有理数复习专题
有理数单元复习

解析:∵c-b 是负数,∴|c-b|=-(c-b) ∵a-c 是正数,∴|a-c|=a-c ∵b+c 是负数,∴|b+c|=-(b+c)
有理数大小的比较
1)在数轴上,右边的数总比左边的数大; 2)正数都大于0,负数都小于0;
正数大于一切负数; 两个负数,绝对值大的反而小。
变为原数的相反数 3)若a、b互为相反数,则 a+b = 0.
相反数
1、-5的相反数是 5
;
8的相反数是 -8 ;
0的相反数是 0 ; 2、 (1)如果a=-13,那么-a=_1_3____;
(2)如果-x=-6,那么x=__6____;
3、 a+2的相反数是_-__a-__2_;
a-2的相反数是-__a_+__2_ ;
即a·a·a·····a= an
n个 幂
an 指数
底数
②正数的任何次幂都是正数; 负数的奇次幂是负数, 负数的偶次幂是正数.
有理数的乘方
1、计算:
=3 3
=9
32
= 33
=9
有理数的乘方
当 x = -3时,x 等于( )
A、 B、32
★有理数的运算
加法
减法
乘法 除法
乘方
符号
计算绝对值
同号
倒数
乘积是1的两个数互为倒数 .
1)a的倒数是 1(a≠0); a
2)0没有倒数 ;
3)若a与b互为倒数,则ab=1.
例:下列各数,哪两个数互为倒数?
8, 1 ,-1,+(-8),1, ( 1)
8
8
绝对值 绝对值
一个数a的绝对值就是数轴上表示数a的点与 原点的距离。
专题复习之有理数的运算.doc

其中有0血与0:、负数与0:大刊小丁有理数运算一、学习目标:•理解并会用有理数的加、减、乘、除和乘方五种运算法则进行有理数的运算;•通过熟练运用法则进行计算的同时,能根据各种运算定律进行简便运算;二、重点难点:•有理数运算法则尤其是加法法则的理解;有理数运算的准确性和如何选择简便方法进行简便运算。
•掌握有理数的乘法法则进行熟练的运算并联系实际解决简单的的实际问题,能利用乘法运算律简化运算. 三、学习策略:•先通过知识要点的小结与典型例题练习,然后进行检测,找出漏洞,再进行针对性练习,从而达到内容系统化和应用的灵活性。
四、知识梳理知识点一:有理数运算(一)有理数比较大小(1)数轴上的数,右边的数总__________ 左边的数.(2)正数大于0,负数小于0,正数大于负数;(3) ________________________________ 两个负数,绝对值大的反而(4)两数比较大小,可按符号情况分类:面粉IT口同正:________ 大的数大两数同亏* 亠―[同负:________ 的反而小比较大小<两数异号(一正一负):__ 大丁______(二)有理数的加减法(1)有理数加法法则%1____________________________ 同号两数相加,取相同的,并把绝对值.%1_____________________________________ 绝对值不相等的异号两数相加,取 ________ 的加数的符号,并用较大的_____________________________________ 减去较小的_______ .%1________________________________ 一个数同0相加,仍得.(2)有理数加法的运算步骤法则是运算的依据,根据有理数加法的运算法则,可以得到加法的运算步骤:%1确定和的____________ ;%1求和的绝对值,即确定是两个加数的绝对值的(3)有理数加法的运算律%1两个加数相加,交换加数的位置,_______ 不变即a+b=b+a(加法___________ 律)%1三个数相加,先把前两个数相加,或者先把后两个数相加,________ 不变.即(a+b)+c=a+(b+c)(加法__________ 律)(4)有理数加法的运算技巧%1分数与小数均有时,应先化为________ 形式.%1带分数可分为__________ 与____________ 两部分参与运算.%1多个加数相加时,若有互为相反数的两个数,可先结合____________ 得___________%1若有可以凑整的数,即相加得整数时,可先结合___________ .%1若有同分母的分数或易通分的分数,应先结合在一起.%1_________ 相同的数可以先结合在一起.(5)有理数减法法则减去一个数,等于___________________ ,即a-b=a+( _______ )(6)有理数减法的运算步骤%1把减号变为加号(改变运算符号)%1把减数变为它的相反数(改变性质符号)%1把减法转化为加法,按照加法运算的步骤进行运算.(7)有理数加减混合运算的步骤%1把算式中的减法转化为加法;%1省略加号与括号;%1利用运算律及技巧简便计算,求出结果.注意:根据有理数减法法则,减去一个数等于加上__________ ,因此加减混合运算可以依据上述法则转变为只有________ 的运算,即变为求几个正数,负数和0的和,这个和称为代数和.为了书写简便,可以把加号与每个加数外的括号均省略,写成省略加号和的形式,例如:(+3) + (-0.15) +(-9)+(+5)+(-11)=3-0.15-9+5-11,它的含义是正3,负0.15,负9,正5,负11 的和。
有理数复习知识点+例题

板块一、正数、负数、有理数 有理数:按定义整数与分数统称有理数.()⎧⎧⎫⎪⎬⎪⎨⎭⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数自然数整数零有理数按定义分类负整数正分数分数负分数 ()()⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数有理数按符号分类零零既不是正数,也不是负数负整数负有理数负分数 注:⑴正数和零统称为非负数; ⑵负数和零统称为非正数;例题精讲知识网络图⑶正整数和零统称为非负整数;⑷负整数和零统称为非正整数.0.31 【例1】 ①当一个数由小变大时,它的绝对值也由小变大; ②没有最大的非负数,也没有最小的非负数; ③不相等的两个数,它们的绝对值一定也不相等; ④只有负数的绝对值等于它的相反数.A .0B .1C .2D .3在下列各数:(2)--,2(2)--,2--,2(2)-,2(2)--中,负数的个数为 个.①10a -;②21a --;③a -;④2(1)a -+一定是负数的是 (填序号). 下列说法正确的个数是( )①互为相反数的两个数一定是一正一负 ②0没有倒数③如果a 是有理数,那么a +一定是正数,a -一定是负数 ④一个数的相反数一定比原数小 ⑤a 一定不是负数⑥有最小的正数,没有最小的负数A .0个B .1个C .2个D .4个下列说法正确的是( )A .a -表示负有理数B .一个数的绝对值一定不是负数C .两个数的和一定大于每个加数D .绝对值相等的两个有理数相等两数相加,其和小于其中一个加数而大于另一个加数,那么( )A .这两个加数的符号都是正的B .这两个加数的符号都是负的C .这两个加数的符号不能相同D .这两个加数的符号不能确定板块二、倒数【例2】 有理数a 等于它的倒数,有理数b 等于它的相反数,则20022003a b +=【例3】 若0a b +=,c 和d 互为倒数,m 的绝对值为2,求代数式2a bm cd a b c++-+-的值【例4】 在一列数123...a a a ,,中,已知112a =-,从第二个数起,每个数都等于“1与它前面的那个数的差的倒数”⑴ 求234a a a ,,的值 ⑵ 根据以上计算结果,求202007a a ,的值板块三 数轴数轴:规定了原点、正方向和单位长度的直线.有理数与数轴的关系:一切有理数都可以用数轴上的点表示出来.在数轴上,右边的点所对应的数总比左边的点所对应的数大. 正数都大于0,负数都小于0,正数大于一切负数. 注意:数轴上的点不都代表有理数,如π. 利用数轴比较有理数的大小:数轴上右边的数总大于左边的数.因此,正数总大于零,负数总小于零,正数大于负数.【例5】 ⑴在数轴上表示下列各数,再按大小顺序用“<”号连接起来.4-,0, 4.5-,112-,2,3.5,1,122⑵如右图所示,数轴的一部分被墨水污染了,被污染的部分内含有的整数为_________.【例6】 数轴上有一点A 它表示的有理数是3-,将点A 向左移动3个单位得到点B ,再向右移动8个单位,得到点C ,则点B 表示的数是 ,点C 表示的数是 .【巩固】 如右图所示,数轴上的点M 和N 分别对应有理数m 、n ,那么以下结论正确的是( )A .0m <,0n <,m n >B .0m <,0n >,m n >C .0m >,0n >,m n <D .0m <,0n >,m n <【例7】 数a b c d ,,,所对应的点A B C D ,,,在数轴上的位置如图所示,那么a c +与b d +的大小关系为( )A.a c b d +<+B.a c b d +=+C.a c b d +>+D.不确定的【巩固】 如图,数轴上标出若干个点,每相邻两点相距1个单位,点A B C D ,,,对应的数分别为整数a b c d ,,,,并且29b a -=,那么数轴的原点对应点为( )A.A点B.B点C.C点D.D点【巩固】数轴上的一个点表示一个数,当这个点表示的是整数时,我们称它是整数点.如果有一条数轴的单位长度是1厘米时,有一条2米长的线段放在数轴上它可以盖住多少个整数点?【巩固】已知数轴上有A B,两点,A B,之间的距离为1,点A与原点O的距离为3,那么点B所对应的数为【例8】一辆货车从超市出发,向东走了3km到达小彬家,继续向前走了1.5km到达小颖家,然后向西走了9.5km到达小明家,最后回到超市⑴以超市为原点,向东作为正方向,用1个单位长度表示1km,在数轴上表示出小明,小彬,小颖家的位置⑵小明家距离小彬家多远?⑶货车一共行驶了多少千米?【巩固】在数轴上,点A和点B都在与154-对应的点上,若点A以每秒3个单位长度的速度向右运动,点B以每秒2个单位长度的速度向左运动,则7秒之后,点A和点B所处的位置对应的数是什么?这时线段AB的长度是多少?【例9】在数轴上任取一条长度为119999的线段,则此线段在这条数轴上最多能盖住的整数点的个数为【巩固】数轴上表示整数的点称为整点。
有理数总复习

a 10b第一章 有理数总复习知识点梳理:1.正数与负数:负数产生的必要性;具有相反意义的量。
2.有理数的分类:3.数轴、相反数、倒数、绝对值:(1)数轴的三要素是:________________________________(2)只有符号不同的两个数叫做互为____________,a 的相反数为___ ;(3)互为倒数的两个数乘积是 , 没有倒数;(4)一个正数的绝对值是____________;一个负数的绝对值是____________;零的绝对值是_______.(5)有理数的大小比较:方法一:0 一切正数,0 一切负数;两个负数作比较,绝对值大的 .方法二:在数轴上,________表示的数总比________表示的数大。
4.科学记数法:把一个大于10的数表示成a ×10n 的形式, (其中a 是____________ ,n 是____________ )5.近似数【自主学习、巩固训练】要求:自主完成下列各题,并把自己疑惑的、不懂的做好批注,时间10分钟.1. 在 -1,+7, 0, 23-, 516中,正数有 ( ) A 、1个 B 、2个 C 、3个 D 、4个2.在–2,+3.5,0,32-,–0.7,11中.负分数有…………( ) A 、l 个 B 、2个 C 、3个 D 、4个3. 下列数据是近似数的是( )A.小白数学得了90分B. 小明身高约173cmC.数学课本有86页D.(1)班有45名同学4.如图 , ,那么下列结论正确的是( ) A .a 比b 大 B .b 比a 大C .a 、b 一样大D .a 、b 的大小无法确定5.我国最长的河流长江全长约为6300千米,用科学记数法表示为( )A. 63×102千米B. 6.3×102千米或者有理数 有理数C. 6.3×104千米D. 6.3×103千米6.用数轴上的点表示下列有理数, 并求其相反数、倒数和绝对值。
第5讲 有理数章末复习 (解析版)

第5讲 有理数章末复习一、知识梳理1. 有理数1.有理数:(1)凡能写成)0p q ,p (p q ≠为整数且形式的数,都是有理数.(2) 有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,互为相反数,即a 和- a 互为相反数;0的相反数还是0;(2) a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)绝对值的意义是数轴上表示某数的点离开原点的距离; (2) ⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a 或⎩⎨⎧<-≥=)0a (a )0a (a a 或⎩⎨⎧≤->=)0()0(a a a a a ; 正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;绝对值的问题经常分类讨论,零既可以和正数一组也可以和负数一组;5.有理数比大小:两个负数比大小,绝对值大的反而小;数轴上的两个数,右边的数总比左边的数大;大数-小数 > 0,小数-大数 < 0.6.倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.【例1】.(1)下列各数中,最小的数是( )A .﹣2B .0C .﹣6D .3【分析】根据负数都小于0,负数都小于正数,得出﹣2和﹣6小,根据两个负数比较大小,其绝对值大的反而小,即可得出答案.【解答】解:∵﹣6<﹣2<0<3,∴最小的数是﹣6,故选:C .(2)下列说法不正确的是( )A .﹣3.14既是负数、分数,也是有理数B .0既不是正数,也不是负数,但是整数C .﹣2019是负整数,但不是有理数D .0是正数和负数的分界【分析】依据有理数分类、正负数分类逐项判断即可.【解答】解:A 、﹣3.14属于负数,分数,有理数,故A 不符合题意;B 、0不属于正数,也不属于负数,属于整数,故B 不符合题意;C 、﹣2019属于有理数,故C 符合题意;D 、0为正数和负数的分界,故D 符合题意.(3)在数轴上从左到右有A,B,C三点,其中AB=1,BC=2,如图所示.设点A,B,C所对应数的和是x,则下列说法错误的是()A.若以点A为原点,则x的值是4B.若以点B为原点,则x的值是1C.若以点C为原点,则x的值是﹣4D.若以BC的中点为原点,则x的值是﹣2【分析】利用数轴的意义对各选项进行分析判断即可.【解答】解:A、若以点A为原点,则B、C对应的数为1,3,则x=0+1+3=4,故本选项说法正确,不符合题意;B、若以点B为原点,则A、C对应的数为﹣1,2,则x=0﹣1+2=1,故本选项说法正确,不符合题意;C、若以点C为原点,则B、A对应的数为﹣2,﹣3,则x=0﹣2﹣3=﹣5≠﹣4,故本选项说法错误,符合题意;D、若以BC的中点为原点,则B、C对应的数为﹣1,1,A对应的数为﹣2,则x=﹣2﹣1+1=﹣2,故本选项说法正确,不符合题意;故选:C.(4)﹣1的倒数是﹣,相反数是1绝对值是1.【分析】利用绝对值、倒数、相反数的定义进而求出即可.【解答】解:﹣1的倒数是:﹣,相反数是:1;绝对值是:1;故答案为:﹣;1;1.【变式训练1】.(1)下列各数中最大的是()A.﹣3B.﹣2C.0D.1【分析】正数都大于0,负数都小于0,正数大于一切负数,两个负数,绝对值大的其值反而小,依此比较大小【解答】解:因为﹣3<﹣2<0<1,所以其中最大的数为1.故选:D.(2)下列说法中正确的个数有()①﹣4.2是负分数;②3.7不是整数;③非负有理数不包括零;④正有理数、负有理数统称为有理数;⑤0是最小的有理数A.1个B.2个C.3个D.4个【分析】结合有理数的分类分析即可.【解答】解:①﹣4.2是负分数是正确的;②3.7不是整数是正确的;③非负有理数包括零,原来的说法错误;④正有理数、0、负有理数统称为有理数,原来的说法错误;⑤没有最小的有理数,原来的说法错误.故说法中正确的个数有2个.故选:B.(3)如图所示,有理数a、b在数轴上的位置如图,则下列说法错误的是()A.b﹣a>0B.a+b<0C.ab<0D.b<a【分析】根据数轴上点的位置关系,可得a、b的大小,判定D,根据有理数的加法,可判断B;根据有理数的乘法,可判断C;根据有理数的减法,可判断A.【解答】解:由数轴上点的位置关系,得a>0>b,|a|<|b|,A.b﹣a<0,故此选项错误;B.a+b<0,故此选项正确;C.ab<0,故此选项正确;D.b<a,故此选项正确.故选:A.(4)﹣1.2的倒数是﹣,相反数是 1.2,绝对值是 1.2.【分析】根据乘积是1的两个数互为倒数,可得一个数的倒数,根据只有符号不同的两个数互为相反数,可得一个数的相反数,再根据负数的绝对值等于他的相反数,可得一个数的绝对值.【解答】解:﹣1.2的倒数是﹣,相反数是1.2,绝对值是1.2,故答案为:﹣,1.2,1.2.2.有理数的四则运算1. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.2.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).3.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).4. 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定,负因数为奇数个时乘积为负,负因数为偶数个时乘积为正.5. 有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac .6.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即a.【例2】.(1)计算:11.125﹣1+4﹣4.75.【分析】根据有理数的加减运算法则及加法交换律和结合律进行计算.【解答】解:原式=11﹣1+4﹣4=(11+4)﹣(1+4)=16﹣6=10(2)计算:(﹣)÷(﹣2)×.【分析】直接利用有理数的乘除运算法则计算得出答案.【解答】解:原式=××=.【变式训练2】.(1)计算:.【分析】先将减法转化为加法,再依据法则计算可得.【解答】解:原式=0.4+3.6﹣8﹣12=4﹣20=﹣16.(2)计算:1×1.4.【分析】将带分数化为假分数,小数化为分数,除法变为乘法,再约分计算即可求解.【解答】解:1×1.4=××3.有理数的乘方与有理数的混合运算1.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;2.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n .3.混合运算法则:先乘方,后乘除,最后加减.,有括号的先算括号.【例3】.(1)下列算式中结果为负数的是()A.﹣(﹣3)B.|﹣2|C.(﹣2)3D.(﹣2)2【分析】根据相反数、绝对值、和理数的乘方逐一判断即可.【解答】解:A.﹣(﹣3)=3,不合题意;B.|﹣2|=2,不合题意;C.(﹣2)3=﹣8,符合题意;D.(﹣2)2=4,不合题意.故选:C.(2)计算:[2+(﹣5)2]÷3×﹣|﹣4|+23.【分析】先算乘方,再算乘除,最后算加减.同级运算,从左往右计算.【解答】解:原式=[2+25]÷3×﹣4+8=27÷3×﹣4+8=9×﹣4+8=7.【变式训练3】.(1)已知下列各数:﹣(﹣2),﹣34,5.2,﹣|﹣|,(﹣1)2009,0中,其中是非负数的有()A.1个B.2个C.3个D.4个【分析】从6个数中找到非负数即可.【解答】解:﹣(﹣2),﹣34,5.2,﹣|﹣|,(﹣1)2009,0中,其中是非负数有:其中是非负数的有:﹣(﹣2),5.2,0共3个,故选:C.(2)计算:24÷(﹣2)3+[(﹣3)2+5]×|﹣|.【分析】先算乘方,再算乘除,最后算加减.【解答】原式=24÷(﹣8)+[9+5]×=﹣3+14×=﹣3+7=4.4.科学记数法与近似数1.科学记数法:把一个大于10的数记成a×10n的形式,(其中1≤a<10)这种记数法叫科学记数法.2.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.3.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.【例3】.(1)2021年5月21日,国新办举行新闻发布会,介绍第七次全国人口普查情况,全国人口总数约为14.12亿人.用科学记数法表示14.12亿人,可以表示为 1.412×109人.【分析】把一个大于10的数写成科学记数法形式:a×10n,其中1≤a<10,n为正整数,n的值比这个数的整数位数少1.【解答】解:14.12亿=1412000000=1.412×109,故答案为:1.412×109.(2)用四舍五入法把数6.5378精确到0.01,得近似数为 6.54.【分析】对千分位数字四舍五入即可.【解答】解:用四舍五入法把数6.5378精确到0.01,得近似数为6.54,故答案为:6.54.(3)近似数0.0320有3个有效数字.【分析】根据有效数字的定义和题目中的数据,可以写出有效数字的个数,从而可以解答本题.【解答】解:近似数0.0320有3个有效数字,故答案为:3.【变式训练3】.(1)人民网哈尔滨1月10日电,1月10日在黑龙江省政府新闻办举办的“重振雄风再出发﹣﹣龙江这一年”系列主题新闻发布会上表示,全省实现旅游收入2683.8亿元,将2683.8亿用科学记数法表示为2.683×1011.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数.【解答】解:2683.8亿=268380000000=2.683×1011,故答案为:2.683×1011.(2)用四舍五入法将3.1415精确到百分位约等于 3.14.【分析】把千分位上的数字1进行四舍五入即可.【解答】解:3.1415(精确到百分位)是3.14.故答案为:3.14.(3)近似数1.024有4个有效数字.【分析】根据有效数字的定义和题目中的数据,可以写出相应的有效数字.【解答】解:似数1.024有四个有效数字,故答案为:4.二、课堂训练1.在四个数﹣5、﹣1、0、3中最小的数是()A.﹣5B.﹣1C.0D.3【分析】正数大于0,负数小于0,两个负数比较大小,绝对值大的反而小.【解答】解:∵﹣5<﹣1<0<3,∴最小的数为﹣5,故选:A.2.下列数轴表示正确的是()A.B.C.D.【分析】注意数轴的三要素以及在数轴上,右边的数总比左边的数大即可做出判断.【解答】解:A选项,应该正数在右边,负数在左边,故该选项错误;B选项,负数的大小顺序不对,故该选项错误;C选项,没有原点,故该选项错误;D选项,有原点,正方向,单位长度,故该选项正确;故选:D.3.﹣(﹣6)的相反数是()A.B.C.﹣6D.6【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣(﹣6)=6,故﹣(﹣6)的相反数是﹣6.故选:C.4.如图是小竹观察到温度计的示数,该示数的绝对值是()A.﹣9B.9C.﹣11D.11【分析】观察温度计的示数,这个示数在0℃以下,这个示数为﹣9,所以绝对值为9.【解答】解:观察温度计,这个示数为﹣9,所以该示数的绝对值为9,故选:B.5.经过4.6亿公里的飞行,我国首次火星探测任务“天问一号”探测器于2021年5月15日在火星表面成功着陆,火星上首次留下了中国的印迹.将4.6亿用科学记数法表示为()A.4.6×109B.0.46×109C.46×108D.4.6×108【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:4.6亿=460000000=4.6×108.故选:D.6.用四舍五入法将0.0375精确到0.01是0.04.【分析】把千分位上的数字7进行四舍五入即可.【解答】解:将0.0375精确到0.01是0.04.故答案为0.04.7.比较大小:>.【分析】先比较与的大小,再根据比较两个负数大小的方法确定最后答案.【解答】解:∵|﹣|=,|﹣2|=,<,∴﹣>﹣2,故答案为:>.8.已知A,B是数轴上的两点,且AB=4.5,点B表示的数为1,则点A表示的数为﹣3.5或5.5.【分析】根据AB=4.5,点B表示的数为1,进行分类讨论A可以在B的左边或右边,求得点A表示的数.【解答】解:∵AB=4.5,B表示1,∴A表示为1﹣4.5=﹣3.5或1+4.5=5.5.故答案是:﹣3.5或5.5.9.计算:.【分析】利用有理数混合运算的法则运算:先做乘方,再做乘除,最后做加减,有括号的先做括号里面的.【解答】解:原式=﹣9÷(4﹣1)+(﹣)×24=﹣9÷3+(×24﹣×24)=﹣3+(16﹣6)=﹣3+10=7.10.一名足球守门员练习折返跑,从球门的位置出发,向前记作正数,返回记作负数,他的记录如下(单位:米):+6,﹣2,+10,﹣8,﹣7,+11,﹣10.(1)守门员是否回到了原来的位置?(2)守门员离开球门的位置最远是多少?(3)守门员一共走了多少路程?【分析】(1)只需将所有数加起来,看其和是否为0即可;(2)计算每一次跑后的数据,绝对值最大的即为所求;(3)将所有绝对值相加即可.【解答】解:(1)根据题意得:6﹣2+10﹣8﹣7+11﹣10=0.答:回到了原来的位置.(2)第一次离开6米,第二次离开4米,第三次离开14米,第四次离开6米,第五次离开1米,第六次离开10米,第七次离开0米,则守门员离开守门的位置最远是14米;(3)总路程=|+6|+|﹣2|+|+10|+|﹣8|+|﹣7|+|+11|+|﹣10|=54米.三、课后巩固1.下表是几种液体在标准大气压下的沸点:液体名称液态氧液态氢液态氮液态氦沸点/℃﹣183﹣253﹣196﹣268.9则沸点最高的液体是()A.液态氧B.液态氢C.液态氮D.液态氦【分析】根据有理数大小的比较方法解答即可.【解答】解:因为﹣268.9<﹣253<﹣196<﹣183,所以沸点最高的液体是液态氧.故选:A.15.下列各数中,既是分数又是负数的是()A.﹣3.1B.﹣4C.0D.2.8【分析】根据小于零的分数是负分数,可得答案.【解答】解:A、﹣3.1既是分数又是负数,故本选项符合题意;B、﹣4是负整数,故本选项不合题意;C、0不是正数,也不是负数,故本选项不合题意;D、2.8是正分数,故本选项不合题意;故选:A.3.下列几种说法正确的是()A.0是最小的数B.最大的负有理数是﹣1C.1是绝对值最小的正数D.平方等于本身的数只有0和1【分析】根据有理数是有限小数或无限循环小数,平方的意义,可得答案.【解答】解:A、没有最小的数,故A错误;B、没有最大的负有理数,故B错误;C、没有绝对值最小的正数,故C错误;D、平方等于它本身的数只有0和1,故D正确;故选:D.4.已知a,b,c三个数在数轴上,对应点的位置如图所示,下列各式错误的是()A.b<a<c B.﹣a<b C.a+b<0D.c﹣a>0【分析】先根据在数轴上,右边的数总比左边的数大,得出b<a<c,再由相反数的定义、绝对值的性质以及有理数的加减法法则得出结果.【解答】解:根据数轴可得:b<a<0<c,∴a+b<0、c﹣a>0.∴A、C、D选择正确.∵a<0.∴﹣a>0.∴﹣a>b.∴B选项错误.故选:B.5.﹣|﹣2021|的相反数为()A.﹣2021B.2021C.﹣D.【分析】根据绝对值的定义、相反数的定义解题即可.【解答】解:∵﹣|﹣2021|=﹣2021,∴﹣2021的相反数为2021.故选:B.6.计算:﹣(﹣1)4=﹣1.【分析】根据乘方的意义直接得出.【解答】解:﹣(﹣1)4=﹣1.故答案为:﹣1.7.“⊗”定义新运算:对于任意的有理数a和b,都有a⊗b=b2+1.例如:9⊗5=52+1=26.当m为有理数时,则m⊗(m⊗3)等于101.【分析】根据题目中的新定义a⊗b=b2+1.可以计算出所求式子的值.【解答】解:∵a⊗b=b2+1.∴m⊗(m⊗3)=m⊗(32+1)=m⊗(9+1)=m⊗10=102+1=100+1=101,故答案为:101.8.上海市于2011年6月8日宣布撤销黄浦区、卢湾区建制,设立新的黄浦区,新黄浦区全区户籍人口约有906300人,把这个人口数用科学记数法来表示为9.063×105.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:906300=9.063×105.故答案为:9.063×105.9.计算:﹣22+3×(﹣1)2021﹣(﹣12)×().【分析】根据有理数的乘方、有理数的乘法和加减法可以解答本题.【解答】解:﹣22+3×(﹣1)2021﹣(﹣12)×()=﹣4+3×(﹣1)+12×﹣12×=﹣4+(﹣3)+4﹣9=﹣12.10.在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:千米):+14,﹣9,+8,﹣7,+13,﹣6,+12,﹣5.(1)请你帮忙确定B地相对于A地的方位?(2)救灾过程中,冲锋舟离出发点A最远处有多远?(3)若冲锋舟每千米耗油0.5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?【分析】(1)把题目中所给数值相加,若结果为正数则B地在A地的东方,若结果为负数,则B地在A地的西方;(2)分别计算出各点离出发点的距离,取数值较大的点即可;(3)先求出这一天走的总路程,再计算出一共所需油量,减去油箱容量即可求出途中还需补充的油量.【解答】解:(1)∵14﹣9+8﹣7+13﹣6+12﹣5=20,∴B地在A地的东边20千米;(2)∵路程记录中各点离出发点的距离分别为:14千米;14﹣9=5千米;14﹣9+8=13千米;14﹣9+8﹣7=6千米;14﹣9+8﹣7+13=19千米;14﹣9+8﹣7+13﹣6=13千米;14﹣9+8﹣7+13﹣6+12=25千米;14﹣9+8﹣7+13﹣6+12﹣5=20千米.∴最远处离出发点25千米;(3)这一天走的总路程为:14+|﹣9|+8+|﹣7|+13+|﹣6|+12+|﹣5|=74千米,应耗油74×0.5=37(升),故还需补充的油量为:37﹣28=9(升)。
第二章 有理数及其运算 复习

数学·新课标〔BS〕
第二章 |过关测试
数学·新课标〔BS〕
第二章 |过关测试 ►考点十 科学记数法 例11 用科学记数法表示80 000 000×90 000 000的计算结
果.
解:80 000 000×90 000 000=7 200 000 000 000 000=×1015.
+9,-3,-5,+4,-8,+6,-3,-6,-4,+10. (1)最后出租车离开钟楼多远?在钟楼的什么方向? (2)假设每千米的收费价格是元,该出租车周日下午的营业额 是多少?
数学·新课标〔BS〕
第二章 |过关测试 解:(1)+9-3-5+4-8+6-3-6-4+10=0,故该出租
车正好在钟楼; ×(|+9|+|-3|+|-5|+|+4|+|-8|+|+6|+|-3|+|-6|+|
第二章 有理数及其运算 复习
第二章 |过关测试
知识归类
1.有理数
(1)有理数
整数
正整数 零
负整数
分数
正分数 负分数
(2)有理数 正零有理数
正整数 正分数
负有理数Βιβλιοθήκη 负整数 负分数数学·新课标〔BS〕
第二章 |过关测试 2.数轴:(1)数轴的概念:规定了____原__点_、____正__方_、向
所示,则a________b(填“<〞、“>〞或“=〞) .
数学·新课标〔BS〕
第二章 |过关测试 [答案] < [解析] 由图可知,实数a、b都是负数,且表示数a的点在
表示数b的点的左边,所以a<b.
数学·新课标〔BS〕
第二章 |过关测试 例4 有理数a、b在数轴上的位置如图2-2所示,试化简|a
有理数重难点复习

2 (1)把一个大于10的数记成的形式,其中a是整数位只有一位的数,这种记数法叫做科学记数法。 (2)一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字,都叫做这个数的有效数字。 (3)近似数就是与实际数非常接近的数。 四. 考点分析 对负数意义的理解,绝对值的代数和几何意义,有理数的分类,相反数和倒数的概念,科学记数法,有效数字等都是中考命题的热点,考查学生对概念的把握能力。 【典型例题】 例1. 判断正误 (1)a一定是正数;(2)一定是负数; (3)一定大于0;(4)0是正整数。 分析:本题主要考查对负数意义的理解 (1)由字母表示数的意义可知,a可是任意的数,既可以是正数,还可以是负数或0,故不正确。 (2)由上题可知,当a是负数或0时,是正数或0,故不正确。 (3)是的相反数,但a可以是一个负数,故不正确。 (4)由定义可知0不是正数也不是负数,不正确。 例2. 若,且x、y都是整数,请写出符合条件的x、y的值。 分析:本题是开放性问题,利用绝对值的几何意义和数轴解决问题,即x对应在数轴上的点到原点的距离,与y对应在数轴上的点到原点的距离之和为3。 解:由题意知,x对应在数轴上的点到原点的距离与y对应在数轴上的点到原点的距离之和为3。 从数轴上可以看出,x、y可以取的数应为从-3到3之间的整数。 ∴(1)当x=-3时,y=0 (2)当x=-2时,y=1 (3)当x=-1时,y=2 (4)当x=0时,y=3 (5)当x=1时,y=-2 (6)当x=2时,y=-1 (7)当x=3时,y=0 例3. 数a、b、c在数轴上的位置如图所示,化简。 分析:本题考查数轴上的数的大小及绝对值的代数意义 解:由上图可知 ∴
有理数复习

有理数复习课一、有理数的基本概念1.正数和负数2.有理数3.数轴4.互为相反数5.互为倒数6.有理数的绝对值7.有理数大小的比较8.科学记数法、近似数.二、有理数的运算加、减、乘、除、乘方运算正数和负数1.大于0的数叫做正数。
例如:3,1.8%,3.5……2.在正数前面加上“-”号的数叫做负数。
例如:-3,-2.7%,-4.5……3.0既不是正数,也不是负数。
4.在同一个问题中,分别用正数和负数表示两个具有相反意义的量。
有理数1、统称整数,试举例说明。
2、统称分数,试举例说明。
3、_____________统称有理数。
4、统称非负数。
5、统称非正数。
有理数的分类说明:①分类的标准不同,结果也不同;②分类的结果应无遗漏、无重复;③有限小数、无限循环小数属于分数。
④π是无理数。
0的性质:(1)0是整数,是自然数,是有理数。
(2)0既不是正数,也不是负数。
自然数一定是整数吗?自然数一定是正整数吗?整数一定是自然数吗?自然数一定是整数;自然数不一定是正整数,因为零也是自然数;整数不一定是自然数,因为负整数不是自然数。
1.判断:(1)不带“-”号的数都是正数。
( )(2)带“-”号的数都是负数()(3)如果a是正数,那么-a一定是负数( )(4)在一个数前加上“-”号,这个数变为负数()(5)一个数如果不是正数,那么这个数是负数。
()2.增加-20%,实际的意思是.3.甲比乙大-3表示的意思是.4.小明的妈妈在超市买了一瓶消毒液,发现在瓶子上印有这样一段文字:“净含量(750±5)ml”,这瓶消毒液的标准含量是,这瓶消毒液至少有。
5. 把下列各数填在相应额大括号内:1,-0.1,-789,|-25|,0,-(+20),-3.14,-590,正整数集{…}负整数集{…}正分数集{…}负分数集{…}正有理数集{…}负有理数集{…}自然数集{…}6. 以下说法中正确的是()A.“向东5米”与“向西10米”不是相反意义的量;B.如果汽球上升25米记作+25米,那么-15米的意义就是下降-15米;C.如果气温下降6℃记作-6℃,那么+8℃的意义就是零上8℃;D.若将高1米设为标准0,高1.20米记作+0.20米,那么-0.05米所表示的高是0.95米.7.正数、负数在实际生活中的应用我校对七年级女生进行了仰卧起坐的测试,以能做36个为标准,超过的次数用正数表示,不足的次数用负数表示,其中8名女生的成绩如下:(1)这8名女生的成绩分别是多少?(2)这8名女生有百分之几达到标准?(3)她们共做了多少个仰卧起坐?8. 某检修队从A 地出发,在东西方向的公路上检修线路,如果规定向东行驶为正,向西行驶为负,这个检修队一天中行驶的距离记录如下(单位千米):-4,+7,-9,+8,+6,-5,-3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a÷b=a·___ ( b≠0)
(2)两数相除,同号得_正__,异号得_负__,并把绝对值_相__除__。 (3)0除以任何一个_不__等__于__0_的__数__,都得0。
练习2.计算:
(1)(–4)×(–9);
(2)322(2)34(6) (31)2
3 1 1 3
3 3
(3)2 1 ( 1) 111 2
5 633
(4) 1 1 1 24 3 4 6
比 一 比
2.用简便方法计算:
比
一
(1) 207 3 ( 2)
53
比
(2)( 7) (1 3 7 7 )
8 4 8 12
3.已知a,b互为负倒数,c,d互为相反数,x的绝对值为5, 求 (2ab c d )x (ab)2017 (c d )2018 的值.
2.有理数:整数和分数统称有理数。
有理数
整数 分数
正整数 零 负整数 正分数 负分数
自然数
有理数
正有理数 零 负有理数
正整数 正分数 负整数 负分数
正整数: +10,18,29,+75,110,305,1,2,3,… 零: 0
负整数: -52, -67, -1,-2,…
正分数: 1.1, 12.91, 12.96, 182.5, 5 , 3 3 , 17 ,
(8)0-2042;
3.有理数乘法法则: (1)两数相乘,同号得_正__,异号得_负__,并__把__绝__对__值__相__乘__。 (2)任何数同0相乘,都得_0__。 (3)__乘__积__是__1_ 的两个数互为倒数。 (4)几个不是0的数相乘,负因数的个数是偶数时,积是_正__数__;负 因数的个数是奇数时,积是_负__数__。
2.有理数减法法则: 减去一个数,等于加这个数的__相__反__数___。 a-b=_a_+__(_-__b_)_
练习1.计算: (1)(-12)+27 ; (2)(-9)+(-13);
(3)0+(-2017); (4)(-27.8)+27.8 ;
(5) 67+(-92); (6)0-(-9);
(7)7-9;
1.负数 2.有理数 3.数轴 4.互为相反数 5.互为倒数 6.有理数的绝对值 7.有理数大小的比较 8.科学记数法、近似数与有效数字
二、有理数的运算
加、减、乘、除、乘方运算
一、有理数的基本概念
1.负数:在正数前面加“—”的数;
0既不是正数,也不是负数。
判断: 1)a一定是正数; × 2)-a一定是负数; × 3)-(-a)一定大于0;× 4)0是正整数。 ×
4.若 x 2 ( y 1)2 0 ,求 (x y)2017 x3 y2018 的值.
课堂小结
请同学们谈一谈这节课学习的收获!
作业
1.《名师学案》第41页,42页和49页的课 前预习.订正44页的错题.
2.订正《优品单元与期末试卷》第1-8页上 的错题.
谢 谢!
有理数总复习
一、有理数的基本概念
正数的任何次幂都是_正__数___,0的任何正整数次幂都是_0__。
练习3.计算:
(1)(2)4 ;
(3)(1)5 ;
(5) ( 3)3 ; 2
(7) 62 ;
(2) 02017 ;
(4) (3)2;
(6) 3 2 ; 2
(8)(1)2008.
(三)运算律
1.加法交换律: 两个数相加,交换_加__数__的__位__置__,_和___不变。 a+b=__b_+__a____ 2.加法结合律: 三个数相加,先把_前__两__个__数__相加,或者先把_后__两__个__数__相加, 和不变。 (a+b)+c=__a_+__(_b_+__c_)___
243
负分数:-7.5,
5, 2
3
4
3
正整数
1.1, 12.91, 182.5, 3 3 ,
4
正分数
0 负整数
零
-7.5,
5, 2
3.25,
33, 4
负分数
例:在 -3.14,- 2,12,-3,0,-(- 2 ),|-8|, 1 ,- 1中,
3.乘法交换律: 两个数相乘,交换__因__数__的__位__置___,__积_相等。
ab=___b_a__ 4.乘法结合律: 三个数相乘,先把前_两__个__数__相__乘_,或者先把__后__两__个__数__相__乘_,积相等。
(ab)c=__a_(__b_c_)___ 5.乘法分配律: 一个数同__两__个__数__的__和__相乘,等于把这个数分别__同__这__两_个__数__相__乘___, 再把_积__相加。 a(b+c)=__a_b_+__a_c____
(四)有理数的混合运算顺序
⑴先_乘__方__,再_乘__除__,最后加__减___; ⑵同极运算,从_左__到_右__进行; ⑶如有括号,先做_括__号__内__的运算,按_小_括__号__、__中_括__号__、__大_括__号_依 次进行.
二、巩固提高
1.计算:
(1)-14+(-2)2-23-(-2)3
(2)(-9) ×
2 3
;
(3)(–2016)×0;
(4) 2 1 × 2 ; 25
(5)(–18)÷(–9);(6)(–63)÷7;
(7) 0÷(–105); (8)1÷(–9); (9)(–5)×8×(–7);
(10)(–6)×(–5)×(–7).
5.有理数的乘方 负数的奇次幂是_负__数___,负数的偶次幂是正__数__。
有理数的混合运算专题复习
一、知识点复习
(一)步骤 有理数的加、减、乘、除、乘方的运算步骤分两步: 第一步是__确__定__符_号____, 第二步是_计__算__绝_对__值___.
(二)运算法则
1.有理数的加法法则: ⑴同号两数相加,取_相__同__的__符号,并_把__绝__对__值__相__加___。 ⑵绝对值不相等的异号两数相加,取_绝__对__值__较__大__的__加__数__的符 号,并___用__较__大__的__绝__对__值_减__去__较__小__的__绝__对__值___。互为相反数的 两个数__相__加__得__0__。 ⑶一个数同0相加,_仍__得__这__个__数__。