+=⎩, 解得:11x y =-⎧⎨=⎩. 故答案为:11x y =-⎧⎨=⎩. 【点睛】考查了含参数的二元一次方程有相同解问题,解题关键是利用转化思想.14.【分析】①+③解得x=5,然后将x=5代入②得y=3,最后将x=5、y=3代入③可得z=2即可.【详解】解:①+③解得:2x=10,即x=5;将x=5代入②得y=3;将x=5,y=3代解析:532x y z =⎧⎪=⎨⎪=⎩【分析】①+③解得x=5,然后将x=5代入②得y=3,最后将x=5、y=3代入③可得z=2即可.【详解】解:31810x y z x y x y z =+⎧⎪+=⎨⎪++=⎩①②③①+③解得:2x=10,即x=5;将x=5代入②得y=3;将x=5,y=3代入③可得z=2.故答案为532x y z =⎧⎪=⎨⎪=⎩.【点睛】本题考查了解三元一次方程组,观察方程组、寻找各方程的特点、运用整体思想代入消元是解答本题的关键.15.14600【分析】根据题意,可以先设A 类组合x 个,B 类组合y 个,C 类组合z 个,然后根据题意可以列出三元一次方程组,从而可以得到x 、z 与y 的关系,然后即可求得需要防寒服多少件,本题得以解决.【详解析:14600【分析】根据题意,可以先设A 类组合x 个,B 类组合y 个,C 类组合z 个,然后根据题意可以列出三元一次方程组,从而可以得到x 、z 与y 的关系,然后即可求得需要防寒服多少件,本题得以解决.【详解】解:设A 类组合x 个,B 类组合y 个,C 类组合z 个,6040401160050507500x y z x ++=⎧⎨+=⎩, 化简,得28022130x y z y =-⎧⎨=-⎩, ∴需要的防寒服为:80x +40y +60z =80(280﹣2y )+40y +60(2y ﹣130)=22400﹣160y +40y +120y ﹣7800=14600,故答案为:14600.【点睛】本题考查三元一次方程组的应用,解答本题的关键是明确题意,列出相应的三元一次方程组,利用方程的知识解答.16.±3【分析】把x 与y 的值代入方程组求出m 与n 的值,即可求出所求.【详解】解:把代入方程组得:,①×2-②得:5m=15,解得:m=3,把m=3代入①得:n=2,则m+3n=3+6=9解析:±3【分析】把x 与y 的值代入方程组求出m 与n 的值,即可求出所求.【详解】解:把21x y =⎧⎨=⎩代入方程组得:2821m n n m +=⎧⎨-=⎩①②, ①×2-②得:5m =15,解得:m =3,把m =3代入①得:n =2,则m +3n =3+6=9,9的平方根是±3,故答案为:±3【点睛】此题考查了二元一次方程组的解,以及平方根,熟练掌握运算法则是解本题的关键.17.﹣7【分析】由表二结合表一即可得出关于a 的一元一次方程,解之即可得出a 值;由表三结合表一即可得出关于b 的一元一次方程,解之即可得出b 值;在表三中设42为第x 行y 列,则75为第(x+1)行(y+2解析:﹣7【分析】由表二结合表一即可得出关于a 的一元一次方程,解之即可得出a 值;由表三结合表一即可得出关于b 的一元一次方程,解之即可得出b 值;在表三中设42为第x 行y 列,则75为第(x+1)行(y+2)列,结合表一中每个数等于其所在的行数×列式即可列出关于x 、y 的二元一次方程组,解之即可得出x 、y 的值,将其代入m=(x+1)(y+1)即可得出m 的值,将a 、b 、m 的值代入a-b+m 即可得出结论.【详解】表二截取的是其中的一列:上下两个数字的差相等,∴a-15=15-12,解得:a=18;表三截取的是两行两列的相邻的四个数字:右边一列数字的差比左边一列数字的差大1, ∴42-b-1=36-30,解得:b=35;表四截取的是两行三列的相邻的六个数字:设42为第x 行y 列,则75为第(x+1)行(y+2)列,则有()()421275xy x y ⎧⎨++⎩==,解得:143x y ⎧⎨⎩== 或3228x y ⎧⎪⎨⎪⎩==(舍去), ∴m=(x+1)(y+1)=(14+1)×(3+1)=60.∴a+b ﹣m=18+35-60=-7.故答案为:-7【点睛】此题考查一元一次方程的应用,规律型:数字变化类,根据表一中数的排列特点通过解方程(或方程组)求出a 、b 、m 的值是解题关键.18.105【分析】根据题意进行解设,列出三元一次方程组,再用加减消元的方法即可求解.【详解】解:设甲每件x 元,乙每件y 元,丙每件z 元,依题意得:3×(1)-2×(2)得:x+y+z=105解析:105【分析】根据题意进行解设,列出三元一次方程组,再用加减消元的方法即可求解.【详解】解:设甲每件x 元,乙每件y 元,丙每件z 元,依题意得:37315(1)410420(2)x y z x y z ++=⎧⎨++=⎩ 3×(1)-2×(2)得:x+y+z=105,∴购买甲、乙、丙各1件,共需105元.【点睛】本题考查了三元一次方程组的实际应用,中等难度,正确对方程组进行化简是解题关键. 19.76, 56.【解析】【分析】逐项代入求值即可解题.【详解】解:将x =32代入x+3y=5得,y=76,将x =32,y=76代入x+2y-z=3得z=56,∴y=76,解析:, .【解析】【分析】逐项代入求值即可解题.【详解】解:将x=代入x+3y=5得,y=,将x=,y=代入得z=,∴y=, z=.【点睛】本题考查了三元一次方程组的求解,中等难度,熟悉代入求值的方法是解题关键.20.3x-5y-8【解析】【分析】根据等式的性质,移项即可解题.【详解】解:∵3x-5y-z=8,∴z=3x-5y-8(移项).【点睛】本题考查了等式的性质,属于简单题,熟练运用移项是解解析:3x-5y-8【解析】【分析】根据等式的性质,移项即可解题.【详解】解:∵3x-5y-z=8,∴z=3x-5y-8(移项).【点睛】本题考查了等式的性质,属于简单题,熟练运用移项是解题关键.21.【分析】从方程组的两组解入手,找到两组解之间的乘积关系为二元二次方程,倍数关系为二元一次方程,联立方程组即可.【详解】解:根据方程组的解可看出:xy=8,y=2x,∴符合要求的方程组为.解析:28 y x xy=⎧⎨=⎩【分析】从方程组的两组解入手,找到两组解之间的乘积关系为二元二次方程,倍数关系为二元一次方程,联立方程组即可.【详解】解:根据方程组的解可看出:xy=8,y=2x,∴符合要求的方程组为28 y x xy=⎧⎨=⎩.【点睛】根据未知数的解写方程组的题目通常是利用解之间的数量关系(和差关系或倍数关系等)来表示方程组的解.22.9【解析】由题意得,解得,所以x+y+z=9.解析:9【解析】由题意得4021010x zz yx y z-+=⎧⎪-+=⎨⎪+-+=⎩,解得135xyz=⎧⎪=⎨⎪=⎩,所以x+y+z=9.23.8【解析】试题分析:设小矩形的长为x,宽为y,则,两方程相加,解得x+y=3.4,因此小矩形的周长为2(x+y)=6.8.解析:8【解析】试题分析:设小矩形的长为x,宽为y,则2 5.7{2 4.5x yx y+=+=,两方程相加,解得x+y=3.4,因此小矩形的周长为2(x+y)=6.8.24.【解析】试题分析:根据x、y互为相反数,可得x+y=0,然后和方程构成方程组,解得,所以3x-2y=.三、解答题25.(1)见解析;(2)a和b的值分别为2,5.【分析】(1)分别选择甲、乙、丙,按照提示的方法求出k 的值即可;(2)根据加减消元法的过程确定出a 与b 的值即可.【详解】解:(1)选择甲,3274232m n k m n +=-⎧⎨+=-⎩①②, ①×3﹣②×2得:5m =21k ﹣8,解得:m =2185k -, ②×3﹣①×2得:5n =2﹣14k ,解得:n =2145k -, 代入m+n =3得:21821455k k --+=3, 去分母得:21k ﹣8+2﹣14k =15,移项合并得:7k =21,解得:k =3;选择乙, 3274232m n k m n +=-⎧⎨+=-⎩①②, ①+②得:5m+5n =7k ﹣6,解得:m+n =7-65k , 代入m+n =3得:7-65k =3, 去分母得:7k ﹣6=15,解得:k =3;选择丙,联立得:3232m n m n +=⎧⎨+=-⎩①②, ①×3﹣②得:m =11,把m =11代入①得:n =﹣8,代入3m+2n =7k ﹣4得:33﹣16=7k ﹣4,解得:k =3;(2)根据题意得:1327a b +=⎧⎨+=⎩, 解得:52b a =⎧⎨=⎩, 检验符合题意,则a 和b 的值分别为2,5.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.26.(1)()5,3A 为爱心点,理由见解析;(2)第四象限,理由见解析;(3)0p =,q =23- 【分析】(1)分别把A 、B 点坐标,代入(m ﹣1,22n +)中,求出m 和n 的值,然后代入2m =8+n 检验等号是否成立即可;(2)把点A (a ,﹣4)、B (4,b )各自代入(m ﹣1,22n +)中,分别用a 、b 表示出m 、n ,再代入2m =8+n 中可求出a 、b 的值,则可得A 和B 点的坐标,再根据中点坐标公式即可求出C 点坐标,然后即可判断点C 所在象限;(3)解方程组,用q 和p 表示x 和y ,然后代入2m =8+n 可得关于p 和q 的等式,再根据p ,q 为有理数,即可求出p 、q 的值.【详解】解:(1)A 点为“爱心点”,理由如下:当A (5,3)时,m ﹣1=5,22n +=3, 解得:m =6,n =4,则2m =12,8+n =12,所以2m =8+n ,所以A (5,3)是“爱心点”;当B (4,8)时,m ﹣1=4,22n +=8, 解得:m =5,n =14,显然2m ≠8+n ,所以B 点不是“爱心点”; (2)A 、B 两点的中点C 在第四象限,理由如下:∵点A (a ,﹣4)是“爱心点”,∴m ﹣1=a ,22n +=﹣4, 解得:m =a +1,n =﹣10.代入2m =8+n ,得2(a +1)=8﹣10,解得:a =﹣2,所以A 点坐标为(﹣2,﹣4);∵点B (4,b )是“爱心点”,同理可得m =5,n =2b ﹣2,代入2m =8+n ,得:10=8+2b ﹣2,解得:b =2.所以点B 坐标为(4,2).∴A、B两点的中点C坐标为(2442,22-+-+),即(1,﹣1),在第四象限.(3)解关于x,y的方程组3x y qx y q⎧+=+⎪⎨-=-⎪⎩,得:2x qy q⎧=-⎪⎨=⎪⎩.∵点B(x,y)是“爱心点”,∴m﹣1﹣q,22n+=2q,解得:m﹣q+1,n=4q﹣2.代入2m=8+n,得:﹣2q+2=8+4q﹣2,整理得﹣6q=4.∵p,q为有理数,若使p﹣6q结果为有理数4,则P=0,所以﹣6q=4,解得:q=﹣23.所以P=0,q=﹣23.【点睛】本题是新定义题型,以“爱心点”为载体,主要考查了解二元一次方程组、中点坐标公式等知识以及阅读理解能力和迁移运用能力,正确理解题意、熟练掌握二元一次方程组的解法是关键.27.(1)C(a+h,b-1),D(m+h,n-1);(2)①见解析;②相等,理由见解析【分析】(1)根据平移规律解决问题即可..(2)①证明A,D的纵坐标相等即可解决问题;②如图,设AD交直线l于J,首先证明BJ=DJ=1,推出D(m+1,n-1),再证明p=q,即可解决问题.【详解】解:(1)由题意,C(a+h,b-1),D(m+h,n-1);(2)①∵b=n-1,∴A(a,b),D(m+h,n-1),∴点A,D的纵坐标相等,∴AD∥x轴,∵直线l⊥AD,∴直线l⊥x轴;②相等,理由是:如图,设AD交直线l于J,∵DE的最小值为1,∴DJ=1,∵BJ=1,∴D (m+1,n-1),∴二元一次方程px+qy=k (pq≠0)的图象经过点B ,D ,∴mp+nq=k ,(m+1)p+(n-1)q=k ,∴p-q=0,∴p=q ,∴m+n=k p, ∵tp+sp=k ,∴t+s=k p, ∴m+n=t+s .【点睛】本题考查坐标与图形的变化-平移,二元一次方程等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.28.(155)a b +;23a b =⎧⎨=⎩;28.3吨;a 的值上调了0.4时b 的值上调了0.6或者a 的值上调了0.6时b 的值上调了0.1.【分析】(1)小王家今年3月份用水20吨,超过15吨,所以分两部分计费,15吨及以下费用为15a ,超过15吨的费用为(2015)5b b -=,故总费用155a b +;(2)依题意列方程组1564815105270a b a b +=⎧⎨++⨯=⎩,可求解; (3)在第(2)题的条件下,正好25吨时,所需费用60(元),可知若交水费76.5元,肯定用水超过25吨,可得用水量;(4)由小王家5月份用水量与4月份用水量相同与要比4月份多交9.6元钱水费,可列方程,满足方程的条件的解列出即所求.【详解】解:(1)小王家今年3月份用水20吨,要交消费为155a b +,故答案为:(155)a b +;(2)根据题意得,1564815105270a b a b +=⎧⎨++⨯=⎩, 解得:23a b =⎧⎨=⎩; (3)在第(2)题的条件下,当正好25吨时,可得费用15210360⨯+⨯=(元),由交水费76.5元可知,小王家用水量超过25吨,即:超过25吨的用水量(76.560)5 3.3=-÷=吨,合计本月用水量 3.32528.3=+=吨(4)设a 上调了x 元,b 上调了y 元,根据题意得:1569.6x y +=,52 3.2x y ∴+=,,x y 为整数角线(没超过1元),∴当0.6x =时,0.1y =元,当0.4x =时,0.6y =元,∴a 的值上调了0.4时,b 的值上调了0.6;a 的值上调了0.6时,b 的值上调了0.1.【点睛】本题考查了二元一次方程组的实际应用,并学会看图提练已知,用二元一次方程列举法来表示解.29.11x y =-⎧⎨=⎩,见解析. 【分析】根据题中的和为3先列出二元一次方程组,解出x,y 的值,之后再补全图3即可.【详解】解:根据题意,得2323243x y x y y ++=⎧⎨++=⎩①②解得:11x y =-⎧⎨=⎩填出剩余的数字如图所示:【点睛】本题是材料阅读题,注意正确阅读材料理解题意,列出方程组,求解之后即可顺利完成本题.30.(1)x1y3=⎧⎨=⎩,x3y2=⎧⎨=⎩,x5y1=⎧⎨=⎩;(2)x3y7=⎧⎨=⎩;(3)63,73,83【分析】(1)根据“好解”的定义,求方程的正整数解,先把方程做适当的变形,再列举正整数代入求解;(2)解方程组求得554{5594kxky+=-=,,根据“好解”的定义得5519k-<<,在范围内列举正整数代入求解;(3)根据题意,联立方程组,求出方程组的解,根据“好解”的定义得到k的取值范围,在范围内列举正整数代入求解.【详解】解:(1)由x+2y=7,得y=7x2-(x.y为正整数).∵x0{7x2->>,即0<x<7,∴当x=1时,y=3;当x=3时,y=2;当x=5时,y=1;∴方程x+2y=7的“好解”有x1{y3==,x3{y2==,x5{y1==;(2)由x y k15{x5y10k70++=++=,解得554{5594kxky+=-=,∵55k4{559k4+->>,即-1<k<559,∴当k=3时,x=5,y=7,∴方程组x y k15{x5y10k70++=++=有“好解“,∴“好解”为x3 {y7==;。
初一下学期数学《 二元一次方程组考试试题》含答案.word版

初一下学期数学《 二元一次方程组考试试题》含答案.word 版一、选择题1.某校运动员分组训练,若每组7人,则余3人:若每组8人,则缺5人.设运动员人数为x 人,组数为y 组,则可列方程为( )A .7385y x y x =+⎧⎨=+⎩B .7385y x y x =+⎧⎨+=⎩C .7385y x y x =-⎧⎨+=⎩D .7385y x y x =-⎧⎨=+⎩2.已知方程组2728x y x y +=⎧⎨+=⎩,则5510x y -+的值是( )A .5B .-5C .15D .253.某小区准备新建 50 个停车位,已知新建 1 个地上停车位和 1 个地下停车位共需 0.6万元;新建 3 个地上停车位和 2 个地下停车位共需 1.3 万元,求该小区新建 1 个地上停车位和1个地下停车位各需多少万元?设新建 1 个地上停车位需要 x 万元,新建 1 个地下停车位需 y 万元,列二元一次方程组得( ) A .632 1.3x y x y +=⎧⎨+=⎩B .623 1.3x y x y +=⎧⎨+=⎩C .0.632 1.3x y x y +=⎧⎨+=⎩D .63213x y x y +=⎧⎨+=⎩4.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配套两个螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺栓和生产螺帽的人数分别为( ) A .50人,40人 B .30人,60人 C .40人,50人 D .60人,30人5.已知31x y =⎧⎨=⎩是方程组102ax by x by -=⎧⎨+=⎩的解,则x ay b=⎧⎨=⎩是哪一个方程的解( ) A .34x y +=B .34x y -=C .439x y -=D .439x y +=6.已知方程组4520430x y z x y z -+=⎧⎨+-=⎩(xyz≠0),则x :y :z 等于( )A .2:1:3B .3:2:1C .1:2:3D .3:1:27.《九章算术》是我国东汉初年编订的一部数学经典著作。
数学竞赛 列二元一次方程组

七年级数学竞赛(二)——列方程组解应用题(只列不解)1.某市现有42万人口,计划一年后城镇人口增加0.8%,农村人口增加工厂1.1%,这样全市人口将增加1%,求这个市现在的城镇人口与农村人口.2.小兰在玩具工厂劳动,做4个小狗、7个小汽车用去3小时42分,做5个小狗、6个小汽车用去3小时37分,平均做1个小狗、1个小汽车各用多少时间?3.某区中学生足球联赛共8轮(即每个队均需要赛8场),胜一场得3分,平一场得1分,负一场得0分.在这次足球联赛中,雄师队踢平的场数是所负场数的2倍,共得17分.你知道雄师队胜了几场球吗?4.10年前,母亲的年龄是儿子的6倍;10年后,母亲的年龄是儿子的2倍.求母子现在的年龄.5.某国际医疗救援队用甲、乙两种原料为手术后的病人配置营养品.每克甲原料含0.5单位的蛋白质和1单位的铁质,每克乙原料含0.7单位蛋白质和0.4单位铁质.若病人每餐需要35单位蛋白质和40单位铁质,那么每餐甲、乙两种原料各多少克恰好满足病人的需要?6.某校师生到甲、乙两个工厂参加劳动,如果从甲厂抽9人到乙厂,则两厂的人数相同;如果从乙厂抽5人到甲厂,则甲厂的人数是乙厂的2倍,到两个工厂的人数各是多少?7.游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽。
如果每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽比红色的多1倍,你知道男孩与女孩各有多少人吗?8.某幼儿园分苹果,若每人3个,则剩2个,若每人4个,则有一个少1个,问幼儿园有几个小朋友?9.七年级学生去饭堂开会,如果每4人共坐一张长凳,则有28人没有位置坐,如果6人共坐一张长凳,求七年级学生人数及长凳数.10.一张桌子由桌面和四条腿组成,1立方米的木材可制成桌面50张或制作桌腿300条,现有5立方米的木材,问应如何分配木材,可以使桌面和桌腿配套?11.某儿童三轮厂共有95名工人,每个工人每天可生产车身9个或30个车轮。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⎧ 3x 2 + y = 1
⎧ xy = 4 ⎧ x + 2 y = 4
(A ) ⎨ (B )⎨ (C )⎨ 1 (D )⎨
x + 2 y = 6 10 x - 8 y = -9 ⎩ ⎩7 x - 9 y = 5 - 3 y = - ⎪⎩ x
4 4.如果 a 2b 3 与 - a x +1b x + y 是同类项,则 x ,y 的值是(
)
(D )⎧⎨
x =2
(B )⎧⎨
x =2
(C )⎧⎨
x =1
⎨
⎩
二元一次方程组竞赛卷
一、选择题(每题 3 分,共 30 分)
1.下列方程组中,是二元一次方程组的是
( )
⎧ x - y = 2 ⎪ 7
⎩
⎧x + 2 y = 10,
2.二元一次方程组 ⎨
的解是 ( )
⎩ y = 2 x
⎧x = 4,
⎧x = 3,
⎧x = 2,
⎧x = 4,
(A ) ⎨
(B ) ⎨
(C ) ⎨
(D ) ⎨
⎩ y = 3;
⎩ y = 6; ⎩ y = 4;
⎩ y = 2.
3.根据图 1 所示的计算程序计算 y 的值,若输入 x = 2 ,则输出的 y 值是( )
(A )0
(B ) -2 (C )2 (D )4
1 1
5 4
(A ) ⎧ x = 1 ⎩ y = 3 ⎧ x = 1 ⎧ax + y = -1,
5.已知 ⎨
是方程组 ⎨ 的解,则 a +b = ⎩ y = 2 ⎩ 2 x - by = 0.
(
).
(A )2
(B )-2
(C )4
(D )-4
6.如图 2,AB ⊥BC ,∠ABD 的度数比∠DBC 的度数的两倍少 15°,设∠ABD 和
∠DBC 的度数分别为 x 、y ,那么下面可以求出这两个角的度数的方程组是 ( )
⎧ x + y = 90 ⎧ x + y = 90
(A ) ⎨
(B ) ⎨
⎩ x = y -15
⎩ x = 2 y - 15 A
D
⎧ x + y = 90
⎧2 x = 90
(C ) ⎨
(D ) ⎨
⎩ x = 15 - 2 y
⎩ x = 2 y - 15
x °
B
y °
C
图 2
⎧ x - y = a
7.如果二元一次方程组 ⎨ x + y = 3a 的解是二元一次方程 3x - 5 y - 7 = 0 的一个
8. 若 ⎨
是方程2 x + y = 0的一个解 , (a ≠ 0), 则a, b 的符号为 ( )
解,那么 a 的值是(
)
(A )3
(B )5
(C )7
(D )9
⎧x = a ⎩ y = b
A 、 a, b 同号
B 、 a, b 异号
C 、 a, b 可能同号可能异号
D 、 a ≠ 0, b = 0
⎧2 x + y = -a + 4
9.已知:关于 x, y 的方程组 ⎨
, 则x - y 的值为 (
)
⎩x + 2 y = 3 - a
A 、-1
B 、 a - 1
C 、0
D 、1
10. 6 年前,A 的年龄是 B 的 3 倍,现在 A 的年龄是 B 的 2 倍,则 A 现在的年
龄为(
)
A 、12
B 、18
C 、24
D 、30
二、填空题(每小题 4 分,共 20 分)
⎧2 x + y = 3k -1
11.若关于 x ,y 的二元一次方程组 ⎨
的解满足 x +y =1,则 k 的取 ⎩ x + 2 y = -2
值范围是
.
12.一个两位数的十位数字与个位数字的和为 8,若把这个两位数加上 18,正 好等于将这个两位数的十位数字与个位数字对调后所组成的新两位数,则原来 的两位数为_______.
13.甲、乙两人练习跑步,如果乙先跑10 米,则甲跑 5 秒就可追上乙;如果乙
先跑 2 秒,则甲跑 4 秒就可追上乙,若设甲的速度为 x 米/秒,乙的速度为 y 米
/秒,则列方程组为
___________________________.
14 . 利 用 两 块 长 方 体 木 块 测 量 一 张 桌 子 的 高 度 . 首 先 按 图 ( 1 ) 方 式 放 置 , 再 交 换 两 木 块 的 位 置 , 按 图 ( 2 ) 方 式 放 置 . 测 量 的 数 据 如 图 , 则 桌子的高度是( )
A 、74cm
B 、75cm
C 、76cm
D 、77cm
15.某果品商店进行组合销售,甲种搭配:2 千克 A 水果,4 千克 B 水果;乙种
(1) ⎨ 4 18. 甲、乙两位同学在解方程组 ⎨
时,甲看错了第一个方程解得 2ax - by = -2 搭配:3 千克 A 水果,8 千克 B 水果,1 千克 C 水果;丙种搭配:2 千克 A 水果, 6 千克 B 水果,1 千克 C 水果.已知 A 水果每千克 2 元,B 水果每千克 1.2 元,C 水果每千克 10 元。
某天该商店销售这三种搭配水果共 441.2 元,其中 A 水果 的销售额为 116 元,则 C 水果的销售额为__________元。
三、解答题(16、 17 题每小题 6 分,18、19 题每题 10 分,20 题 12 分)
⎧2x - y = -4, 16.用代入法解方程组
⎨
⎩4x - 5 y = -23.
17. 用适当方法解方程组
⎧ y + 1 x + 2
⎪ =
3
⎪⎩2 x - 3 y = 1
⎧23x + 17 y = 63
(2) ⎨
⎩17 x + 23 y = 57
⎧ax + by = 7 ⎩
⎧x = 1 ⎧x = -2 ⎨
,乙看错了第二个方程解得 ⎨ ⎩ y = -1 ⎩ y = -6
,求 a, b 的值。
19.某家商店的账目记录显示,某天卖出78支笔和42个备课本,收入258元;另一天,以相同的价格卖出同样的56个备课本和104支笔,收入518元。
这个记录有误吗?如果有误,请说明理由。
20.已知用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好没辆车都装满货物。
根据以上信息,解答下列问题:
(1)1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?
(2)请你帮该物流公司设计租车方案。
(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少的租车费。