开关电源的设计及计算

合集下载

开关电源环路设计与计算

开关电源环路设计与计算

Ro
+ ss
LCo1 n2 D'2
)
right 系统右半平面零点: On-B 负载电容ESR 零点:
wrz
=
n2Ro (1− D)2 Lm D
wz
=
1 Ro1C
On-Bright confidential
11
右半平面零点(RHZ)的直观理ao解 RHZ在boost, buck-boost, flyback(占空比由输入输出电压和匝比决 np 定)CCM中都存在,而DCM中没有RHZ。 Te 负载突然增加→输出电压下降→EA+PWM 反应→占空比增大(Wrong to Way)→反激时间减小→输出电流减小(通过输出diode)→输出电压下降更多 l (临时)。此即典型RHZ响应特性。 On-Bright Confidentia 在DCM中,占空比增大导致输出电流增大,故不存在此RHZ
fiden 控制模式 n ¾ 电压模式 o ¾ 电流模式
ht C 开关电源系统可分为两大块 -Brig ¾ 负反馈回路(feedback loop) On ¾ 保护功能(OVP, OCP, OTP ……)
On-Bright confidenቤተ መጻሕፍቲ ባይዱial
4
开(OV关no-Bl电traigg源het MC系oon统dfeid基PeWn本tiaMl组tSo成yTsetn部epma分)o
On-Bright confidential
24
环路的补偿考虑

出况一环环通裕者位统对跨也些路路常量高增有(这接可高需补补(频益1G8样,以频要偿偿的带0ai-等n或适极补的网。宽9O0效m者当点偿目络内=na9为r-输引或以的放只0gB°环irn出入者获是在有ig)相路,到一零得:E一h位带A因t地些点足在个C裕宽(为e。零。够带极or量内环rn在点的宽点o)只rf路i环或相内(,da一有m存e路者位等pn个或一在l的极裕效itf导者个i很iae其点量为rl致一极多,t他以(单oP9个点例零h地抵极0Ta°极)如极es方消点.en相点.T点m,环系.pL移和,a4a根路统r3go,一1i据带.低)n个的)实宽从环频零和输际外而路的极增入情的系单或点益输

开关电源的设计及计算

开关电源的设计及计算

开关电源的设计及计算1.先计算BUCK 电容的损耗(电容的内阻为R buck 假设为350m Ω,输入范围为85VAC~264VAC,频率为50Hz ,P OUT =60W,V OUT =60W ):电容的损耗:P buck =R buck *I buck,rms 2I buck,rms =I in,min1**32−cline t F t c :二极管连续导通的时间t c =linelineF VpeakV e F **2)min(arcsin *41π−=3ms其中:V min =linein ch in in in F C D P V V *)1(***2min ,min ,−−V peak =2*V in,min其图中的T1就是下面公式中t c或:V min =η*)*21(**2**2min ,min ,in c line o in in C t F P V V −−所以(假设最低输入电压时,输入电流=0.7A):I buck,rms =I in,min1**32−cline t F =0.7*13*50*32−=1.3A P buck =350m*1.32=0.95W第一步计算电容损耗是为了使用其中的t c 值,电容的容量一般通用范围选2~3μ/W ,固定电压为1μ/W2.输入交流整流桥的计算(假设V TO =0.7V,R d =70m Ω)在同一个时间内有两个二极管同时导通,半个周期内两个二极管连续导通I d,rms =c line in t F I **3min ,=m3*50*37.0=1.04AP diodes =2*(V TO *2min ,in I +R d *I d,rms 2)=2*(0.7*27.0+70m*1.042)=640mW 一个周期内桥堆损耗为:P BR=2*P diodes =2*640m=1.28W桥堆功耗超过1.5W 时,我个人认为应加散热器(特别是电源的使用环境温度较高时)变压器和初级开关MOS :反激式开关电源有两种模式CCM 和DCM ,各有优缺点。

开关电源设计(精通型)

开关电源设计(精通型)

开关电源设计(精通型)一、开关电源基本原理及分类1. 基本原理开关电源的工作原理是通过控制开关器件的导通与关断,实现电能的高效转换。

它主要由输入整流滤波电路、开关变压器、输出整流滤波电路和控制电路组成。

在开关电源中,开关器件将输入的交流电压转换为高频脉冲电压,通过开关变压器实现电压的升降,经过输出整流滤波电路,得到稳定的直流电压。

2. 分类(1)PWM(脉冲宽度调制)型开关电源:通过调节脉冲宽度来控制输出电压,具有高效、高精度等特点。

(2)PFM(脉冲频率调制)型开关电源:通过调节脉冲频率来控制输出电压,适用于负载变化较大的场合。

二、开关电源关键技术与设计要点1. 高频变压器设计(1)选用合适的磁芯材料,保证变压器在高频工作时的磁通密度不超过饱和磁通密度。

(2)合理设计变压器的绕组匝数比,以满足输出电压和电流的要求。

(3)考虑变压器损耗,包括铜损、铁损和杂散损耗,确保变压器具有较高的效率。

2. 开关器件的选择与应用(1)开关频率:根据开关电源的设计要求,选择合适的开关频率。

(2)电压和电流等级:确保开关器件能承受最大电压和电流。

(3)功率损耗:选择低损耗的开关器件,提高开关电源的效率。

(4)驱动方式:根据开关器件的特点,选择合适的驱动电路。

3. 控制电路设计(1)稳定性:确保控制电路在各种工况下都能稳定工作。

(2)精度:提高控制电路的采样精度,降低输出电压的波动。

(3)保护功能:设置过压、过流、短路等保护功能,提高开关电源的可靠性。

三、开关电源设计实例分析1. 确定设计指标输入电压:AC 85265V输出电压:DC 24V输出电流:4.17A效率:≥90%2. 高频变压器设计选用EE型磁芯,计算磁芯尺寸、绕组匝数和线径。

3. 开关器件选择根据设计指标,选择一款适合的MOSFET作为开关器件。

4. 控制电路设计采用UC3842作为控制芯片,设计控制电路,实现开关电源的稳压输出。

5. 实验验证搭建实验平台,对设计的开关电源进行测试,验证其性能指标是否符合要求。

开关电源设计步骤

开关电源设计步骤

开关电源设计步骤
1.需求分析(100字)
在设计开关电源之前,首先需要明确设计的目标和需求。

这包括输出电压、输出电流、输入电压范围、效率要求、输出电流稳定性等。

根据不同的需求,确定开关电源的拓扑和参数。

2.电路设计(300字)
在进行电路设计之前,需要选择开关电源的拓扑结构。

常见的拓扑结构有Buck、Boost、Buck-Boost、Sepic等。

根据需求和所选拓扑结构,设计主要电路模块包括开关管、滤波电感、修正电容、输出滤波电容等。

3.电路实现(300字)
根据电路设计确定的电路参数,在电路板上布线,连接各个器件和元件。

布线时需考虑到电路的稳定性和抗干扰能力。

注意分离高压和低压区域,减少互相干扰。

4.性能评估(200字)
完成电路实现后,需要进行性能评估,检验设计是否满足预期需求。

主要评估指标包括输出电压稳定性、负载调整能力、效率、开关频率、静态功耗、温度等。

通过测试数据和实际情况进行比较,查找问题和优化空间。

5.优化(200字)
根据性能评估的结果和问题分析,进行电路的优化。

优化可以包括改进布线、更换元器件、调整控制策略等。

目的是提高电路的性能,使其更加稳定、高效和可靠。

总结:
开关电源设计步骤包括需求分析、电路设计、电路实现、性能评估和优化。

通过明确需求,选择合适的拓扑结构,并根据电路设计参数进行电路实现,然后进行性能评估和优化。

这些步骤相互关联,需要不断地调整和优化,以得到满足需求的高性能开关电源设计。

反激式开关电源的设计计算

反激式开关电源的设计计算

反激式开关电源的设计计算首先,需要明确设计参数:1. 输入电压(Vin):反激式开关电源的输入电压一般为交流电网的标称电压,如220V或110V。

2. 输出电压(Vout):反激式开关电源的输出电压需要满足目标设备的需求,例如5V、12V等。

3. 输出功率(Pout):反激式开关电源的输出功率是根据目标设备的功率需求确定的,一般以瓦(W)为单位。

4. 开关频率(fsw):反激式开关电源的开关频率一般在10kHz到100kHz之间,根据具体需求和性能要求确定。

设计步骤如下:1.计算电流和电压波形:根据输出功率和输出电压,可以计算出输出电流:Iout = Pout / Vout。

同时,可以根据输入和输出的电压波形关系,使用变压器的变比关系计算输入电流波形。

2.选择开关元件:根据开关频率和输出功率,可以选择合适的功率场效应管(MOSFET)作为开关元件。

选择时需要考虑开关速度、导通和截止损耗等因素。

3.选择变压器:根据输入和输出电压的变比,可以选择合适的变压器。

变压器的选择需要考虑输入输出功率、开关频率、能量传输效率等因素。

4.计算电感和电容:通过计算电流波形和电压波形的变化率,可以确定所需的输入和输出电感。

同时,通过计算输出电压的纹波和电流的纹波,可以选择合适的输出电容。

5.设计控制电路:根据输入和输出电压、开关频率以及开关元件的特性,设计合适的控制电路。

常见的控制方案有可变频率、可变占空比等,需要根据具体需求确定。

6.完善保护电路:7.电路仿真和优化:通过电路仿真软件可以对设计的开关电源进行仿真,并对效果进行优化,如进一步降低纹波、提高效率等。

以上是基于反激式开关电源的设计计算的基本步骤,实际设计中还需要考虑其他因素,如电源的稳定性、EMI(电磁干扰)等。

设计计算的具体细节和参数计算可以根据具体的需求和设备要求进行调整和优化。

开关电源设计中最常用的几大计算公式汇总

开关电源设计中最常用的几大计算公式汇总

开关电源设计中最常用的几大计算公式汇总在开关电源设计中,有几个常用的计算公式可以帮助工程师进行准确的设计,以下是几个常用的计算公式的汇总:1.电容选择计算公式:开关电源中的电容主要用于滤波和储能,电容的选择需要考虑到输出的纹波电压、负载变化和效率等因素。

常见的电容选择公式如下:C=(ΔV×I)/(f×δV)其中,C是所需的电容容值,ΔV是允许的输出纹波电压,I是负载电流,f是开关频率,δV是峰值纹波电压。

2.电感选择计算公式:电感主要用于存储能量和滤波,选择适当的电感能够提高开关电源的效率。

电感选择的计算公式如下:L = ((Vin - Vout) × D × τ) / (Vout × Iout)其中,L是所需的电感值,Vin是输入电压,Vout是输出电压,D是占空比,τ是瞬态时间,Iout是负载电流。

3.开关频率计算公式:开关频率是开关电源设计中重要的参数,可以影响到效率、尺寸和成本等因素。

开关频率的计算公式如下:f = (Vin - Vout) / (Vout × L × Iout)其中,f是所需的开关频率,Vin是输入电压,Vout是输出电压,L是选择的电感值,Iout是负载电流。

4.整流二极管选择计算公式:整流二极管用于将开关电源的交流输出转换为直流输出,选择适当的整流二极管可以减少功耗和散热。

整流二极管选择的计算公式如下:Iavg = (Iout × η) / (1 - η)其中,Iavg是整流二极管的平均电流,Iout是负载电流,η是开关电源的效率。

5.功率开关管选择计算公式:功率开关管主要用于开关转换和功率调节,选择适当的功率开关管可以提高效率和可靠性。

功率开关管选择的计算公式如下:Pd = (Vin - Vout) × Iout / η - Vout × Iout其中,Pd是功率开关管的功耗,Vin是输入电压,Vout是输出电压,Iout是负载电流,η是开关电源的效率。

开关电源环路设计与计算

开关电源环路设计与计算

开关电源系统基本组成部分(Voltage Mode PWM System)tlaitnedifnoCthg开关电源环路分析和设计流程开关电源环路的小信号传函Flyback On B ri g h tnf i dl to eTL431h entialtoTePower StageFlyback PWM Stage n t i al to T en p a o右半平面零点difnoCthPWM StageneT()t d)+考虑斜率补偿后的考虑斜率补偿后的neTotlaitnedifn考虑斜率补偿后的tnedif考虑斜率补偿后的pneTot考虑斜率补偿后的pneTotlaitnedifnoDCM 模式下n -B ri g h tCo nf i d e n t i电流模式与电压模式的直观理解()(O V D V D V V =−−=1()(v d V V vI L 1ˆˆˆ−−+=()D I I L O −=1dI i L O ˆˆ−=n -B ri g h tCo nf i d电压模式的信号流程图(s iˆn -B ri g h tCo ne n t i l电流模式的信号流程图tl零极点对环路稳定性的影响及环路带宽选择标准环路的补偿方法apneTotlaitnedifno把控制带宽拉低,在功率部分或加有其他补偿的部分相位达环路的补偿方法apneTotlaitnedifnoC常用的补偿方式.补偿网络产生一个s=0(DC)极点,而且通常所以补偿网络需补偿网络的高频极点抵消输出滤波电容的ESR零点。

复杂,适用于输出带LC滤波的拓扑结构中.补偿网络产生一个s=0(DC)极点,以及两个零点和两个极点,环路的补偿方法o nf i de n t i al to T en p a反激变换器反馈回路的设计Power Stage Gain 采用补偿方法n -B ri g h tCo nf i de n t i al to T en p aOB2263 控制芯片内部模块图On -B ri g h tCo nf i de n t i al to T en p a oOB2263eTotlaitnedifnoCthgirOB2263 On -B ri g h tCf i al to T n p基于OB2263的基于OB2263的基于OB2263的基于OB2263的5) 确定EA补偿网络的零点和极点的位置基于OB2263的基于OB2263的附录: 431及其补偿网络传函的推导6KR I v ⋅−=l to T enThank youAny Questions ?On -B ri g h tCo nf i de n t i al to T en p a o。

开关电源设计计算公式包括电容开关管的选取

开关电源设计计算公式包括电容开关管的选取
一、输入电解电容计划算方法:
1、因输出电压12V输出电流1A故输出功率:
Pour=Vo*Io=12.0V*1A=12W
2、设变压器的转换效率为80%,则输出功率为12W的电源其输入功率:
Pin=Pout/效率=
3、因输入最小电压为90VAC,则直流输出电压为:
Vin=90* =127Vdc
故负载直流电流为:I= =
13、计算辅助绕组匝数:
CDQZ-5107 SEHOTTKY计算方法
1、由于前面计算变压器可知:
Np=82T ;Ns=13 T
2、在输入电压为264Vac时,反射到次级电压为:
Vmax=264Vac* =373 V
V = * Vmax = *373=59.5 V
3、设次级感量引起的电压为:(VR:初级漏感引起的电压)
V = * V = *90=14.5 V
二、输出电解电容计算方法
1、设定工作频率为f=60KHZ则
2、因为最小输入电压,90Vac,取反射电压为90Vac,根据磁平衡原理,计算出最大占实比
(90* -20)*D=90(1-D)
D-0.457
3、计.算出TOFF. TON
TOFF=(1-D)*T=13us TON=16.7-13=3.7us
1
输入电压电流
1
1
1
CDQZ-5107 MOSFET计算方法
1、由于前面计算变压器可知:
Np=Ns=13 T
2、输入电压最大值为264Vac,故经过桥式整流后,得到:
Vmax=264Vac* =373 V
3、次级反射到初级的电压为:
V = * V = *12=76V
4、由前面计算变压器可知,取初级漏感引起的电压,V =90 V ,故MOFET要求耐压值为:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
V1.0 版
等级:内部密
开关电源的设计及计算
1.先 计 算 BUCK 电 容 的 损 耗 ( 电 容 的 内 阻 为 Rbuck 85VAC~264VAC,频率为 50Hz,POUT =60W,VOUT=60W) : 2 电容的损耗: Pbuck=Rbuck*Ibuck,rms Ibuck,rms=Iin,min 假 设 为 350m Ω , 输 入 范 围 为
2 1 NP − 1000 LM AL
(mm)
其中:AL 为没气隙时的值,单位 nH/圈数 2 变压器次级线径的计算: 其中:KL(n)= Isec(n) = Ids rms
* V OR L ( n) 1− DMAX * V O ( n ) + VF ( n ) DMAX
(
*K
)
VO ( n ) + VF ( n ) * NS 1 VO1 + VF1 Vcc + VFa Na= * NS 1 VO1 + VF 1
翻译和整理:周月东 ON,FAIRCHILD 应用文档
控制芯片正常工作的电压,一般取 12~1等级:内部密
变压器气隙长度计算: G=40*π*Ae*
△I 2
2 △I DMAX 2 * 3 * (IEDC ) + 3 2 Idsrms =
其中:
IEDC =
Pin V min* DMAX V min* DMAX △I= LM * FS
文档内容参考: 翻译和整理:周月东 ON,FAIRCHILD 应用文档
单路 KL=1
PO ( n ) PO
PO(n) 为每路输出的最大功率
一般大于 1M 时,电流密度取 5A/mm 2,当圈数少,长度小,电流密度取 6~10A/mm2 也是可 以接受的。为了绕制容易和避免严重的涡流损耗,应避免使用单根 1mm 以上的线。对于大 电流输出应使用多根并联以减少趋肤效应。 同时必须检查窗口面积是否能绕制的下, 检查如 下: Awr=
Iin , min 0.7 = =1.04A 3 * Fline * tc 3 * 50 * 3m Iin, min 0.7 +Rd*I d,rms2)=2*(0.7* +70m*1.042)=640mW 2 2
Pdiodes=2*(VTO*
一个周期内桥堆损耗为: PBR=2*Pdiodes=2*640m=1.28W 桥堆功耗超过 1.5W 时,我个人认为应加散热器(特别是电源的使用环境温度较高时) 变压器和初级开关 MOS: 反激式开关电源有两种模式 CCM 和 DCM,各有优缺点。一般,DCM 为二极管提供更好 的开关条件,在二极管反相恢复之前,二极管的电流刚好为零。DCM 模式的变压器要小些, 因为 DCM 储存的平均能力要比 CCM 小。DCM 高 RMS 电流,会增加 MOS 的导通压降和 输出电容的电流压力。因此,DCM 推荐使用在输出高压,低电流的场合,CCM 使用在输出 低压大电流场合。 在 CCM 反激变换器中, 设计方法是连续正向传输, 因为输入输出电压增益仅依靠占空比 (the duty cycle) 。而 DCM 反激变换器的输入输出电压增益不依靠占空比(the duty cycle )而是负 载条件,会致线路设计稍微复杂点。一般可以接受使用最低输入电压,最大负载时 CCM 和 DCM 临界点来设计 DCM 变换器, 这时 MOS 导通损耗最低。 综上所述我们可以使用最低输 入电压,最大负载电压增益设计 CCM 变换器。 当 MOS 关 断 时,MOS 承 受 输入电压 Vin,dc 和 次 级 反 射 初 级电压 VOR 之 和 。 设定了最大 Dmax,VOR 和 MOS 实际电压 Vdsnom 可以由以下公式决定: VOR=
开通损耗: PSW,ON =
IP − valley *Vbulk * ∆t * FW 12
△t=
QGD IDRV _ pk
关闭损耗:
文档内容参考:
翻译和整理:周月东 ON,FAIRCHILD 应用文档
V1.0 版
等级:内部密
PSW,off=
Ip − pk *Vbulk * ∆t * FW 12
△t=
其图中的 T1 就是下面公式中 tc
或:Vmin= 2 *Vin , min*Vin , min −
2 * Po * (
1 − tc ) 2 * Fline Cin *η
所以(假设最低输入电压时,输入电流=0.7A):
文档内容参考:
翻译和整理:周月东 ON,FAIRCHILD 应用文档
V1.0 版
(V min* DMAX )2
2 * Pin * Fs * KRF
KRF: 最大负载和最低输入电压时的纹波系数,定义如图
DCM 模式 KRF=1 CCM 模式 KRF<1 纹波系数跟变压器的大小和 MOS 的 RMS 值紧密相连。 尽管可以减小 KRF 来降低 MOS 的导通损耗, 太小的 KRF 会迫使变压器尺寸增加。 对于 CCM 反激模式,通用输入模式设定 KRF=0.25~0.5,固定输入设定 KRF=0.4~0.8 是比较合理。 一旦 LM 确定了,最大峰值电流和 MOS 的 RMS 电流就如下: Idspeak=IEDC+
2
Ids2 =
Pin * (VIN , MAX + VRO ) VIN , MAX *VRO + 2 * LM * FS * (VIN , MAX + VRO ) VIN , MAX *VRO
Ids2=
在 DCM 模式中
2 * Pin F S * LM
通过上面的计算: Vdsmax=VIN,MAX+Vsn2 验证这个值是否超过 MOS 额定耐压的 90%。 吸收二极管的耐压一般选择比 MOS 要高些,一般选 1A,1000V 的二极管。
NP * Bsat * Ae LM
Isat 变压器饱和电流 Bsat 饱和磁感应强度 (一般 0.3) 2 Ae 有效磁面积 (m ) 变压器饱和的原因: 变压器电感量太大 初级圈数太少 没有软启动 磁芯 Ae 太小 MOS 损耗(假设 RDS(120)=1.2Ω, Idsrms =1.26A): 导通损耗: Pon=RDS(120 度)*(Idsrms)2=1.9W(下面计算散热器使用) 门极损耗: PG=VG*Qg*F S VG 为门推动电压
根据选出的磁芯可以计算最少圈数: Npmin=
LM * Ids peak *10 6 BSAT * Ae
实际设计中,Idspeak 值要取的比计算的值大些,应考虑余量,防止变压器饱和。如果是集成芯 片,一般这个值就是芯片内部的过流值。由于饱和磁通密度 BSAT 随温度升高而降低,应考
文档内容参考: 翻译和整理:周月东 ON,FAIRCHILD 应用文档
AC KF
AC 导线实际面积
KF 填充因子
一般:单路 KF 取 0.2~0.25,多路取 0.15~0.2。如果需求窗口 Awr 大于实际窗口 Aw,需要选 择大一号的磁芯,有时因为成本或尺寸不能更改磁芯。对于 CCM 变换器有时差一点,可以 通过增大 KRF 来减小 LM。这样最小圈数就会少些,以满足磁芯要求。 变压器损耗:
Rsn
Vsn 1 2 = * FS * LLK * (Ids peak ) * Vsn − VRO 2
其中:Vsn 必须大于 VRO,一般设为 2~2.5 倍 VRO 值取的太小,根据上面的公式会 导致吸收网路损耗过大。使用开关频率测量漏感,测试时除初级外其他全部短路。 吸收电容上的纹波电压为:△Vsn=
等级:内部密
Ibuck,rms =Iin,min
2 2 − 1 =1.3A − 1 =0.7* 3 * 50 * 3 3 * Fline * tc
Pbuck=350m*1.32=0.95W 第一步计算电容损耗是为了使用其中的 tc 值,电容的容量一般通用范围选 2~3μ/W,固 定电压为 1μ/W 2. 输入交流整流桥的计算(假设 VTO=0.7V,Rd=70mΩ) 在同一个时间内有两个二极管同时导通,半个周期内两个二极管连续导通 Id,rms=
2 −1 3 * Fline * tc
tc:二极管连续导通的时间
tc= 其
1 − 4 * Fline
arcsin e(
V min ) Vpeak =3ms 2 *π* Fline
中 :
Vmin = 2 *Vin , min*Vin , min − Vpeak= 2 *Vin,min
Pin * (1 − Dch) Cin * Fline
文档内容参考:
翻译和整理:周月东 ON,FAIRCHILD 应用文档
V1.0 版
等级:内部密
RCD:
PR=
1 Vclamp * LLK * Ids , peak 2 * FW * 2 Vclamp − VOUT * n 1 VDC − VZ * LLK * Ids , peak 2 * FW * 2 VZ − VOUT * n
V1.0 版
等级:内部密
最低输入电压,最大负载设计的 CCM 变换器可能随着输入电压的增加进入 DCM 模式。要 保证最高输入电压,最大负载仍工作在 CCM 必须满足:
1 1 − VDCCCM= 2 * LM * FS * Pin VOR
−1
如果计算值为负,在最高电压,最大负载变换器仍然工作在 CCM 模式。 如果使用的集成芯片需要验证饱和电流是否大于芯片最大电流: Isat= 其中:
V min ITOTAL
初级吸收回路的计算: 由于变压器存在漏感,如果不现在电压,可能导致 MOS 损坏,吸收网络实际是假设吸 收电容容量足够大,其电压在开关周期内变化不明显。第一步先设定吸收电容的电压 Vsn (最低输入电压,最大负载) ,一旦这个电压确定,吸收网络的功耗计算如下: Psn=
相关文档
最新文档