勾股定理重难点妙招设计单
勾股定理教学设计(通用8篇)

勾股定理教学设计(通用8篇)勾股定理教学设计(通用8篇)作为一名教学工作者,有必要进行细致的教学设计准备工作,借助教学设计可以提高教学效率和教学质量。
如何把教学设计做到重点突出呢?以下是小编整理的勾股定理教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。
勾股定理教学设计篇1一、教学任务分析勾股定理是平面几何有关度量的最基本定理,它从边的角度进一步刻画了直角三角形的特点。
学习勾股定理极其逆定理是进一步认识和理解直角三角形的需要,也是后续有关几何度量运算和代数学习的必然基础。
《20xx版数学课程标准》对勾股定理教学内容的要求是:1、在研究图形性质和运动等过程中,进一步发展空间观念;2、在多种形式的数学活动中,发展合情推理能力;3、经历从不同角度分析问题和解决问题的方法的过程,体验解决问题方法的多样性;4、探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题。
本节《勾股定理的应用》是北师大版八年级数学上册第一章《勾股定理》第3节、具体内容是运用勾股定理及其逆定理解决简单的实际问题、在这些具体问题的解决过程中,需要经历几何图形的抽象过程,需要借助观察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题能力和应用意识;有些探究活动具有一定的难度,需要学生相互间的合作交流,有助于发展学生合作交流的能力、本节课的教学目标是:1、能正确运用勾股定理及其逆定理解决简单的实际问题。
2、经历实际问题抽象成数学问题的过程,学会选择适当的数学模型解决实际问题,提高学生分析问题、解决问题的能力并体会数学建模的思想、教学重点和难点:应用勾股定理及其逆定理解决实际问题是重点。
把实际问题化归成数学模型是难点。
二、教学设想根据新课标提出的“要从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释和运用的同时,在思维能力情感态度和价值观等方面得到进步和发展”的理念,我想尽量给学生创设丰富的实际问题情境,使教学活动充满趣味性和吸引力,让他们在自主探究,合作交流中分析问题,建立数学模型,利用勾股定理及其逆定理解决问题。
勾股定理教案范本 勾股定理教案教学方法优秀7篇

勾股定理教案范本勾股定理教案教学方法优秀7篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理教案范本勾股定理教案教学方法优秀7篇作为一位优秀的人·民教师,常常需要准备教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。
《勾股定理教案》

《勾股定理教案》word版一、教学目标:1. 让学生理解勾股定理的定义和证明过程。
2. 培养学生运用勾股定理解决实际问题的能力。
3. 引导学生通过探索、发现、总结勾股定理,培养其创新意识和数学思维能力。
二、教学内容:1. 勾股定理的定义及证明。
2. 勾股定理的应用。
三、教学重点与难点:1. 重点:勾股定理的定义、证明及应用。
2. 难点:勾股定理的证明和灵活运用。
四、教学方法:1. 采用问题驱动法,引导学生自主探索、发现和证明勾股定理。
2. 运用案例教学法,让学生通过实际问题体验勾股定理的应用。
3. 利用小组合作学习,培养学生的团队协作能力和沟通能力。
五、教学过程:1. 导入:以直角三角形为切入点,引导学生思考直角三角形的性质。
2. 新课讲解:(1)介绍勾股定理的定义:直角三角形两条直角边的平方和等于斜边的平方。
(2)讲解勾股定理的证明:通过几何画图,引导学生发现并证明勾股定理。
3. 案例分析:运用勾股定理解决实际问题,如计算直角三角形的边长等。
4. 练习与讨论:布置一些有关勾股定理的练习题,让学生独立完成,并在小组内进行讨论。
5. 总结与拓展:引导学生总结勾股定理的性质和应用,并提出一些拓展问题,激发学生的创新意识。
6. 课后作业:布置一些有关勾股定理的家庭作业,巩固所学知识。
六、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答、小组合作等情况,了解学生的学习状态。
2. 练习完成情况评价:检查学生练习题的完成质量,评估学生对勾股定理的理解和应用能力。
3. 课后作业评价:批改学生课后作业,了解学生对课堂所学知识的掌握情况。
七、教学资源:1. 教学课件:制作精美的课件,辅助讲解勾股定理的相关知识。
2. 练习题库:准备一定数量的练习题,用于巩固学生对勾股定理的理解。
3. 几何画图工具:如直尺、三角板等,用于引导学生直观地理解勾股定理。
八、教学进度安排:1. 第1-2课时:讲解勾股定理的定义和证明。
勾股定理教案范本 勾股定理教案教学方法优秀6篇

勾股定理教案范本勾股定理教案教学方法优秀6篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!勾股定理教案范本勾股定理教案教学方法优秀6篇作为一位优秀的人·民教师,常常需要准备教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。
勾股定理教学设计(优秀3篇)

勾股定理教学设计(优秀3篇)《勾股定理》教学设计篇一教学目标具体要求:1.知识与技能目标:会用勾股定理及直角三角形的判定条件解决实际问题。
2.过程与方法目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件。
3.情感态度与价值观目标:通过自主学习的发展体验获取数学知识的感受;通过有关勾股定理的历史讲解,对学生进行德育教育。
重点:勾股定理的应用难点:勾股定理的应用教案设计一、知识点讲解知识点1:(已知两边求第三边)1.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为_____________。
2.已知直角三角形的两边长为3、4,则另一条边长是______________。
3.三角形ABC中,AB=10,AC=一qi,BC边上的高线AD=8,求BC的长?知识点2:利用方程求线段长1、如图,公路上A,B两点相距25km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=壹五km,CB=10km,现在要在公路AB上建一车站E,(1)使得C,D两村到E站的距离相等,E站建在离A站多少km处?(2)DE与CE的位置关系(3)使得C,D两村到E站的距离最短,E站建在离A站多少km处?利用方程解决翻折问题2、如图,用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长?3、在矩形纸片ABCD中,AD=4cm,AB=10cm,按图所示方式折叠,使点B与点D重合,折痕为EF,求DE的长。
4.如图,将一个边长分别为4、8的矩形形纸片ABCD折叠,使C点与A点重合,则EF 的长是多少?5、折叠矩形ABCD的一边AD,折痕为AE,且使点D落在BC边上的点F处,已知AB=8cm,BC=10cm,以B点为原点,BC为x轴,BA为y轴建立平面直角坐标系。
求点F和点E坐标。
6、边长为8和4的矩形OABC的两边分别在直角坐标系的x轴和y轴上,若沿对角线AC折叠后,点B落在第四象限B1处,设B1C交x轴于点D,求(1)三角形ADC的面积,(2)点B1的坐标,(3)AB1所在的直线解析式。
勾股定理的优秀教案

勾股定理的优秀教案教案标题:探索勾股定理教学目标:1. 了解勾股定理的历史和背景2. 理解勾股定理的概念和原理3. 能够应用勾股定理解决实际问题4. 培养学生的逻辑思维和数学推理能力教学重点和难点:重点:勾股定理的概念和应用难点:如何引导学生自主发现勾股定理教学准备:1. PowerPoint课件2. 黑板、彩色粉笔3. 勾股定理的几何模型4. 练习题和实例教学过程:一、导入(5分钟)通过展示一些古希腊数学家的图片和介绍,引出勾股定理的历史和背景,激发学生对数学的兴趣。
二、概念讲解(15分钟)1. 通过PowerPoint课件介绍勾股定理的概念和公式2. 通过几何模型和实例讲解勾股定理的证明过程三、示范演练(15分钟)老师在黑板上进行几个勾股定理的示范演练,引导学生理解和掌握勾股定理的应用方法。
四、小组讨论(10分钟)学生分成小组,通过老师提供的实际问题,讨论如何运用勾股定理进行解答。
五、展示分享(10分钟)每个小组派代表进行展示,分享他们的解题思路和方法。
六、概念强化(10分钟)老师对勾股定理的概念进行强化和总结,帮助学生理清思路。
七、课堂练习(10分钟)老师布置几道勾股定理的练习题,让学生在课堂上进行解答。
八、作业布置(5分钟)布置相关的作业,巩固学生对勾股定理的理解和运用能力。
教学反思:通过本节课的教学,学生能够了解勾股定理的历史和背景,掌握勾股定理的概念和应用方法,培养了学生的逻辑思维能力和数学推理能力。
同时,通过小组讨论和展示分享,增强了学生的团队合作意识和表达能力。
《勾股定理》重难点创新教学方法

《勾股定理》重难点创新教学方法一、设计说明本节课选自上海科学技术出版社数学八年级下册第18章第一节“勾股定理”的内容,本节课揭示了直角三角形三条边之间的数量关系,由形的特征转化为数量之间的关系,架起了几何与代数之间的桥梁,为后续学习解直角三角形提供重要的理论依据,有着广泛的应用,同时又是对同学们进行爱国主义教育的良好素材。
二、教学重难点教学重点:探索和证明勾股定理教学难点:用拼图方法证明勾股定理三、学情分析学生对几何图形的观察,几何图形的分析能力已初步形成。
部分学生解题思维能力比较高,能够正确归纳所学知识,通过学习小组讨论交流,能够形成解决问题的思路。
现在的学生已经厌倦教师单独的说教方式,希望教师设计便于他们进行观察的几何环境,给他们自己探索、发表自己见解和展示自己才华的机会;更希望教师满足他们的创造愿望。
四、重难点教学策略本节课采用动手实践,发现探究式教学,由浅入深,由特殊到一般地提出问题,鼓励学生采用观察分析、自主探索、合作交流的学习方法,让学生经历数学知识的形成与应用过程。
五、重难点创新教学方法(一)主动探究 动手实践----锻炼学生的动手能力如果直接根据赵爽弦图直接进行勾股定理的探究,势必显得有些生硬刻板,学生也难以接受。
基于以上教学铺垫,学生对勾股定理有了初步的感知,为了帮助学生进一步探索勾股定理,设计了如下的教学实践活动。
实验材料准备:用硬纸板剪4个大小相同的直角三角形,并在分别标记两条直角边分别为a 和b ,斜边为c 。
一张大白纸。
实验要求:在大白纸上画出一个边长为a b 的大正方形。
在大正方形内部摆放4个直角三角形硬纸板。
实验过程:画出你的设计方案。
以小组为单位交流讨论,展示自己本组的设计方案。
此时,学生已经跃跃欲试,不一会功夫,一幅幅漂亮的图案便呈现在眼前。
图4图2图3图1a(二)面积搭桥 猜想证明----培养学生的思维能力师:你们的设计方案太精美了,你能计算出空白处的面积吗? 生1:我们研究的是图1,空白处的面积是2c 。
课教案教学设计勾股定理

一、教学目标1. 让学生理解勾股定理的定义和证明过程。
2. 培养学生运用勾股定理解决实际问题的能力。
3. 提高学生对数学美的感悟,培养学生的逻辑思维和空间想象能力。
二、教学重点与难点1. 教学重点:勾股定理的定义、证明及应用。
2. 教学难点:勾股定理的证明过程和灵活运用。
三、教学方法1. 采用问题驱动法,引导学生探究勾股定理。
2. 运用多媒体辅助教学,直观展示勾股定理的应用场景。
3. 结合实例,让学生通过自主探究、合作交流的方式,理解并掌握勾股定理。
四、教学准备1. 教师准备:勾股定理的相关知识、实例及教学课件。
2. 学生准备:笔记本、文具、数学素养。
五、教学过程1. 导入新课1.1 教师通过展示直角三角形模型,引导学生观察并提出问题:“直角三角形的两条直角边长分别为3cm和4cm,请问斜边长是多少?”1.2 学生尝试解答,教师给予引导和提示。
2. 自主探究2.1 教师提出问题:“你能发现勾股定理的规律吗?”2.2 学生分组讨论,尝试证明勾股定理。
2.3 各组汇报成果,教师点评并总结。
3. 讲解与演示3.1 教师讲解勾股定理的证明过程,并结合多媒体展示。
3.2 学生跟随教师一起动手操作,加深对勾股定理的理解。
4. 应用练习4.1 教师提出应用题,让学生运用勾股定理解决问题。
4.2 学生独立解答,教师给予指导和评价。
5. 课堂小结5.1 教师引导学生总结本节课所学内容。
5.2 学生分享学习心得,教师给予鼓励和指导。
6. 课后作业6.1 教师布置作业,让学生巩固勾股定理的知识。
6.2 学生认真完成作业,教师及时批改和反馈。
7. 教学反思教师在课后对教学过程进行反思,总结优点和不足,为下一节课的教学做好准备。
六、教学拓展1. 教师提出拓展问题:“勾股定理在其他领域的应用有哪些?”2. 学生分组讨论,教师给予引导和提示。
3. 各组汇报成果,教师点评并总结。
七、评价与反馈1. 教师对学生的学习情况进行评价,包括知识掌握、能力培养和素养提升等方面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
勾股定理重难点妙招设
计单
集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-
《勾股定理》(一)重难点解决妙招设计单
一、教材分析
(一)教材的地位与作用
勾股定理是数学中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。
它在数学的发展中起着重要的作用,在现实世界中也有着广泛的应用。
学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
(二)教学目标
知识与技能:
1、了解勾股定理的文化背景,体验勾股定理的探索过程,了解利用拼图验证勾股定理的方法。
2、了解勾股定理的内容。
3、能利用已知两边求直角三角形另一边的长。
数学思考:
在勾股定理的探索过程中,培养合情推理能力,体会数形结合和从特殊到一般的思想。
解决问题:
1、通过拼图活动,体验数学思维的严谨性,发展形象思维。
2、在探索活动中,学会与人合作,并能与他人交流思维的过程和探索的结果。
情感与态度:
1、通过对勾股定理历史的了解,对比介绍我国古代和西方数学家关于勾股定理
的研究,激发学生热爱祖国悠久文化的情感,激励学生奋发学习。
2、在探索勾股定理的过程中,体验获得结论的快乐,锻炼克服困难的勇气,培
养合作意识和探索精神。
(三)教学重、难点
重点:探索和证明勾股定理
难点:用拼图方法证明勾股定理
二、学情分析
学生对几何图形的观察,几何图形的分析能力已初步形成。
部分学生解题思维能力比较高,能够正确归纳所学知识,通过学习小组讨论交流,能够形成解决问题的思路。
现在的学生已经厌倦教师单独的说教方式,希望教师设计便于他们进行观察的几何环境,给他们自己探索、发表自己见解和展示自己才华的机会;更希望教师满足他们的创造愿望。
三、教学策略
本节课采用探究发现式教学,由浅入深,由特殊到一般地提出问题,鼓励学生采用观察分析、自主探索、合作交流的学习方法,让学生经历数学知识的形成与应用过程。
四、教学程序
五、几点说明
(一)、时间安排
1、创设情境导入新课—————————————————1分钟快速吸引学生注意力,使学生恢复上课状态
2、新知探究————————————————————7分钟
通过问题引领,观察思考,使学生真正进入思维过程
3、深入探究交流归纳—————————————————10分钟加深问题,层层深入,探究一般规律
4、拼图验证加深理解—————————————————15分钟动手操作,加以验证,演绎推理,全面认识勾股定理,形成技能
5、应用新知解决问题—————————————————6分钟灵活运用,检验认知水平
6、回顾小结整体感知—————————————————5分钟知识条理化,反思收获,加深认识
7、布置作业巩固加深—————————————————1分钟
明确任务
(二)板书设计
设计意图:强化过程、突出重点。
(三)教学评价
过程性评价:
1、关注学生是否积极参加探索勾股定理的活动,关注学生能否在活动中积
极思考,能够探索出解决问题的方法,能否进行积极的联想(数形结合)以及学生能否有条理的表达活动过程和所获得的结论等;
2、关注学生的拼图过程,鼓励学生结合自己所拼得的正方形验证勾股定理。
知识性评价:
1、掌握勾股定理内容及证明,体会数形结合的思想
2、熟练运用勾股定理解决实际问题,内化知识形成技巧
学生评价:
教师不是知识的占有者,也不是课堂上的主宰者,而是学习共同体的一员,在教学过程中难免会出现一些问题。
例如:学生对数学活动的兴趣,参与的热情不均衡;
学生动手操能力有差别;
学生在小组活动中能否敢于讲出自己的探索,猜想过程及结果等。
学生在学习新知的过程中可能出现的典型错误主要是把定理中两直角边的平方和错误的理解成和的平方。
自我评价:
本节课在教学过程中设计的一系列的教学环节,充分体现了新课改的理念。
“数因形而直观,形因数而入微”数形结合,由特殊到一般,突出重点,突破难点,抓住关键,课堂练习及时反馈,正确评价等等这一系列的教学环节的设计对培养学生思维和创新意识都起了非常重要的作用。
在教学过程中,我始终:
坚持一个原则——教为主导,学为主体的原则
坚守一个理念——先学后教,以学定教的理念
贯穿一个思想——享受数学,快乐学习的思想
在教学过程中,我重点关注学生的参与程度、思维方式、合作交流等情况,及时记录学生的独特想法,同时向学生渗透数学思想,改进学生的学习方式。
促使学生在学习过程中不断获得成功的体验。