初一培优专题:数轴上动点问题(有答案)
初一数轴动点问题(有答案)

数轴动点问题1、如图,有一数轴原点为O,点A所对应的数是-1,点A沿数轴匀速平移经过原点到达点B.(1)如果OA=OB,那么点B所对应的数是什么?(2)从点A到达点B所用时间是3秒,求该点的运动速度.(3)从点A沿数轴匀速平移经过点K到达点C,所用时间是9秒,且KC=KA,分别求点K 和点C所对应的数.2、动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,3s后,两点相距15cm(单位长度为1cm).已知动点A、B的速度比是1∶4 (速度单位:cm/s).(1)求出3s后,A、B两点在数轴上对应的数分别是多少?(2)若A、B两点从(1)中的位置同时向数轴负方向运动,经过几秒,原点恰好处在两个动点的正中间?3、已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为6?若存在,请求出x的值;若不存在,说明理由;(3)点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以6个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间,求当点A与点B重合时,点P所经过的总路程是多少?(1)若点P到点A、点B的距离相等,求点P对应数。
(3-(-1))/2=2 3-2=1 所以P=1.(2)|x-(-1)|+|x-3|=|x+1|+|x-3|=5 所以,存在,X=3.5或X=-1.5.(3)当点P以每分钟1个单位长的速度从O点向左运动时,点A以每分钟5个单位长的速度向左运动,点B以每分钟20个单位长的速度向左运动,问它们同时出发,几分钟后P点到点A、点B的距离相等?设时间是t. t分后,P是-1*t=-t,A是-1-5t,B是3-20t. |-t-(-1-5t)|=|-t-(3-20t)| |-t+1+5t |=|-t-3+20t| |4t+1|=|19t-3| 所以有: 4t+1=19t-3,解得t=4/15. 或者说4t+1=3-19t,得t=2/23 所以,出发的时间是2/23分或4/15分钟.4、在数轴上,点A表示的数是-30,点B表示的数是170.(1)求A、B中点所表示的数.(2)一只电子青蛙m,从点B出发,以4个单位每秒的速度向左运动,同时另一只电子青蛙n,从A点出发以6个单位每秒的速度向右运动,假设它们在C点处相遇,求C点所表示的数.(3)两只电子青蛙在C点处相遇后,继续向原来运动的方向运动,当电子青蛙m处在A点处时,问电子青蛙n处在什么位置?(4)如果电子青蛙m从B点处出发向右运动的同时,电子青蛙n也向右运动,假设它们在D点处相遇,求D点所表示的数.(注:文档可能无法思考全面,请浏览后下载,供参考。
部编数学七年级上册培优专题09数轴上册的动点问题解析版含答案

培优专题09 数轴上的动点问题【专题精讲】数轴上的动点问题离不开数轴上两点之间的距离。
为了便于初一年级学生对这类问题的分析,不妨先明确以下几个问题:1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值,也即用右边的数减去左边的数的差。
即数轴上两点间的距离=右边点表示的数—左边点表示的数。
2.点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向作运动的速度看作负速度。
这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标。
即一个点表示的数为a,向左运动b个单位后表示的数为a—b;向右运动b个单位后所表示的数为a+b。
3.数轴是数形结合的产物,分析数轴上点的运动要结合图形进行分析,点在数轴上运动形成的路径可看作数轴上线段的和差关系。
类型一:求运动后点对应的数1.(2022·安徽·定远县第一初级中学七年级期末)如图,已知A,B两点在数轴上,点A表示的数为-10,3=,点M以每秒3个单位长度的速度从点A向右运动.点N以每OB OA秒2个单位长度的速度从点O向右运动(点M、点N同时出发)(1)数轴上点B对应的数是______.(2)经过几秒,点M、点N重合?【答案】(1)30(2)10【分析】(1)根据点A表示的数为-10,OB=3OA,可得点B对应的数;(2)点M、点N重合时,即点M追上点N,此时两点在数轴上的运动路程之差为10,以此列式即可求出.(1)解:OB=3OA=30.故B点对应的数是30.(2)点M、点N重合时,此时两点在数轴上的运动路程之差为10,设时间为t秒,则有3t-2t=10解得:t=10故经过10秒,点M、点N重合.【点睛】此题主要考查了一元一方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.2.(2022·全国·七年级课时练习)已知在数轴上有A,B两点,点B表示的数为最大的负整数,点A在点B的右边,AB=24.若有一动点P从数轴上点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,动点Q从点B出发,以每秒3个单位长度的速度沿着数轴向右匀速运动,设运动时间为t秒.(1)当t=1时,写出数轴上点B,P所表示的数;(2)若点P,Q分别从A,B两点同时出发,问当t为何值点P与点Q相距3个单位长度?点C表示的数为6,BC=4,AB=12.(1)数轴上点A表示的数为 ,点B表示的数为 ;(2)动点P,Q同时从A,C出发,点P以每秒4个单位长度的速度沿数轴向右匀速运动.点Q以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒;①求数轴上点P,Q表示的数(用含t的式子表示);②t为何值时,P,Q两点重合;③请直接写出t为何值时,P,Q两点相距5个单位长度.在数轴上点P表示的数是104t-+,6,点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,点A与点C之间的距离表示为AC.(1)求AB、AC的长;(2)点A,B,C开始在数轴上运动,若点A以每秒2个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和4个单位长度的速度向右运动.请问:BC﹣AB的值是否随着运动时间t的变化而变化?若不变,请求其值;若变化,请说明理由并判断是否有最值,若有求其最值.【答案】(1)2,8AB AC ==(2)变化,当0=t 时取得最大值4【分析】(1)根据点A ,B ,C 表示的数,即可求出AB , AC 的长;(2)根据题意分别求得点A 表示的数为-2-2t ,点B 表示的数为3t ,点C 表示的数为6+4t ,根据两点距离求得,BC AB ,进而根据整式的加减进行计算即可.(1)解:AB =0-(-2)=2, AC =()628--=.(2)当运动时间为t 秒时,点A 表示的数为-2-2t ,点B 表示的数为3t ,点C 表示的数为6+4t ,则6436BC t t t =+-=+,()32225AB t t t=---=+()62544BC AB t t t\-=+-+=-当0=t 时,BC AB -的值最大,最大值为4.【点睛】本题考查了列代数式、数轴以及两点间的距离,解题的关键是:(1)根据三个点表示的数,求出三条线段的长度;(2)利用含t 的代数式表示出BC ,AB 的长.类型二:求运动中的时间5.(2022·全国·七年级专题练习)综合与探究阅读理解:数轴是一个非常重要的数学工具,使数和数轴上的点建立起对应关系,这样能够用“数形结合”的方法解决一些问题.数轴上,若A ,B 两点分别表示数a ,b ,那么A ,B 两点之间的距离与a ,b 两数的差有如下关系:||AB a b =-或b a -.问题解决:如图,数轴上的点A ,B 分别表示有理数2,5-.填空:(1)A ,B 两点之间的距离为_______;(2)点C 为数轴上一点,在点A 的左侧,且6AC =,则点C 表示的数是_______;(3)拓展应用:在(2)的条件下,动点P 从点A 出发,以每秒2个单位长度的速度在数轴上匀速运动,设运动时间为t 秒(0t >),当t 为何值时,P ,C 两点之间的距离为12个单位长度?【答案】(1)7(2)4-(3)3t =或9秒时,P ,C 两点之间的距离为12个单位长度【分析】(1)根据公式计算即可 .(2) 设C 表示的数为C x ,根据公式AC =|2-C x |=6,计算后,结合定C 的位置确定答案即可.(3) 解答时,分点P 向左运动和向右运动两种情况求解.(1)∵数轴上的点A ,B 分别表示有理数2,5-,∴AB =|-5-2|=7,故答案为:7.(2)设C 表示的数为C x ,根据题意,得AC =|2-C x |=6,∴2-C x =6或2-C x = -6,解得C x = -4或C x =8,∵点C 在点A 的左侧,∴C x <2A x =,∴C x = -4,故答案为:-4.(3)①当点P 向右运动时,点P 表示的数为2+2t ,根据题意,得 22(4)12t +--=,解这个方程,得 3t =;②当点P 向左运动时,点P 表示的数为2-2t ,根据题意,得4(22)12t ---=,解这个方程,得9t =,故当3t =或9秒时,P ,C 两点之间的距离为12个单位长度.【点睛】本题考查了数轴上的动点问题,两点间的距离,分类思想,熟练掌握公式,正确理解距离的意义是解题的关键.6.(2021·江苏·扬州市江都区第三中学七年级阶段练习)如图,直径为1个单位的圆片上有一点A 与数轴上的原点重合,AB 是圆片的直径.(1)把圆片沿数轴向左滚动1周,点A到达数轴上点C的位置,点C表示的数是 ;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是 ;(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:第1次第2次第3次第4次第5次+1+2﹣1﹣4+3①第几次滚动后,A点距离原点最远?此时点A所表示的数是多少?②当圆片结束运动时,A点运动的路程共有多少?此时点A所表示的数是多少?(以上小题结果保留p)【答案】(1)p-;(2)2π或−2π;(3)①第2次,3p;②11p,p【分析】(1)利用圆的半径以及滚动周数即可得出滚动距离;(2)利用圆的半径以及滚动周数即可得出滚动距离;(3)①利用滚动的方向以及滚动的周数即可得出A点移动距离变化;②利用绝对值的性质以及有理数的加减运算得出移动距离和A表示的数即可.【详解】解:(1)∵圆片沿数轴滚动1周的长度为d p p=∴把圆片沿数轴向左滚动1周,点A到达数轴上点C的位置,点C表示的数是-p.故答案为:-p;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,则滚动的长度为2p,点D 表示的数是2π或−2π.故答案为:2π或−2π;(3)①由表格可得第1次滚动后,A点距离原点为p;第2次滚动后,A点距离原点为3p;第3次滚动后,A点距离原点为2p;第4次滚动后,A点距离原点为-2p;第5次滚动后,A点距离原点为p;∴第2次滚动后,A点距离原点最远;②∵|+1|+|+2|+|-1|+|−4|+|+3|=11,∴11×p=11p,∴A点运动的路程共有11p个单位,此时点A所表示的数是p.【点睛】此题主要考查了数轴以及绝对值的性质和圆的周长公式应用,利用数轴得出对应数是解题关键.7.(2022·全国·七年级专题练习)如图,在数轴上,点A、B、C表示的数分别为-2、1、6(点A与点B之间的距离表示为AB).(1)AB= ,BC= ,AC= .(2)若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动.请问:2BC-AC的值是否随着运动时间t的变化而改变?若变化,请说明理由;若不变,求其值.(3)若点C以每秒3个单位长度的速度向左运动,同时,点A和点B分别以每秒1个单位长度和每秒2个单位长度的速度向右运动.求随着运动时间t的变化,AB、BC、AC之间的数量关系.【答案】(1)3,5,8;(2)会,理由见解析;(3)当t<1时,AB+BC=AC;当t大于或等于1,且t小于或等于2时,BC+AC=AB;当t>2时,AB+AC=BC【分析】(1)根据点A、B、C在数轴上的位置,写出AB、BC、AC的长度;(2)求出BC和AB的值,然后求出2BC−AB的值,判断即可;(3)分别表示出AB、BC、AC的长度,然后分情况讨论得出之间的关系.【详解】解:(1)由图可得,AB=3,BC=5,AC=8,故答案为:3,5,8;(2)2BC−AB的值会随着时间t的变化而改变.设运动时间为t秒,则2BC−AB=2[6+5t−(1+2t)]−[1+2t−(−2−t)]=12+10t−2−4t−1−2t−2−t=3t+7,故2BC−AB的值会随着时间t的变化而改变;(3)由题意得,AB=t+3,BC=5−5t(t<1时)或BC=5t−5(t≥1时),AC=8−4t(t≤2时)或AC=4t−8(t>2时),当t<1时,AB+BC=(t+3)+(5−5t)=8−4t=AC;当1≤t≤2时,BC+AC=(5t−5)+(8−4t)=t+3=AB;当t>2时,AB+AC=(t+3)+(4t−8)=5t−5=BC.【点睛】本题主要考查了数轴及两点间的距离,解题的关键是能求出两点间的距离.8.(2022·全国·七年级专题练习)“幸福是奋斗出来的”,在数轴上,若C到A的距离刚好是3,则C点叫做A的“幸福点”,若C到A、B的距离之和为6,则C叫做A、B的“幸福中心”.(1)如图1,点A表示的数为-1,则A的幸福点C所表示的数应该是______;(2)如图2,M、N为数轴上两点,点M所表示的数为4,点N所表示的数为-2,点C就是M、N的幸福中心,则C所表示的数可以是______(填一个即可);(3)如图3,A、B、P为数轴上三点,点A所表示的数为-1,点B所表示的数为4,点P所表示的数为8,现有一只电子蚂蚁从点P出发,以2个单位每秒的速度向左运动,74秒时,电子蚂蚁是A和B的幸福中心吗?请说明理由.类型三:求运动中的速度等问题9.(2022·全国·七年级课时练习)如图,在数轴上,点A,B分别表示15-,9,点P、Q 分别从点A、B同时开始沿数轴正方向运动,点P的速度是每秒3个单位,点Q的速度是每秒1个单位,运动时间为t秒,在运动过程中,当点P,点Q和原点O这三点中的一点恰好是另外两点为端点的线段的中点时,则满足条件整数t的值()A.22B.33C.44D.5510.(2022·全国·七年级课时练习)已知多项式2234x xy --的常数项是a ,次数是b ,且a ,b 两个数轴上所对应的点分别为A 、B ,若点A 、点B 同时沿数轴向正方向运动,点A的速度是点B 的2倍,且3秒后,32OA OB =,求点B 的速度为( )A .34B .14 或 34C .14或32D .322+|b ﹣4|=0,记AB =|a ﹣b |.(1)求AB 的值;(2)如图,点P 、Q 分别从点A 、B 同时出发沿数轴向右运动,点P 的速度是每秒1个单位长度,点Q 的速度是每秒2个单位长度,当BQ =2BP 时,P 点对应的数是多少?(3)在(2)的条件下,点M 从原点与P 、Q 点同时出发沿数轴向右运动,速度是每秒x 个单位长度(1<x <2),若在运动过程中,2MP —MQ 的值与运动的时间t 无关,求x 的值.(1)若P到点A、B的距离相等,求点P对应的数;(2)动点P从点A出发,以2个长度单位/秒的速度向右运动,设运动时间为t秒,问:是否存在某个时刻t,恰好使得P到点A的距离是点P到点B的距离的2倍?若存在,请求出t的值;若不存在,请说明理由;(3)若动点P从点A出发向点B运动,同时,动点Q从点B出发向点A运动,经过2秒相遇;若动点P从点A出发向点B运动,同时,动点Q从点B出发与点P同向运动,经过6秒相遇,试求P点与Q点的运动速度(长度单位/秒)解得:21mn=ìí=î,答:P点的运动速度2单位长度/秒,Q点的运动速度1单位长度/秒.【点睛】本题考查数轴上的点表示的数及两点间的距离、一元一次方程的应用,二元一次方程组的应用等知识,根据题中描述找到等量关系式是解题的关键.。
(完整版)初一培优专题:数轴上动点问题(有答案)

培优专题:借助方程求解数轴上的动点问题(压轴题常考题型)数轴上的动点问题离不开数轴上两点之间的距离。
为了便于初一年级学生对这类问题的分析,不妨先明确以下几个问题:1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值,也即用右边的数减去左边的数的差。
即数轴上两点间的距离=右边点表示的数—左边点表示的数。
2.点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向作运动的速度看作负速度。
这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标。
即一个点表示的数为a,向左运动b个单位后表示的数为a—b;向右运动b个单位后所表示的数为a+b。
3.数轴是数形结合的产物,分析数轴上点的运动要结合图形进行分析,点在数轴上运动形成的路径可看作数轴上线段的和差关系。
一、相关知识准备1.数轴上表示4和1的两点之间的距离是_____________。
-,则A与B两点之间的距离用式子2.若数轴上点A表示的数为x,点B表示的数为1可以表示为_____________,若在数轴上点A在点B的右边,则式子可以化简为_____________。
3.A点在数轴上以2个单位长度/秒的速度向右运动,若运动时间为t,则A点运动的路程可以用式子表示为______________。
-,A点在数轴上以2个单位长度/秒的速度向右运动,4.若数轴上点A表示的数为1若运动时间为t,则A点运动t秒后到达的位置所表示的数可以用式子表示为______________。
答案:1、3; 2、1x+,x+1; 3、2t; 4、12t-+二、已做题再解:1、半期考卷的第25题:如图所示,在数轴上原点O表示数0,A点在原点的左侧,所表示的数是a,B点在原点的右侧,所表示的数是b,并且a、b满足-2++8=a16(b)0(1)点A表示的数为_________,点B表示的数为________。
(2)若点P从点A出发沿数轴向右运动,速度为每秒3个单位长度,点Q从点B出发沿数轴向左运动,速度为每秒1个单位长度,P、Q两点同时运动,并且在点C处相遇,试求点C所表示的数。
七年级数学培优-数轴上的动点问题专题(一)(版)

动点问题专题(一)前言:数轴上的动点问题离不开数轴上两点之间的距离,为了便于我们对这类问题的分析,不妨先明确以下几个问题:1.数轴上两点间的距离,即为这两点所对应的坐标差的,也即用右边的数减去左边的数的差.即数轴上两点间的距离=右边点表示的数-左边点表示的数.2.点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向左运动的速度看作负速度,这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标。
即一个点表示的数为a ,向左运动b 个单位后表示的数为;向右运动b 个单位后所表示的数为.3.数轴是数形结合的产物,分析数轴上点的运动耍结合图形进行分析.直在数轴上运动形成的路径可看作数轴上线段的和差关系,一、基础能力过关测试1.数轴上表示-5的点离原点的距离是个单位长度,数轴上离原点6个单位长度的点有个,它们表示的数是.2.数轴上的A 点与表示-3的点距离4个单位长度,则A 点表示的数为.3.数轴上A 、B 两点离原点的距离分别为2和3,则AB 间距离是.4.点A 、B 在数轴上对应的数分别是m 、n ,(n 在m 的右边).则AB 间距离是.5.数轴上表示x 和-2的两点间距离是;若︱x +2︱=5,则x =.6.若︱a ︱=︱b ︱,则a 、b 的关系是;若︱x -3︱=︱4-2x ︱,则x =7.若点A 、点B 表示的数分别是-2、6,则AB 的中点为,若点A 、点B 表示的数分别是a 、b ,则AB 的中点为.二、例题解析【例1】如图,动点A 从原点出发向数轴负方向运动,同时动点B 也从原点出发,向数轴正方向运动,A的速度为a 个单位长度/秒,B 的速度为b 个单位长度/秒,且a 、b 满足21(2)352a b -=--(1)求出两个动点运动的速度,并在数轴上标出A 、B 两点从原点出发运动到3秒时的位置;(2)若A 、B 两点在(1)中的位置,在数轴上存在一点C ,且AC =2BC ,求C 点对应的数-15-12-9-6-315129630(3)若A 、B 两点从(1)中的位置同时按原速度向数轴负方向运动,几秒时,原点恰好在两个动点的正中间;(4)若A、B两点从(1)中的位置同时按原速度向数轴负方向运动,问几秒后点A和点B 相距2个单位长度;(5)若A、B两点从(1)中的位置同时按原速度向数轴负方向运动,同时点C从原点出发,以1个单位长度/秒的速度向数轴负方向运动,问几秒后点C到点A的距离与到点B的距离相等.【例2】已知数轴上有A、B两点,分别表示的数为-40和20,点A以每秒3个单位的速度沿数轴向右匀速运动,点B以每秒2个单位向左匀速运动,设运动时间为t秒(t>0).(1)运动开始前,A、B两点的距离为,线段AB的中点M所表示的数为.(2)它们按上述方式运动,A、B两点约经过多少秒会相遇,相遇点所表示的数是什么?(3)当t为多少时,线段AB的中点M表示的数为-5?并直接写出在这一运动过程中点M的运动方向和运动速度.【例3】己知如图,数轴上A、B、C三点对应有理数a,b,c.(1)若︱a︱>︱b︱>︱c︱,化简:3︱b-c︱-2︱a+2b︱+︱b+c︱;aC BAb c(2)若ab+c=0,︱a+5︱=7,且点B、A之间的距离与点B、C之间的距离相等,求b的值(3)在(2)的条件下,数轴上是否存在点P,使得点P分别到A、B、C三点的距离之和等于30?若存在,求出点P的数轴上所对应的数;若不存在,请说明理由.【例4】在数轴上有顺次排列的三点A、B、C,A点表示数a,B点表示数b,C点表示数c,b是最小的正整数,且a、c满足︱a+2︱+(c-7)2=0.(1)a=,b=,c=;(2)若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时点B和点C分别以每秒2个单位长度的速度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB=,AC=,BC =.(用含t的代数式表示)(4)请问:3BC-2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.【例5】如图,点A、B为数轴上两点(A点在负半轴,用数a表示;B点在正半轴,用数B表示)a0b(1)若︱b-a︱=︱3a︱,试求a、b的关系式;(2)在(1)的条件下,Q是线段OB上一点,且AQ –BQ =OQ,求OQ:AB的值;(3)在线段AO上有一点C,OC=4,在线段OB上有一动点D(OD>4),M、N分别是OD、CD 的中点,下列结论:①OM-ON的值不变;②OM+ON的值不变,其中只有一个结论是正确的,请你找出正确的结论,并求值.【例6】已知数轴上有A、B、C三个点,分别表示有理数-24,-10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)用含t的代数式表示P到点A和点C的距离:P A=,PC=.(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以相同的速度返回,运动到终点A.在点Q开始运动后,P、Q两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由.BA0C。
专题训练之数轴上的动点问题(含答案)原创组题

专题训练之数轴上的动点问题数轴是学生进入初中第一次接触的数形结合,数轴是学生学习相反数、绝对值、正数和负数、0的基础。
本专题主要针对的是数轴上的动点,也是和一元一次方程的综合试题,同样也练习到了用字母表示数以及整式的加减。
综上所述,这个专题以数轴为底色,动点问题为主线,考查学生们列方程、用方程、用字母表示数、整式的运算。
这些都是中考的热点,也考查学生的能力。
1.如图,已知点A,B,C是数轴上三点,O为原点,点C对应的数为6, BC=4 AB=12.⑴求点A,B对应的数;(2)动点P, Q同时从A, C出发,分别以每秒6个单位长度和3个单位长度的速度沿数轴正方向运动.M为AP的中点,点N在CQ上,且CN=1 CQ,设运动时间为3t (t>0).①求点M, N对应的数(用含t的式子表示);②t为何值时OM=2BNA OB C答案:(1)分别是-10,2(2)①M 对应的数-10+3t, N对应的数为6+t②t=18秒或t -秒52.如图,数轴的单位长度为1,点C,D表示的数互为相反数,结合数轴回答下列问题:(1)请在数轴上标出原点0的位置;(2)直接写出点A,B,C,D所表示的数,并判断哪一点表示的数的平方最大,最大是多少?(3)从A,B两题中任选一题作答.A① 若点F在数轴上,与点C的距离CF=3.5求点F表示的数;②设动点P从点B出发,以每秒3个单位长度的速度沿数轴的正方向匀速向终点D运动,运动时间为t秒,求点P, C之间的距离CP(用含t的代数式表示) B设点M , N都从点A出发沿数轴的正方向匀速向终点D运动.点M的速度为每秒2个单位长度,点N的速度为每秒5个单位长度,当点M运动到点B时点N 开始运动.设点M运动的时间为t秒,求点M,N之间的距离MN.(用含t的代数式表示)ABC答案:(1)原点位置略(2) A:-7 B:-5 C-3 D:3点A表示的数最大,为49 ;点F表示的数为-6.5或0.5分三种情况点P在点C左侧时,PC=23t;点P与点C重合时PC=0;点P在点C右侧时,PC=3t-2 B分五种情况当点N未出发时,MN=2t当点N追上点M前,MN=5-3t当点N追上M时,MN=0当点N超过点M到达终点D前MN=3t-5当N到达D点停止点M向终点运动时,MN=10-2t3.如图,A,B两点在数轴上所表示的数分别为a, a+4.(1)线段AB的长为.(2) A,B两点分别以每秒3个单位长度和每秒1个单位长度的速度同时沿数轴的正方向运动,设运动时间为t秒,解答下列问题(可用含t的式子表示):①运动t秒后,点A运动的距离为②t为何值,点B运动的距离为时,A, B两点重合.③ 在上述描述的过程中,若P为线段AB的中点,。
数轴中动点问题(2)——线段间和差倍分关系(方法专题);人教版七年级上学期培优专题讲练(含答案)

专题十四:数轴中动点问题(2)——线段间和差倍分关系方法点睛数轴上的动点问题,若是告诉了动点的运动速度,一般设运动时间为t,用含t的式子表示出动点及点与点之间的距离(用绝对值表示距离),再通过题目中给出的和差倍分关系列方程求解(解方程时注意分类讨论)。
典例精讲1.已知数轴上有A、B两个点对应的数分别是-3和9。
(1)点C是数轴上A、B之间的一个点,使得AC+OC=BC,求出点C所对应的数;(2)在(1)的条件下,点P、点Q为数轴上的两个动点,点P从A点以1个单位长度每秒的速度向右运动,点Q同时从B点以2个单位长度每秒的速度向左运动,点P运动到点C时,P,Q两点同时停止运动.设它们的运动时间为t秒,当OP+BQ=3PQ时,求t的值.举一反三2.如图,已知数轴上有三点A,B,C,它们对应的数分别为-30,-10以及10.动点P、Q 分别从A、C同时出发向左运送,动点R从B点出发向右运动;P点的运动速度为8个单位长度/秒,Q点的运动速度为4个单位长度/秒,R点的速度为2个单位长度/秒。
设动点P、Q的运动时间是t秒.若M为线段PR的中点,点N为线段RQ的中点,当t为何值时恰好满足MR=2RN.专题过关3.如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,且a、b 满足|a+3|+(b+3a)2=0.点P从A点以3个单位每秒向右运动,点Q同时从B点以2个单位每秒向左运动,AP+BQ=2PQ,则运动时间t的值是___________.4.如图,在数轴上,点O为原点,点A、B对应的数分别为a、b,且满足|a+2|+(b﹣6)2=0.(1)求点A、点B在数轴上表示的数;(2)动点P从点A出发,沿数轴以1个单位/秒的速度匀速向左运动;同时点Q从点B 出发,沿数轴以2个单位/秒的速度匀速向左运动,点M为PQ的中点,设点P、Q的运动时间为t秒,请用含t的式子表示点M在数轴上表示的数;(3)在(2)的条件下,在点P、Q运动过程中,若OM=18PQ,求t的值,并直接写出此时点M在数轴上对应的数.5.如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,C是AB 的中点,且a、b满足|a+3|+(b+3a)2=0.(1)求点C表示的数;(2)点P从A点出发,以每秒2个单位的速度向右运动,点Q同时从B点出发,以每秒1个单位速度向左运动,若AO+BC=PQ,求时间t;(3)若点P从A向右运动,点D为AP中点,在P点到达点B之前,求2BD﹣BP的值.【参考答案】1。
人教版七年级上册期末复习考点突破:数轴类动点问题培优训练(五)【有答案】

人教版七年级上册期末复习考点突破:数轴类动点问题培优训练(五)1.国庆放假时,小明一家三口一起乘小轿车去乡下探望爷爷、奶奶和外公、外婆.早上从家里出发,向东走了6千米到超市买东西,然后又向东走了2千米到爷爷家,中午从爷爷家出发向西走了12千米到外公家,晚上返回家里.(1)若以家为原点,向东为正方向,用1个单位长度表示1千米,请将超市、爷爷家和外公家的位置在下面数轴上分别用点A、B、C表示出来;(2)根据数轴回答超市A和外公家C相距千米.(3)若小轿车每千米耗油0.08升,求小明一家从出发到返回家所经历路程小车的耗油量.2.一个点从数轴上的原点开始,先向右移动1个单位长度到达A点,再向左移动2个单位长度到达B点,然后向右移动5个单位长度到达C点(1)直接写出点A,B,C三点所对应的数;(2)若点A,B分别以每秒2个单位长度和5个单位长度的速度向左运动,同时,若点C 以每秒1个单位长度的速度向右运动,设移动时间为t秒,把点A到点B距离记为AB,点A到点C距离记为AC,请问:AC﹣AB的值是否会随着t的变化而改变吗?若变化,请说明理由;若不变,请求其值.3.已知,等边△ABC(三条边都相等的三角形)在数轴上的位罝如图所示.(1)将△ABC从如图所示的位置沿数轴向左滚动一圈(滚动一圈指线段AC再次落在数轴上),则点A表示的数是.(2)将△ABC从如图所示的位置沿数轴向右滚动,则数2018表示的点与点重合;(3)将△ABC从如图所示的位置沿数轴滚动,向右滚动的圈数记为正数,向左滚动的圈数记为负数,依次运动情况记录如下:2,﹣1,+3,﹣4.﹣2.①第次滚动后,点A离原点最远;②当△ABC结束滚动时,点C表示的数是.4.已知,数轴上三个点A、O、B.点O是原点,固定不动,点A和B可以移动,点A表示的数为a,点B表示的数为b.(1)若AB移动到如图所示位置,计算a+b的值.(2)在图的情况下,B点不动,点A向左移动3个单位长,写出A点对应的数a,并计算b﹣|a|.(3)在图的情况下,点A不动,点B向右移动15.3个单位长,此时b比a大多少?请列式计算.5.如图.在一条不完整的数轴上一动点A向左移动4个单位长度到达点B,再向右移动7个单位长度到达点C.(1)若点A表示的数为0,求点B、点C表示的数;(2)若点C表示的数为5,求点B、点A表示的数;(3)如果点A、C表示的数互为相反数,求点B表示的数.6.如图,已知数轴上的点A表示的数为6,点B表示的数为﹣4,点C是AB的中点,动点P 从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为x秒(x>0).(1)当x=秒时,点P到达点A.(2)运动过程中点P表示的数是(用含x的代数式表示);(3)当P,C之间的距离为2个单位长度时,求x的值.7.如图,在数轴上点A表示的有理数为﹣6,点B表示的有理数为6,点P从点A出发以每秒3个单位长度的速度在数轴上由A向B运动,当点P到达点B后立即返回,仍然以每秒3个单位长度的速度运动至点A停止运动,设运动时间为t(单位:秒)(1)求t=1时点P表示的有理数;(2)求点P与点B重合时的t值;(3)在点P沿数轴由点A到点B再回到点A的运动过程中,求点P与点A的距离;(用含t的代数式表示)(4)当点P表示的有理数与原点的距离是3个单位长度时,直接写出所有满足条件的t 值.8.已知小华家、小夏家、小红家及学校在同一条大路旁,一天,他们放学后从学校出发,先向南行1000m到达小华家A处,继续向北行3000m到达小红B家处,然后向南行6000m 到小夏家C处.(1)以学校以原点,以向南方向为正方向,用1个单位长度表示1000m,请你在数轴上表示出小华家、小夏家、小红家的位置;(2)小红家在学校什么位置?离学校有多远?9.如图,A、B分别为数轴上的两点,A点对应的数为﹣20,B点对应的数为100.(1)请写出与A、B两点距离相等的点M所对应的数;(2)现有一只电子蚂蚁P从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,你知道C点对应的数是多少吗?(3)若当电子蚂蚁P从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度也向左运动,请问:当它们运动多少时间时,两只蚂蚁间的距离为20个单位长度?10.如图,数轴上A、B、C三点表示的数分别为a、b、c,且a、b满足|a+8|+(b﹣12)2=0.(1)则a=,b=;(2)动点P从A点出发,以每秒10个单位的速度沿数轴向右运动,到达B点停留片刻后立即以每秒6个单位的速度沿数轴返回到A点,共用了6秒;其中从C到B,返回时从B到C(包括在B点停留的时间)共用了2秒.①求C点表示的数c;②设运动时间为t秒,求t为何值时,点P到A、B、C三点的距离之和为23个单位?。
【核心考点突破】2023学年七年级数学上册精选专题培优讲与练(人教版) 线段的动点问题-解析版

线段的动点问题(解析版)【专题精讲】1.总体来讲,解决数轴上的动点问题分为两步:(1)用未知数表示动点; (2)结合数轴,列方程.2.具体来讲,要注意以下几个问题:(1)表示动点:用未知数表示动点 常常把运动时间设为t,把握动点的出发点,运动方向和运动速度,这三个条件,例如:点A 从表示1的点M 出发,向右运动,速度是3个单位长度每秒,则动点A 表示为:1 +3t; . 点B 从表示-2的点N 出发,向左运动,速度是2个单位长度每秒,则动点B 表示为:-2-2t; (2)求中点:利用中点公式即可;(3)求距离:数轴上,表示两点的距离常常用右边的数减去左边的数,例如,上题动点A 和B 之间的距离是:(1 +3t)-( -2-2t) =5t+3;(4)列方程:常见等量关系:一是行程中的相遇追及问题,二是线段间的和差倍分关系; (5)易错点:注意动点问题的分类讨论.类型一:线段动点与线段求值问题1.(2022·山东青岛·期末)如图 动点B 在线段AD 上 沿A D A →→以2cm/s 的速度往返运动1次 C 是线段BD 的中点 10cm AD = 设点B 的运动时间为t 秒()010t ≤≤.(1)当2t =时 ①AB =________cm ; ①求线段CD 的长度.(2)用含t 的代数式表示运动过程中线段AB 的长度. 【答案】(1)①4;①3cm (2)2cm t 或()202cm t -(2)别从点P B同时出发沿射线BA向左运动到达点A处即停止运动.(1)若点C D的速度分别是1cm/s 2cm/s.①当动点C D运动了2s 且点D仍在线段PB上时AC+PD=_________cm;①若点C到达AP中点时点D也刚好到达BP的中点则AP①PB=_________;(2)若动点C D的速度分别是1cm/s 3cm/s 点C D在运动时总有PD=3AC求AP的长度.y满足()2→→→运动540x y-+-=一动点P从A出发以每秒1米的速度沿着A D C B→→→运动P Q同时出发运动时另一动点Q从B出发以每秒2米的速度沿B C D A间为t.(1)x=______________ y=______________.(2)当 4.5t =时 求APQ 的面积;(3)当P Q 都在DC 上 且PQ 距离为1时 求t 的值C 在线段AM 上 点D 在线段BM 上 C 、D 两点分别从M 、B 出发以cm /s cm /s 、a b 的速度沿直线BA 运动 运动方向如箭头所示 其中a 、b 满足条件:|1||3|0a b -+-=.(1)直接写出:=a ____________ b =_____________;(2)若2cm 4cm <<AM 当点C 、D 运动了3s 求AC MD +的值;(3)如图2 若13AM AB=点N是直线AB上一点且AN BN MN-=求MN与AB的数量关系.①AN BN MN-=①AN BN MN-=类型二:线段动点与判断说理问题5.(2022·陕西咸阳·七年级期末)线段AB=16 C D是线段AB上的两个动点(点C在点D的左侧)且CD=2 E为BC的中点.(1)如图1 当AC=4时求DE的长.(2)如图2 F为AD的中点.点C D在线段AB上移动的过程中线段EF的长度是否会发生变化若会请说明理由;若不会请求出EF的长.,点M、N分别从A、B两点同时出发向点C运动.当其中一动点到达C ==AB BC2080点时M、N同时停止运动.已知点M的速度为每秒2个单位长度点N速度为每秒1个单位长度设运动时间为t秒.(1)用含t的代数式表示线段AM的长度为________;(2)当t为何值时M、N两点重合?(3)若点Р为AM中点点Q为BN中点.问:是否存在时间t使PQ长度为5?若存在请说明理由.故存在时间t 使PQ 长度为5 此时t 的值为30或50.每秒2个单位长度的速度沿射线AB 运动 M 为AP 的中点 设P 的运动时间为x 秒.(1)P 在线段AB 上运动 当2PB AM =时 求x 的值. (2)当P 在线段AB 上运动时 求()2BM BP -的值.(3)如图2 当P 在AB 延长线上运动时 N 为BP 的中点 MN 的长度是否发生变化?如不变 求出MN 的长度.如变化 请说明理由.的速度从点A沿线段AC向点C运动;同时点Q以1cm/s从点C出发在线段CB上做来回往返运动(即沿C→B→C→B→…运动)当点P运动到点C时点P、Q都停止运动设点P运动的时间为t秒.(1)当t=1时PQ=cm;(2)当t为何值时点C为线段PQ的中点?(3)若点M是线段CQ的中点在整个运动过程中是否存在某个时间段使PM的长度保持不变?如果存在求出PM的长度;如果不存在请说明理由.类型三:线段动点与存在性问题9.(2021·山东师范大学第二附属中学七年级期末)已知有理数a b c在数轴上对应的点从左到右顺次为A B C 其中b是最小的正整数a在最大的负整数左侧1个单位长度BC=2AB.(1)填空:a=b=c=(2)点D从点A开始点E从点B开始点F从点C开始分别以每秒1个单位长度、1个单位长度、4个单位长度的速度在数轴上同时向左运动点F追上点D时停止动设运动时间为t秒.试问:①当三点开始运动以后t为何值时这三个点中恰好有一点为另外两点的中点?①F在追上E点前是否存在常数k 使得DF k EF+⋅的值与它们的运动时间无关为定值.若存在请求出k和这个定值;若不存在请说明理由.如图当EF=DF 即F为DE中点时5【点睛】本题考查了数有理数的性质数轴上点与数的对应关系及两点的距离点的平移及(1)延长线段AB到点C使BC=3AB(尺规作图不写作法保留作图痕迹);(2)在(1)的条件下如果点D为线段BC的中点且AB=2 求线段AD的长度;(3)在以上的条件下若点P从A点出发以每秒1个单位长度的速度向点C移动到点C时停止.设点P的运动时间为t秒是否存在某时刻t使得PB=P A﹣PC?若存在求出时间t:若不存在请说明理由.【答案】(1)详见解析;(2)5;(3)时间t为2.【分析】(1)延长线段AB到点C使BC=3AB即可;(2)在(1)的条件下如果点D为线段BC的中点且AB=2 即可求线段AD的长度;(3)在以上的条件下若点P从A点出发以每秒1个单位长度的速度向点C移动到点C时停止.设点P的运动时间为t秒是否存在某时刻t使得PB=P A﹣PC?即可求出时间t.(2)①AB=2OA:OB=2:1点P从点B以每秒4个单位的速度向右运动.(1)A、B对应的数分别为、;(2)当点P运动时分别取BP的中点E AO的中点F请画图并求出AP OBEF+的值;(3)若当点P开始运动时点A、B分别以每秒2个单位和每秒5个单位的速度同时向右运动是否存在常数m使得3AP+2OP﹣mBP为定值?若存在请求出m的值以及这个定值;若不存在请说明理由.①点E、F分别为BP、AO的中点2个单位的速度沿射线AB运动运动时间为t秒(t>0) 点M为AP的中点.(1)当点P在线段AB上运动时.当t为多少时AM=6.(2)当点P在AB延长线上运动时点N为BP的中点求出线段MN的长度.(3)在P点的运动过程中点N为BP的中点是否存在这样的t的值使M、N、B三点中的一个点是以其余两点为端点的线段的中点若有请求出t的值;若没有请说明理由.【答案】(1)t=6;(2)12;(3)当t=18时M是线段AP的中点;当t=36时M为BN的中点理由见解析.①N为BP的中点时由题意得:①t-24=12,①t=36.①当t=18时M是线段AP的中点;当t=36时M为BN的中点.【点睛】本题是动点问题解题时首先要画出图形用t表示出相应线段的长再根据已知条件列出方程.解题时要按照点的不同位置进行分类讨论避免漏解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
培优专题:借助方程求解数轴上的动点问题(压轴题常考题型)数轴上的动点问题离不开数轴上两点之间的距离。
为了便于初一年级学生对这类问题的分析,不妨先明确以下几个问题:1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值,也即用右边的数减去左边的数的差。
即数轴上两点间的距离=右边点表示的数—左边点表示的数。
2.点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向作运动的速度看作负速度。
这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标。
即一个点表示的数为a,向左运动b个单位后表示的数为a—b;向右运动b个单位后所表示的数为a+b。
3.数轴是数形结合的产物,分析数轴上点的运动要结合图形进行分析,点在数轴上运动形成的路径可看作数轴上线段的和差关系。
一、相关知识准备1.数轴上表示4和1的两点之间的距离是_____________。
-,则A与B两点之间的距离用式子2.若数轴上点A表示的数为x,点B表示的数为1可以表示为_____________,若在数轴上点A在点B的右边,则式子可以化简为_____________。
3.A点在数轴上以2个单位长度/秒的速度向右运动,若运动时间为t,则A点运动的路程可以用式子表示为______________。
-,A点在数轴上以2个单位长度/秒的速度向右运动,4.若数轴上点A表示的数为1若运动时间为t,则A点运动t秒后到达的位置所表示的数可以用式子表示为______________。
答案:1、3; 2、1x+,x+1; 3、2t; 4、12t-+二、已做题再解:1、半期考卷的第25题:如图所示,在数轴上原点O表示数0,A点在原点的左侧,所表示的数是a,B点在原点的右侧,所表示的数是b,并且a、b满足-2++8=a16(b)0(1)点A表示的数为_________,点B表示的数为________。
(2)若点P从点A出发沿数轴向右运动,速度为每秒3个单位长度,点Q从点B出发沿数轴向左运动,速度为每秒1个单位长度,P、Q两点同时运动,并且在点C处相遇,试求点C所表示的数。
(3)在(2)的条件下,若点P 运动到达B 点后按原路原速立即返回,点Q 继续按原速原方向运动,从P 、Q 在点C 处相遇开始,再经过多少秒,P 、Q 两点的距离为4个单位长度?解:(1)点A 表示的数为 __16-__,点B 表示的数为___8____(2) 设P 、Q 同时运动t 秒在点C 处相遇3t+t=24 解得t=6此时点C 所表示的数是16+36=2-⨯答:点C 所表示的数是2.(2)再经过a 秒,P 、Q 两点的距离为4个单位长度分类讨论:① 从点C 处相遇后反向而行,点P 到达B 点前相距4个单位长度3a+a=4 解得a=1② 点P 到达B 点后返回,此时相当于点Q 在P 点前4个单位长度()a 63a 64+--= 解得a=4③ 点P 到达B 点后返回,从后追上Q 点后又相距4个单位长度,此时相当于点P 在点Q 前4个单位长度()3a 6a 64--+= 解得a=8答:再经过1秒或4秒或8秒,P 、Q 两点的距离为4个单位长度。
备用图备用图2、七年级上学期期中模拟(1)的第10题:数轴上有A、B 两点表示—10,30,有两只蚂蚁P、Q同时分别从A、B 两点相向出发,速度分别是2单位单位长度/秒、3个单位长度/秒,当它们相距10个单位长度时,则蚂蚁P在数轴上表示的数是()解:经过t秒,P、Q相距10个单位长度,则P点运动路程为2t,运动后P点表示数为—10+2t,Q点运动路程为3t分类讨论:①还未相遇前相距10个单位长度2t+3t=40-10 解得t=6此时P点表示数为—10+2×6=2②相遇后又相距10个单位长度2t+3t=40+10 解得t=10此时P点表示数为—10+2×10=10综上所述,蚂蚁P在数轴上表示的数是2或10挑战题:1.已知数轴上有A、B、C三点,分别代表—24,—10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒。
⑴问多少秒后,甲到A、B、C的距离和为40个单位?⑵若乙的速度为6个单位/秒,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,问甲、乙在数轴上的哪个点相遇?⑶在⑴⑵的条件下,当甲到A、B、C的距离和为40个单位时,甲调头返回。
问甲、乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由。
分析:如图1,易求得AB=14,BC=20,AC=34⑴设x秒后,甲到A、B、C的距离和为40个单位。
此时甲表示的数为—24+4x。
①甲在AB之间时,甲到A、B的距离和为AB=14甲到C的距离为10—(—24+4x)=34—4x依题意,14+(34—4x)=40,解得x=2②甲在BC之间时,甲到B、C的距离和为BC=20,甲到A的距离为4x依题意,20+4x)=40,解得x=5即2秒或5秒,甲到A、B、C的距离和为40个单位。
⑵是一个相向而行的相遇问题。
设运动t秒相遇。
依题意有,4t+6t=34,解得t=3.4相遇点表示的数为—24+4×3.4=—10.4 (或:10—6×3.4=—10.4)⑶甲到A、B、C的距离和为40个单位时,甲调头返回。
而甲到A、B、C的距离和为40个单位时,即的位置有两种情况,需分类讨论。
①甲从A向右运动2秒时返回。
设y秒后与乙相遇。
此时甲、乙表示在数轴上为同一点,所表示的数相同。
甲表示的数为:—24+4×2—4y;乙表示的数为:10—6×2—6y依题意有,—24+4×2—4y=10—6×2—6y,解得y=7相遇点表示的数为:—24+4×2—4y=—44 (或:10—6×2—6y=—44)②甲从A向右运动5秒时返回。
设y秒后与乙相遇。
甲表示的数为:—24+4×5—4y;乙表示的数为:10—6×5—6y依题意有,—24+4×5—4y=10—6×5—6y,解得y=—8(不合题意,舍去)即甲从A点向右运动2秒后调头返回,能在数轴上与乙相遇,相遇点表示的数为—44。
点评:分析数轴上点的运动,要结合数轴上的线段关系进行分析。
点运动后所表示的数,以起点所表示的数为基准,向右运动加上运动的距离,即终点所表示的数;向左运动减去运动的距离,即终点所表示的数。
2.如图,已知A、B分别为数轴上两点,A点对应的数为—20,B点对应的数为100。
⑴求AB中点M对应的数;⑵现有一只电子蚂蚁P从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,求C点对应的数;⑶若当电子蚂蚁P从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D点相遇,求D点对应的数。
分析:⑴设AB中点M对应的数为x,由BM=MA所以x—(—20)=100—x,解得 x=40 即AB中点M对应的数为40⑵易知数轴上两点AB距离,AB=140,设PQ相向而行t秒在C点相遇,依题意有,4t+6t=120,解得t=12(或由P、Q运动到C所表示的数相同,得—20+4t=100—6t,t=12)相遇C点表示的数为:—20+4t=28(或100—6t=28)⑶设运动y秒,P、Q在D点相遇,则此时P表示的数为100—6y,Q表示的数为—20—4y。
P、Q为同向而行的追及问题。
依题意有,6y—4y=120,解得y=60(或由P、Q运动到C所表示的数相同,得—20—4y=100—6y,y=60)D点表示的数为:—20—4y=—260 (或100—6y=—260)点评:熟悉数轴上两点间距离以及数轴上动点坐标的表示方法是解决本题的关键。
⑵是一个相向而行的相遇问题;⑶是一个同向而行的追及问题。
在⑵、⑶中求出相遇或追及的时间是基础。
3.已知数轴上两点A、B对应的数分别为—1,3,点P为数轴上一动点,其对应的数为x。
⑴若点P到点A、点B的距离相等,求点P对应的数;⑵数轴上是否存在点P,使点P到点A、点B的距离之和为5?若存在,请求出x的值。
若不存在,请说明理由?⑶当点P以每分钟一个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度向左运动,点B一每分钟20个单位长度向左运动,问它们同时出发,几分钟后P点到点A、点B的距离相等?分析:⑴如图,若点P到点A、点B的距离相等,P为AB的中点,BP=PA。
依题意,3—x=x—(—1),解得x=1⑵由AB=4,若存在点P到点A、点B的距离之和为5,P不可能在线段AB上,只能在A点左侧,或B点右侧。
①P在点A左侧,PA=—1—x,PB=3—x依题意,(—1—x)+(3—x)=5,解得x=—1.5②P在点B右侧,PA=x—(—1)=x+1,PB=x—3依题意,(x+1)+(x—3)=5,解得x=3.5⑶点P、点A、点B同时向左运动,点B的运动速度最快,点P的运动速度最慢。
故P 点总位于A点右侧,B可能追上并超过A。
P到A、B的距离相等,应分两种情况讨论。
设运动t分钟,此时P对应的数为—t,B对应的数为3—20t,A对应的数为—1—5t。
①B未追上A时,PA=PA,则P为AB中点。
B在P的右侧,A在P的左侧。
PA=—t—(—1—5t)=1+4t,PB=3—20t—(—t)=3—19t依题意有,1+4t=3—19t,解得 t=②B追上A时,A、B重合,此时PA=PB。
A、B表示同一个数。
依题意有,—1—5t=3—20t,解得t=即运动或分钟时,P到A、B的距离相等。