利用数轴教学动点问题初探
初一数轴上的动点问题解题技巧

三、用字母表示动点:数轴上的点向左移动用减法,移动几个单位长度就减去几 数轴上的点向右移动用加法,移动几个单位长度就加上几
已知,如图A、B分别为数轴上的两点,A点对应的数为-10,B点对应的数为70 (3)现在有一只电子蚂蚁P从A点出发,以3个单位/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从B点出发, 以2个单位/秒的速度向左运动,
5
双动点问题
已知,如图A、B分别为数轴上的两点,A点对应的数为-10,B点对应的数为90.
(1)请写出与A,B两点距离相等的M点对应的数; (2)现在有一只电子蚂蚁P从B点出发时,以5个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好 从A点出发,以3个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,你知道对应的数是 多少吗? (3)若当电子蚂蚁P从B点出发时,以5个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出 发,以3个单位/秒的速度向左运动,经过多长的时间两只电子蚂蚁在数轴上相距30个单位长度?
(3)如果A. B两点以(2)中的速度同时向数轴的负方向运动,点C从图上的位置出发也向数轴的负方
AC.当点C运动到−6时,点A对应的数是多少?
8
4
单动点问题
如图,在数轴上点A表示的有理数为−4,点B表示的有理数为6,点P从点A出发以每秒2个单位长度的速度在 数轴上沿由A到B方向运动,当点P到达点B后立即返回,仍然以每秒2个单位长度的速度运动至点A停止运动。设 运动时间为t(单位:秒).
(1)求A、B两点间的距离; (2)求AB的中点; (3)求点P是AB的中点时t的值; (4)求t=2时点P表示的有理数; (5)在点P由点A到点B的运动过程中,求点P与点A的距离(用含t的代数式表示).
七年级数学数轴动点问题解题技巧

七年级数学数轴动点问题解题技巧一、数轴动点问题解题技巧。
1. 用字母表示动点。
- 在数轴上,设动点表示的数为x,如果已知动点的运动速度v和运动时间t,则经过t时间后,动点表示的数为初始位置加上运动的距离。
如果向左运动,距离为-vt;如果向右运动,距离为vt。
2. 表示两点间的距离。
- 数轴上两点A、B,若A表示的数为a,B表示的数为b,则AB=| a - b|。
3. 分析运动过程中的等量关系。
- 例如相遇问题,两个动点运动的路程之和等于两点间的初始距离;追及问题,快的动点比慢的动点多运动的路程等于两点间的初始距离。
二、题目及解析。
1. 已知数轴上A点表示的数为-5,B点表示的数为3,点P从A点出发,以每秒2个单位长度的速度沿数轴向右运动,同时点Q从B点出发,以每秒1个单位长度的速度沿数轴向左运动,设运动时间为t秒。
- 求t秒后点P表示的数。
- 解:点P从A点出发,A点表示的数为-5,向右运动速度为每秒2个单位长度,经过t秒后,运动的距离为2t,所以点P表示的数为-5 + 2t。
- 求t秒后点Q表示的数。
- 解:点Q从B点出发,B点表示的数为3,向左运动速度为每秒1个单位长度,经过t秒后,运动的距离为-t,所以点Q表示的数为3-t。
- 求t秒后PQ的距离。
- 解:t秒后点P表示的数为-5 + 2t,点Q表示的数为3 - t,则PQ=|(-5 +2t)-(3 - t)|=|-5 + 2t - 3+t|=|3t - 8|。
2. 数轴上点A表示的数为1,点B表示的数为-3,点C在点A右侧,且AC = 5。
点M从A点出发,以每秒1个单位长度的速度沿数轴向右运动,点N从B点出发,以每秒2个单位长度的速度沿数轴向右运动,设运动时间为t秒。
- 求点C表示的数。
- 解:因为点A表示的数为1,AC = 5,且C在A右侧,所以点C表示的数为1+5 = 6。
- 求t秒后点M表示的数。
- 解:点M从A点出发,A点表示的数为1,向右运动速度为每秒1个单位长度,经过t秒后,运动的距离为t,所以点M表示的数为1+t。
数轴上的动点题型讲解

数轴上的动点题型讲解
数轴上的动点题型是数学中的一个重要概念,涉及到数轴上的
点随时间变化的情况。
这类题型常见于初中和高中数学教学中,也
在物理学和工程学中有着广泛的应用。
在数轴上的动点题型中,通
常会涉及到点的坐标、速度、位移、时间等概念,下面我会从不同
角度来讲解这一题型。
首先,数轴上的动点题型涉及到点的坐标随时间变化的情况。
我们可以用参数方程来描述这一情况,比如一个点在数轴上的位置
可以用坐标(x, y)来表示,其中x和y都是关于时间t的函数。
通
过参数方程,我们可以清晰地描述点在数轴上的运动轨迹。
其次,数轴上的动点题型也涉及到点的速度和位移。
点在数轴
上的速度是指单位时间内点在数轴上运动的距离,通常用v来表示。
而位移则是指点从初始位置到最终位置的距离,通常用s来表示。
在动点题型中,我们需要根据速度和位移的关系来求解问题,比如
根据已知的速度函数来求解位移函数,或者根据位移函数来求解速
度函数。
另外,数轴上的动点题型还涉及到时间的概念。
我们需要根据
时间的变化来分析点在数轴上的运动情况,通常会涉及到时间的推移对点的位置、速度和位移的影响。
因此,我们需要通过对时间的分析来全面理解动点题型中的问题。
总的来说,数轴上的动点题型涉及到点的坐标随时间变化、速度和位移的关系以及时间对点运动的影响等多个方面。
通过深入理解这些概念,我们可以更好地解决数轴上的动点题型,并且在实际生活和工作中更好地应用这些知识。
数轴动点问题解题技巧

数轴动点问题解题技巧数轴动点问题是初中数学中比较常见的一类问题,其解题过程需要运用数轴的基本概念和运用数学知识进行分析和推理。
本文将从以下几个方面介绍数轴动点问题的解题技巧。
一、数轴的基本概念数轴是一条直线,上面用数值表示,通常以0点为起点,向右为正方向,向左为负方向。
在解决数轴动点问题时,我们需要了解数轴上的几个重要概念:1. 点:数轴上的任意一个位置都可以称为一个点,通常用小写字母表示,如a、b、c等。
2. 线段:数轴上两个点之间的部分称为线段,通常用大写字母表示,如AB、CD等。
3. 方向:数轴上从左到右的方向称为正方向,从右到左的方向称为负方向。
4. 距离:数轴上两个点之间的距离就是它们在数轴上的距离。
例如,在数轴上A点和B点之间的距离就是AB线段的长度。
二、数轴动点问题的解题思路1. 确定起点和终点数轴动点问题通常是要求在数轴上从一个点到另一个点的距离,因此我们需要确定起点和终点。
确定起点和终点后,我们就可以通过计算它们之间的距离来解决问题。
2. 确定运动方向在确定起点和终点后,我们需要确定运动方向。
通常情况下,我们可以根据题目中的描述来确定运动方向。
如果题目中没有明确说明运动方向,我们可以根据题目中给出的数据进行分析,确定运动方向。
3. 分析运动路径在确定起点、终点和运动方向后,我们需要分析运动路径。
运动路径通常是沿着数轴上的线段进行的,因此我们需要确定数轴上的哪些点是运动路径上的点。
在分析运动路径时,我们需要考虑到运动中可能出现的转弯等情况。
4. 计算运动距离在确定起点、终点、运动方向和运动路径后,我们就可以计算运动距离了。
运动距离就是起点和终点之间的距离,可以通过计算它们之间的线段长度来得出。
三、数轴动点问题的解题技巧1. 画图解题在解决数轴动点问题时,我们可以通过画图的方式来进行分析和推理。
画图可以帮助我们更加直观地了解问题,确定起点、终点、运动方向和运动路径等。
画图时,我们可以使用纸笔或数轴工具等,以便更好地展示问题。
初中数学数轴上的动点问题教学总结

初中数学数轴上的动点问题数轴上的动点问题离不开数轴上两点之间的距离。
为了便于初一年级学生对这类问题的分析,先明确以下3个问题:1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值,也即用右边的数减去左边的数的差。
即数轴上两点间的距离=右边点表示的数—左边点表示的数。
2.点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向作运动的速度看作负速度。
这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标。
即一个点表示的数为a,向左运动b个单位后表示的数为a—b;向右运动b个单位后所表示的数为a+b。
3.数轴是数形结合的产物,分析数轴上点的运动要结合图形进行分析,点在数轴上运动形成的路径可看作数轴上线段的和差关系。
例1.已知数轴上两点A、B对应的数分别为—1,3,点P为数轴上一动点,其对应的数为x。
⑴若点P到点A、点B的距离相等,求点P对应的数;⑵数轴上是否存在点P,使点P到点A、点B的距离之和为5?若存在,请求出x 的值。
若不存在,请说明理由?⑶当点P以每分钟一个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度向左运动,点B一每分钟20个单位长度向左运动,问它们同时出发,几分钟后P点到点A、点B的距离相等?分析:⑴如图,若点P到点A、点B的距离相等,P为AB的中点,BP=PA。
依题意,3—x=x—(—1),解得x=1⑵由AB=4,若存在点P到点A、点B的距离之和为5,P不可能在线段AB上,只能在A点左侧,或B点右侧。
①P在点A左侧,PA=—1—x,PB=3—x依题意,(—1—x)+(3—x)=5,解得x=—1.5②P在点B右侧,PA=x—(—1)=x+1,PB=x—3依题意,(x+1)+(x—3)=5,解得x=3.5⑶点P、点A、点B同时向左运动,点B的运动速度最快,点P的运动速度最慢。
故P点总位于A点右侧,B可能追上并超过A。
P到A、B的距离相等,应分两种情况讨论。
初一数学数轴上动点问题解题技巧

月朔数教数轴上动面问题解题本领之阳早格格创做
数轴上的动面问题离没有启数轴上二面之间的距离.
为了便于月朔年级教死对于那类问题的分解,无妨先精确以下几个问题:1.数轴上二面间的距离,即为那二面所对于应的坐标好的千万于值,也即用左边的数减来左边的数的好.即数轴上二面间的距离=左边面表示的数-左边面表示的数.
2.面正在数轴上疏通时,由于数轴背左的目标为正目标,果此背左疏通的速度瞅做正速度,而背做疏通的速度瞅做背速度.那样正在起面的前提上加上面的疏通路途便不妨曲交得到疏通后面的坐标.即一个面表示的数为a,背左疏通b个单位后表示的数为a-b;背左疏通b个单位后所表示的数为a+b.
3.数轴是数形分离的产品,分解数轴上面的疏通要分离图形举止分解,面正在数轴上疏通产死的路径可瞅做数轴上线段的战好闭系.
例1.已知数轴上有A、B、C三面,分别代表-24,-10,10,二只电子蚂蚁甲、乙分别从A、C二面共时相背而止,甲的速度为4个单位/秒.
⑴问几秒后,甲到A、B、C的距离战为40个单位?
⑵若乙的速度为6个单位/秒,二只电子蚂蚁甲、乙分别从A、C二面共时相背而止,问甲、乙正在数轴上的哪个面相逢?
⑶正在⑴⑵的条件下,当甲到A、B、C的距离战为40个单位时,甲调头返回.问甲、乙还能正在数轴上相逢吗?若能,供出相逢面;若没有克没有及,请证明缘由.。
七年级数轴上的动点问题解题思路

七年级数轴上的动点问题解题思路一、问题引入数轴是初中数学中常见的一个概念,它不仅仅是一个简单的线段,更是表示数值大小和位置的重要工具。
而在数轴上,经常会涉及到动点问题,即数轴上某个点的位置随着时间的推移而发生变化。
这类问题在初中数学教学中占有重要地位,有着丰富的解题思路和方法。
本文就将围绕着七年级数轴上的动点问题展开讨论,提出一些解题思路,帮助同学们更好地理解和掌握这一知识点。
二、基础知识回顾在开始讨论解题思路之前,我们先来回顾一下与数轴相关的一些基础知识。
我们要明确数轴的正方向和零点的位置,以及数轴上表示数值大小的方法。
我们要熟悉数轴上的加法和减法运算,包括正数和负数的加减法。
我们需要理解数轴上各个点的坐标表示,以及点的位置随时间变化的规律。
三、动点问题的解题思路1. 明确问题要求在解决动点问题时,首先要明确问题的要求,即问题中涉及到的动点随时间的变化规律以及在特定时刻的位置。
这一步骤是解题的基础,也是理解问题的关键所在。
2. 建立坐标系在明确问题要求之后,我们需要建立相应的坐标系,将动点的位置用坐标表示出来。
通常情况下,我们会选择直角坐标系或数轴坐标系,具体根据问题的特点来确定。
建立坐标系之后,我们就可以更清晰地描述动点的位置和运动轨迹了。
3. 分析动点的运动规律动点在数轴上的运动是有规律的,我们需要根据问题中给出的条件,分析动点的运动规律和变化趋势。
这样可以为接下来的解题提供重要线索,帮助我们更好地理解问题和找到解题思路。
4. 列方程解题在分析动点的运动规律之后,我们可以利用代数的方法来解题。
通过建立数学模型,列出动点的运动方程或方程组,然后利用相关的数学知识和技巧,解出动点的位置和运动轨迹等信息。
这种方法在解决一些复杂的动点问题时特别有用。
5. 借助图形解题除了代数方法,我们还可以借助图形的方式来解题。
通过在数轴上绘制动点的轨迹图或运动图,我们可以直观地理解动点的运动规律和位置变化,从而更容易找到解题的突破口。
数轴中的动点问题洋葱数学

数轴中的动点问题洋葱数学摘要:1.数轴动点问题概述2.解题关键和方法3.具体问题分析4.结论与建议正文:数轴动点问题是一种常见的数学问题,主要涉及到数轴上的点在运动过程中的位置、距离、速度等关系的处理。
这类问题在初中数学阶段就开始涉及,是基础数学知识的重要组成部分。
解题关键在于掌握数轴上点的表示方法、理解点间距离的意义以及运用相应的中点公式等。
在处理数轴动点问题时,首先需要明确数轴上两点间的距离,即这两点所对应的坐标差的绝对值。
例如,若点A表示-3,点B表示5,则AB之间的距离为|-3-5|=8。
此外,还需了解动点问题的基本类型,如动点相遇问题、动点之间的距离问题等。
解题方法主要包括以下几个步骤:1.画出数轴,明确各点的位置和坐标。
2.分析题目中所给的条件,建立方程(可能涉及绝对值方程)。
3.求解方程,得出动点的位置。
4.检验结果,判断是否符合题意。
接下来,我们来看一个具体的例子。
已知点A表示-4,点B表示20,点C表示16。
问题如下:1.点P从点A出发,沿数轴正方向以每秒2个单位的速度匀速运动;同时,点Q从点C出发,沿数轴负方向以每秒1个单位的速度匀速运动。
求两点相遇时的时间t以及相遇点M的坐标。
解题步骤如下:步骤1:画出数轴,标出点A、B、C及其坐标。
步骤2:分析题目,可以得出方程:2t = 16 - (-4) + 1t。
步骤3:求解方程,得出t = 10。
步骤4:代入公式,求出相遇点M的坐标:M = -4 + 2t = -4 + 2 × 10 = 16。
因此,两点相遇时的时间t为10秒,相遇点M的坐标为16。
通过以上分析,我们可以看出,数轴动点问题具有一定的规律性和实用性。
在解决这类问题时,关键是理解数轴上的点、距离和速度之间的关系,并运用相应的方法建立方程求解。
通过熟练掌握这些知识和方法,我们可以更好地应对数轴动点问题,提高自己的数学素养。
最后,建议同学们在学习和实践中,多关注数轴动点问题的类型和解题方法,加强对数轴性质的理解,提高自己的运算能力和解题技巧。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用数轴教学动点问题初探
桃花江镇中心学校罗公平在初中数学教学中,有一类重要的题型――动点问题的解答,近几年来,动点最值问题频频出现在各地中考、竞赛试卷中。
这类试题突出了对学生基本数学素质的测试,加强了探究和创新意识,培养了学生灵活运用知识解决实际问题能力,对学生思维能力的提高有较大的帮助。
但是这类题目学生解答起来具有一定的难度,不易理解,容易出错。
为解决这一难点,桃江县教研室在七年级期末考试命题中就开始考查这一知识点,让学生尽早熟悉动点问题的解答方法。
数轴是数形结合的产物,点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向作运动的速度看作负速度。
这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标。
因此,在七年级数学教学中我们可以利用数轴来教学动点问题。
例1(桃江县2015七年级期末考试)如图,数轴上两个动点A、B开始时所表示的数分别为-8,4,A、B两点各自以一定的速度在数轴上运动,且A点的运动速度为每秒2个单位.
(1)A、B两点同时出发相向而行,在原点处相遇,求B点的运动速度;
(2)A、B两点按上面的速度同时出发,向数轴正方向运动,几秒钟时两点相距6个单位长度?
(3)A、B两点按上面的速度同时出发,向数轴负方向运动,与此同
时,C点从原点出发作同方向的运动,如果在运动过程中,始终有CA=2CB,求C点的运动速度.
分析:(1)易求得A点的运动时间为4秒,所以B点的运动速度为每秒1个单位.
(2)是一个追及问题,需分两种情况,A点在B点前面和A 点在B点后面。
⑶中先找出运动过程中C、A、B在数轴上对应的数,再根据其位置关系确定两点间距离的关系式,这样就理顺了整个运动过程。
解:(1)B点运动的速度为:
4=
÷
(
÷
单位
8
(1
)2
秒)
(2)设x秒时两点相距6个单位长度,根据题意得:
(a)A点在B点后面时,6
x,
+x
2
12=
-
解得:6
=
x
(b)A点在B点前面时,2x-(12+x)=6
解得:x=18
答:6秒或18秒时,两点相距6个单位长度;
(3)设C点的运动速度为每秒v个单位长度,运动时间为t秒,当t=0时,CA=8,CB=4,CA=2CB,符合题意,
当0
t时,则)
≠
+
=
+,
t-
-
vt
(2
8
2t
vt
4
4,
即t
vt4
3 ,所以v=
3
4个单位长度.
答:C点的运动速度是每秒
3
点评:熟悉数轴上两点间距离以及数轴上动点坐标的表示方法
是解决本题的关键。
例2.(桃江县2012年八年级全能知识竞赛)电子跳蚤落在数轴上
的某点K0,第一步从K0向左跳1个单位到K1,第二步由K1向右跳2
个单位到K2,第三步由K2向左跳3个单位到K3,第四步由K3跳4个
单位到K4,…,按以上规律跳了100步时,电子跳蚤落在数轴上的点
K100所表示的数恰是20.04,试求电子跳蚤的初始位置K0点所表示的数。
分析:易得每跳动2次,向右平移1个单位,跳动100次,相当于在
原数的基础上加了50,相应的等量关系为:原数字+50=20.04
解:k0点所对应的数为20.04-100+99-98+97-…-6+5-4+3-2+1=-
29.96
点评:数轴上一个点表示的数为a,向左运动b个单位后表示的数为a—b;向右运动b个单位后所表示的数为a+b。
运用这一特征探究变
化规律时,要注意在循环往返运动过程中的方向变化。
例3.如图,已知A、B分别为数轴上两点,A点对应的数为—20,B点对应的数为100。
⑴求AB中点M对应的数;
⑵现有一只电子蚂蚁P从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,求C点对应的数;
⑶若当电子蚂蚁P从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D点相遇,求D点对应的数。
分析:⑴设AB中点M对应的数为x,由BM=MA
所以x—(—20)=100—x,解得 x=40 即AB中点M对应的数为40
⑵易知数轴上两点AB距离,AB=140,设PQ相向而行t秒在C点相遇,
依题意有,4t+6t=120,解得t=12
(或由P、Q运动到C所表示的数相同,得—20+4t=100—6t,t=12)相遇C点表示的数为:—20+4t=28(或100—6t=28)
⑶设运动y秒,P、Q在D点相遇,则此时P表示的数为100—6y,Q表示的数为—20—4y。
P、Q为同向而行的追及问题。
依题意有,6y—4y=120,解得y=60
(或由P、Q运动到C所表示的数相同,得—20—4y=100—6y,y=60)D点表示的数为:—20—4y=—260 (或100—6y=—260)
点评:熟悉数轴上两点间距离以及数轴上动点坐标的表示方法是解决本题的关键。
⑵是一个相向而行的相遇问题;⑶是一个同向而行的追及问题。
在⑵、⑶中求出相遇或追及的时间是基础。
练习题:
1.已知数轴上A、B两点对应数分别为—2,4,P为数轴上一动点,对应数为x。
⑴若P为线段AB的三等分点,求P点对应的数。
⑵数轴上是否存在P点,使P点到A、B距离和为10?若存在,求出x的值;若不存在,请说明理由。
⑶若点A、点B和P点(P点在原点)同时向左运动。
它们的速度分别为1、2、1个单位长度/分钟,则第几分钟时P为AB的中点?
(参考答案:⑴0或2;⑵—4或6;⑶2)
2.已知数轴上有A、B、C三点,分别代表—24,—10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒。
⑴问多少秒后,甲到A、B、C的距离和为40个单位?
⑵若乙的速度为6个单位/秒,两只电子蚂蚁甲、乙分别从A、C 两点同时相向而行,问甲、乙在数轴上的哪个点相遇?
⑶在⑴⑵的条件下,当甲到A、B、C的距离和为40个单位时,甲调头返回。
问甲、乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由。