湖泊富营养化
长江流域重点湖泊的富营养化及防治

长江流域重点湖泊的富营养化及防治长江流域重点湖泊的富营养化及防治一、引言长江是中国最长的河流,流域广阔,贡献了丰富的自然资源和人文景观。
长江流域中蕴含有大量的湖泊,拥有丰富的水资源,对于当地人民的生活和经济发展起着至关重要的作用。
然而,随着人口的增加和经济的发展,长江流域的湖泊面临着严重的富营养化问题,给湖泊生态环境带来了巨大的威胁。
二、富营养化的原因1. 农业活动排放的农业废水长江流域的农业非常发达,大量的农药、化肥等农业废水排放到湖泊中。
这些废水中的营养物质直接导致湖泊水体中富营养化现象的发生。
2. 工业废水的排放随着工业的不断发展,长江流域的一些工业企业在生产过程中排放了大量的废水。
这些废水中含有大量的有机物和化学物质,对湖泊水质产生了严重的污染,加剧了湖泊富营养化的速度。
3. 生活污水的排放人口的增加和城市化进程的加快,使得长江流域的城市生活污水排放量急剧增加。
这些污水中含有大量的废水和有机物,直接排入湖泊,加重了湖泊的富营养化程度。
三、富营养化的影响1. 水质下降湖泊富营养化会导致湖泊水质下降,水中的营养物质过多,容易引发水华现象。
水华会消耗大量的溶解氧,导致水质恶化,严重影响水生生物的生长和繁殖。
2. 水生生物减少富营养化会导致湖泊中大量的藻类大量繁殖,形成藻华。
藻华所释放的毒素对水生生物产生严重危害,导致湖泊中的鱼类和其他生物数量大幅减少。
3. 湖泊生态系统崩溃湖泊富营养化会导致湖泊生态系统失衡,水生植被大量衰退,湖泊中的生物多样性急剧降低。
长江流域的一些湖泊甚至出现了环境退化和生态系统崩溃的情况。
四、富营养化防治措施1. 加强农业面源污染控制政府应加强对农业面源污染的监管,制定严格的法律法规,加强对农民的培训和宣传,提倡绿色农业,减少化肥和农药的使用。
2. 加强工业废水治理政府应加大对工业企业废水排放的监管力度,对违法排放行为进行严厉处罚。
鼓励企业进行环境友好型改造,减少废水的排放。
人工湖水体富营养化的原因与控制措施

人工湖水体富营养化的原因与控制措施近年来,随着城市化进程的加速和人们对自然环境的需求增加,人工湖泊作为城市生态系统的重要组成部分,扮演着重要的角色。
然而,一些人工湖泊普遍出现水体富营养化的问题,这不仅会对湖泊的生态系统造成破坏,也会威胁周边居民的健康。
本文将从原因和控制措施两个方面进行详细探讨。
一、人工湖水体富营养化的原因:1.过度施肥:城市周边农田对作物的施肥需要使用大量化肥和有机肥料,这些肥料中的氮和磷元素容易通过径流进入人工湖泊,从而导致湖泊水体富营养化。
2.城市污水排放:城市污水中富含含氮、磷等营养物质,如果经过处理无效或者直接排放入湖泊,会极大地促进湖泊水质富营养化的发生。
3.农田灌溉水排放:农田灌溉水中残留的化肥和农药,通过排放进入人工湖泊,会导致湖水营养含量过高。
4.乱倒垃圾:许多人把垃圾随意倾倒在湖岸边,这些垃圾中含有大量有机可分解物质,这些物质在湖泊中会分解产生养分,继而导致人工湖水体富营养化。
二、人工湖水体富营养化的控制措施:1.加强农田管理:加强对农田施肥的管理,合理控制化肥和有机肥的使用量,避免过度施肥现象的发生,减少营养物质进入湖泊的量。
2.改善城市污水处理:对城市污水进行有效处理,确保处理后的污水达到排放标准,防止含氮、磷等营养物质直接流入湖泊。
3.加强农田灌溉管理:对农田灌溉水的排放进行检测和管理,避免枯水期排放、化肥残留等现象,降低对人工湖富营养化的负面影响。
4.加强环境教育宣传:通过开展环境教育和宣传活动,提高公众对保护湖泊水质的认识,引导公众养成爱护环境、不乱倒垃圾的良好习惯。
5.增加湖泊水体流动性:通过增加湖泊的流动性,如增设水泵、喷泉等,能够有效减少富营养水位的发生,带走湖泊中的养分。
6.监测与应急处理:建立湖泊水质监测系统,定期监测并及时发现湖泊水体富营养化问题,采取应急处理措施,如氧化剂喷洒等,防止富营养环境加剧。
综上所述,人工湖水体富营养化的原因主要与过度施肥、城市污水排放、农田灌溉水排放和乱倒垃圾等因素有关。
湖泊富营养化分析

湖泊富营养化分析湖泊富营养化导致的藻类暴发一直是我国最为突出的水环境问题之一. 藻类过度生长是多种因素共同作用的结果,既包括水温、光照、风速等自然因素,也包括氮(N)、磷(P)、铁(Fe)等营养物过量排放的人类活动因素. 在诸多因素中,全球气候变暖背景下的水温变化与高强度人类活动所引起的N、 P排放增加被认为是导致湖泊富营养化最关键因素,因此,同时考虑水温、 N、 P因子变化的湖泊富营养化相关研究在逐渐增多,但温度与营养物对湖泊藻类生物量的交互作用等还需要深入研究[7],比如水温、 N、 P促进藻类生物量增长的相对重要度的长期变化规律和季节性特征.富营养化湖泊的藻类生长是自然界中一个非期望或非平均的现象,藻类生物量数据异质性很强,水华期间的藻类数据会呈“高峰厚尾”的分布,或存在显著的异方差等情况. 近年来在环境科学和生态学领域受到重视的分位数回归(quantile regression)方法特别适合处理这种波动性大、异质性很强的环境数据. 该方法可针对回归变量任何一个分位点进行回归分析,且在存在极端值或重尾情况时仍能保持较好的稳健性,适宜处理应变量对自变量的极端响应,而不只是平均水平的响应,因此能更加全面地反映藻类生物量对水温、 N、 P 等环境指标的响应特征. 本研究基于云南洱海长时间尺度(1990-2013年)的水质观测数据,运用分位数回归方法,按不同年份区间和不同季节分别分析洱海藻类生物量[以叶绿素a(Chl-a)表征]对N、 P、水温的定量响应关系,探讨营养物因子与水温因子相对重要性的长时间尺度演变规律和季节性变化规律,对制定洱海富营养化控制策略提供科学依据.1 材料与方法1.1 研究区域洱海是云南省第二大高原淡水湖泊,为滇西最大的断陷湖,跨洱源、大理两县市,处于东经100°06′-100°17′,北纬25°36′-25°55′之间. 水面面积249.80 km2,汇水面积2 565.0 km2,最大水深21.0 m,平均水深10.5 m,库容28.8亿m3(图 1). 洱海是沿湖人民生活、灌溉、工业用水的主要水源地,是整个流域社会经济可持续发展的基础[14]. 洱海湖面多年平均海拔1 965.8 m,光照充足,辐射强,气温温和,为浮游藻类的大量繁殖提供了有利条件. 区年均气温15℃左右,年均降雨量1 055 mm,年均蒸发量1 970 mm. 流域水系发达,入湖河流大小共 117条.图 1 洱海流域及水质监测点分布示意1.2 数据来源从云南省环境监测中心站、中国大理洱海湖泊研究中心等环境监测和研究部门收集了洱海1990-2013年的水环境常规监测数据,全湖水质监测点为13个(图 1),经纬度依次为:25°51′36″N 100°10′12″E,25°51′18″N 100°11′24″ E,25°51′00″N 100°12′36″E,25°41′42″N 100°12′54″E,25°42′00″N 100°13′48″E,25°42′18″N 100°15′00″E,25°37′48″N 100°13′48″E,25°36′0″N 100°15′0″E,25°37′60″N 100°15′50″E,25°55′30″N 100° 6′54″E,25°54′54″N 100°8′42″E,25°54′36″N 100°10′48″E,25°47′29″N 100°11′43″E. 水质指标主要包括总氮(TN)、总磷(TP)、水温、藻类叶绿素a(Chl-a),采样频次为一年6次或12次. 各水质指标的主要测试方法如下:TN为过硫酸钾氧化紫外分光光度法,TP为钼锑抗分光光度法,水温为温度计现场实时测定,Chl-a为四波段分光光度法[15]. 数据主要统计特征见表 1,TP的变异系数最大(239.7%),其次是Chl-a和TN,这可能与各指标的年份间差异和季节性差异有关. 各指标数据的Kolmogorov-Smirnov正态分布检验,除了水温数据呈正态分布以外,所有指标的数据都呈非正态分布.表 1 洱海水温、总氮、总磷及藻类叶绿素a的统计值(n=1 419)1.3 分位数回归方法分位数回归模型(quantile regression)是依据因变量的条件分位数对自变量进行回归,得到所有分位水平的回归模型.假设随机变量的分布函数为F(y)=Prob(Y≤y),Y 的τ分位数为满足F(y) ≥τ的最小y 值:F(y)的τ分位点Q(τ)由最小化关于ξ的目标函数得到:其中ρτ(u)称为检验函数:假设因变量Y和自变量X 在τ分位的线性函数关系为Y=X′β+ε,给定X=x时,Y的条件分布函数为FY (y | x),则τ分位数为:线性条件分位数通常表示为:分位数回归能在不同的分位数τ得到不同的分位函数,残差计算方法不同于最小二乘法,具体如下:1.4 数据处理与分析考虑长时间尺度变化,将1990-2013年的监测数据按照相同年限(6 a)分成4组:1990-1995年、 1996-2001年、 2002-2007年、 2008-2013年,分别对这4组进行三元分位数回归分析. 为分析季节变化,将所有监测数据按春、夏、秋、冬四季分成4组,按不同季节分别进行三元分位数回归分析,比较各因子的斜率值变化,并计算95%置信区间(CI),CI覆盖0(包含0),表示相关性“不显著”,而CI未覆盖0(不包含0),说明相关性“显著”. 为便于比较3个因子的斜率值变化,在进行多元分位数回归之前,所有原始数据取对数(lg) 处理.使用统计软件STATA V.12.0进行分位数回归分析和参数估计.2 结果与讨论2.1 水质指标的年际变化与季节变化2.1.1 年际变化从TN变化趋势图看,2001年之前,TN浓度呈缓慢上升趋势,但总体处于较好的Ⅱ类水质. 在2001-2003年期间有一次跳跃式增长,从Ⅱ类区跨入Ⅲ类区,近10年(2003-2013年)TN浓度维持在Ⅲ类水平,达到2001年之前浓度水平的近2倍[图 2(a)]. TP浓度年均值的变化趋势表现为有升有降,基本在Ⅱ类水平线上下浮动,浓度高峰出现在2002-2004年区间和2013年. 近10余年(2002-2013年)的TP浓度水平比前10年(1990-2001年)的浓度水平总体高出15%左右[图 2(b)]. 洱海的年平均水温在16-19℃之间周期性波动,未见明显的上升或下降趋势[图 2(c)].图 2 洱海TN、 TP、水温和藻类Chl-a的逐年变化(1990-2013年)从藻类Chl-a变化趋势看,2000年之前洱海全湖Chl-a维持在低浓度水平,变化范围为1.0-3.5 mg·m-3. 2000-2002的3年期间,Chl-a浓度呈直线上升,藻类生物量从低水平跨越至较高水平. 2003年之后的Chl-a平均浓度达到2000年之前的10余倍[图 2(d)]. Pearson相关性分析显示藻类Chl-a与TN以及水温均呈显著正相关性(P<0.01),而与TP的相关性不显著(P>0.05).2.1.2 季节变化4项水质指标具有明显的季节性特征,均表现为夏、秋两季较高,且两季数据接近,而春、冬季数值较低. 8-10月TN浓度最高,5月是一年中TN上升的起点,11月是TN开始下降的拐点[图 3(a)]. 一年中TP浓度在4-7月是洱海上升速率最快的时段[图 3(b)]. 水温在夏季和秋季最高,分别为23.3℃和20.2℃,很适宜藻类生长[图 3(c)]. 藻类Chl-a 浓度在6-7月出现跳跃式上升,平均值由10 mg·m-3跃升至20 mg·m-3,在7-11月维持在最高水平[图 3(d)].图 3 洱海TN、 TP、水温和藻类Chl-a的季节变化2.2 藻类对氮、磷及水温的长时间尺度响应特征通过三元分位数回归方法分析洱海N、 P和水温对藻类Chl-a的耦合效应随时间变化特征. 4个年份区间的lg(TN)、 lg(TP)和lg(水温)的斜率值随分位点的变化谱图见图 4,斜率值及其95%置信区间的统计特征见表 2.表 2 不同年份区间的多元分位数回归的斜率参数统计图 4 4个年份区间的三元分位数回归中lg(TN)、 lg(TP)和lg(Temp)的斜率变化4个时间段lg(TN)、 lg(TP)和lg(水温)的平均斜率值变化范围分别为0.03-0.20、-0.30-0.80、 0.44-2.70,3个因子对藻类的促进效应依次为水温>磷>氮. 各因子的斜率值随时间变化很大,水温的斜率值逐渐下降,从1990-1995年期间的2.05-4.78快速下降至2008-2013期间的0.15-0.75,说明水温对藻类生长的正效应在持续相对下降. 水温斜率的95%置信区间(CI)在2007年之前的时间段全未覆盖0,而在2008-2013年期间只有部分区间(0.45<τ<0.71)未覆盖0,说明水温与藻类Chl-a之间相关性总体表现为极显著,但在2008年之后显著度出现下降. 相反,TP的斜率值逐渐上升,从1990-1995年期间的负值(-0.42--0.05)快速攀升至2008-2013年期间的0.52-1.07,说明P对藻类生长的正效应逐渐在相对增强. 除了1996-2001年时间段,TP斜率的95%CI在绝大部分位点均是未覆盖0,说明TP与藻类Chl-a之间相关性总体呈极显著. 在过去20余年中TN的斜率值比较低,但在绝大部分分位条件下表现为正效应,在1996-2001年和2002-2007年两个时段的数值略高,而在2008-2013年的正效应达到最低. TN斜率的95%CI只在1996-2007年期间的部分分位点未覆盖0,说明TN与藻类Chl-a之间相关显著度较低.总体上看,水温和营养物共同支撑着洱海藻类生物量,这与国内外其他富营养化湖泊的研究结果类似. 营养物和水温对藻类生物量变化的耦合效应比较复杂,据1980-2014年的洱海陆域大理站气象资料,当地日平均气温、日最高气温以及日最低气温均存在缓慢上升的趋势,近30余年日最低气温上升幅度为0.05℃·a-1,有气候变暖趋势. 而分位数回归结果显示水温是洱海藻类增长的重要限制因素,但其相对重要度随着时间推移(富营养化程度加重)明显下降,而P的相对重要度明显持续上升,P比N对藻类的限制作用更强. 与水温相比,营养盐浓度可能是影响洱海藻类生物量的更重要因素. 这与Jeppesen等提出的亚热带到温带区域的35个湖泊中浮游藻类生物量与结构主要是由营养物决定,而气候变暖的作用较小的结论基本一致.分位数回归分析结果显示洱海藻类属于N、 P共同限制,这与N/P比值有关. 一般当N/P质量比在10∶1-25∶1的范围时,藻类生长出现氮磷共同限制的概率大. 洱海N/P质量比值一般在10-30之间波动,平均值为23,中位数21(表 1),符合藻类出现N、 P共同限制的条件. 藻类Chl-a对营养物和水温的响应关系可能与藻类群落结构演替有很大关系. 洱海的富营养化演进过程是藻类群落结构逐渐从硅藻门占优势向蓝藻门占优势的演变过程. 不同藻类对N、 P和水温的响应程度差别会很大,硅藻的最主要限制因子可能是水温等气象条件,其次是营养盐,而蓝藻一般受N/P质量比值的影响显著,还有水温、光照、气压等条件[29]. 洱海N/P质量比值现状适合微囊藻、鱼腥藻等蓝藻门在藻类竞争中占优势.2.3 藻类对氮、磷及水温响应的季节性特征不同季节中lg(TN)、 lg(TP)和lg(水温)的斜率值随分位点的变化谱图见图 5. 春季,TN和水温的斜率值均始终保持为正值,两者的95% CI在绝大部分分位条件下均未覆盖0(极显著). TP斜率在大多数条件下(τ<0.85)为负值. 在较高分位时(τ>0.7,Chl-a>5.4 mg·m-3),水温和TN的斜率值同时下降,而TP斜率值明显相应上升,当τ>0.85处(Chl-a>8.0 mg·m-3)TP的斜率值转为正. 这说明N和水温是支撑春季藻类生物量的重要因素,但出现高生物量的决定性因子是P.图 5 分季节的三元分位数回归中lg(TN)、 lg(TP)和lg(Temp)的斜率值变化夏季,水温的斜率值在所有分位点全部为负值,数值范围为-2.27-0.03,而TN和TP 斜率平均值分别为0.51和0.26,在较高分位时两者的95% CI均未覆盖0(极显著). 当τ<0.40(Chl-a<3mg·m-3),TN斜率持续上升,而TP斜率相应下降. 而当τ>0.40,TN斜率持续缓慢下降,而TP斜率持续快速上升,说明夏季藻类是N、 P共同限制,但随着藻类生物量增长,TP对藻类的正效应逐渐强于TN.秋季,TN和水温的斜率全部为正值,平均值分别为0.66和4.59,两者的95% CI在所有分位点都未覆盖0(极显著). TP斜率总体是大于0,平均值0.16,而95%CI在绝大部分分位条件下是覆盖0(不显著). 秋季藻类增长的限制因子重要度排序为:水温>TN>TP.冬季,TN斜率始终为负值,TP斜率虽然在绝大部分条件下为正值,但其95%CI全覆盖0(不显著). 温度的斜率始终保持正值,其95% CI在绝大部分条件下(0.22<τ<1.52)未覆盖0(极显著),说明水温是冬季藻类增长的主导限制因子.TN、 TP、水温、 Chl-a的数值季节性变化表现出高度一致,均是在夏、秋两季达到最高(图 3),这反映了营养物与水温共同促进洱海藻类生物量变化. 但分位数回归结果显示藻类对各因子的响应关系在夏季和秋季完全不同,夏季日平均气温最高,普遍达到藻类生长所需要的最佳温度,因此水温不属于夏季藻类生长的限制因子. 夏季降雨量大,暴雨径流携带更多营养物进入湖体,促进藻类暴发,N、 P成为藻类共同限制因子. 夏季持续高温还会加速下层水中有机物质的耗氧分解,造成溶解氧浓度急剧下降,容易出现缺氧状态,促进底泥中大量氨氮和磷酸盐加快溶出,致使水中TN、 TP含量升高,支撑全湖藻类出现暴发性增长. 秋季,经过夏季藻类暴发已消耗了大量N、 P,而且秋季气温昼夜温差加大,水温数据的离散度明显大于夏季,藻类生物量对水温变化表现可能更加敏感,使水温成为藻类主要限制因子. 春季和冬季,营养物浓度水平较低,湖水呈相对清洁状态,水温的波动对藻类生物量影响也比较大.洱海藻类群落的季节性特征很明显,在春季以硅藻和蓝藻占优势,冬季以绿藻和蓝藻占优势,而蓝藻在全年绝大部分时间占优势,尤其是在夏秋两季处于绝对优势地位,水华发生时蓝藻数量高达107 cells·L-1. 夏季水温能普遍达到蓝藻生长最理想水温(20℃以上),营养物浓度则成为藻类生物量的决定性因子.具体参见污水宝商城资料或更多相关技术文档。
湖泊富营养化与水环境质量改善

湖泊富营养化与水环境质量改善湖泊富营养化是指湖泊水体中的营养物质过多,导致水体中营养物质的浓度异常高,进而引发水环境质量的下降。
富营养化是目前全球水环境面临的严重问题之一,对生态系统和人类健康都带来了诸多负面影响。
因此,富营养化的治理和水环境质量的改善成为了当今世界各国共同关注的议题。
首先,湖泊富营养化主要是由人类活动导致的。
农业过度使用化肥、城市污水排放、工业废水排放以及大规模养殖等都是导致湖泊富营养化的重要原因。
化肥中的氮、磷等营养物质通过冲刷到湖泊中,成为水体中富营养化的主要源头。
而废水排放中含有大量的有机物和营养物质,也会使湖泊水体富营养化。
因此,要改善湖泊的水环境质量,首先需要减少人类活动对湖泊的负面影响。
其次,湖泊富营养化对生态系统造成了重大危害。
水体中富集的营养物质会导致水中藻类的大量繁殖,形成藻华。
藻华的存在不仅破坏了水体的生态平衡,还对水中的氧气供应产生了极大的影响。
藻类繁殖后,死亡的藻类会沉入湖底,细菌分解藻类尸体会消耗大量的氧气,使水体中的溶解氧大幅度下降。
这样一来,湖泊中的水生动物就无法正常呼吸和生活,久而久之会引发生态系统的崩溃。
同时,藻类还会分泌毒素,对其他生物产生剧毒作用,对人类健康造成威胁。
湖泊富营养化还给人类带来了一系列问题。
湖泊水体中过高的营养物浓度会使水呈现绿色或黄色,不仅影响了湖泊的观赏价值,也降低了湖泊的娱乐功能。
此外,富营养化还会引起水体异味和水质污染,影响人们的生活水源。
长期暴露在富营养化的湖泊环境中,人们还可能受到藻毒素的危害,造成慢性病甚至致命。
面对湖泊富营养化问题,各国都采取了一系列措施来改善水环境质量。
首先,减少营养物源头,控制农业的化肥使用量、加强城市和乡村污水的处理,严格控制工业废水的排放等,都是有效控制湖泊富营养化的重要举措。
其次,加强湖泊周边的生态修复,增加湖泊的自净能力。
种植湿地和水生植物等可以吸收营养物质,并起到过滤、净化水体的作用,从而改善湖泊的水环境质量。
湖泊(水库)富营养化评价方法及分级技术规定

湖泊(水库)富营养化评价方法及分级技术规定(中国环境监测总站,总站生字[2001]090号)1、湖泊(水库)富营养化状况评价方法:综合营养状态指数法综合营养状态指数计算公式为:TLI (∑)=∑Wj·TLI (j )式中:TLI (∑)—综合营养状态指数;Wj —第j 种参数的营养状态指数的相关权重。
TLI (j )—代表第j 种参数的营养状态指数。
以chla 作为基准参数,则第j 种参数的归一化的相关权重计算公式为:∑==mj ijijr r wj 122 式中:r ij —第j 种参数与基准参数chla 的相关系数;m —评价参数的个数。
中国湖泊(水库)的chla 与其它参数之间的相关关系r ij 及r ij 2见下表。
中国湖泊(水库)部分参数与chla 的相关关系r ij 及r ij 2值※ 参数chla TP TN SD COD Mn r ij1 0.84 0.82 -0.83 0.83 r ij 21 0.7056 0.6724 0.6889 0.6889※:引自金相灿等著《中国湖泊环境》,表中r ij 来源于中国26个主要湖泊调查数据的计算结果。
营养状态指数计算公式为:⑴ TLI (chl )=10(2.5+1.086lnchl )⑵ TLI (TP )=10(9.436+1.624lnTP )⑶ TLI (TN )=10(5.453+1.694lnTN )⑷ TLI (SD )=10(5.118-1.94lnSD )⑸TLI(COD Mn)=10(0.109+2.661lnCOD)式中:叶绿素a chl单位为mg/m3,透明度SD单位为m;其它指标单位均为mg/L。
2、湖泊(水库)富营养化状况评价指标:叶绿素a(chla)、总磷(TP)、总氮(TN)、透明度(SD)、高锰酸盐指数(COD Mn)3、湖泊(水库)营养状态分级:采用0~100的一系列连续数字对湖泊(水库)营养状态进行分级:TLI(∑)<30 贫营养(Oligotropher)30≤TLI(∑)≤50 中营养(Mesotropher)TLI(∑)>50 富营养(Eutropher)50<TLI(∑)≤60 轻度富营养(light eutropher)60<TLI(∑)≤70 中度富营养(Middle eutropher)TLI(∑)>70 重度富营养(Hyper eutropher)在同一营养状态下,指数值越高,其营养程度越重。
湖泊(水库)富营养化评价方法及分级技术规定

湖泊(水库)富营养化评价方法及分级技术规定(中国环境监测总站,总站生字[2001]090号)1、湖泊(水库)富营养化状况评价方法:综合营养状态指数法 综合营养状态指数计算公式为:TLI (∑)=∑Wj·TLI (j )式中:TLI (∑)—综合营养状态指数;Wj —第j 种参数的营养状态指数的相关权重。
TLI (j )—代表第j 种参数的营养状态指数。
以chla 作为基准参数,则第j 种参数的归一化的相关权重计算公式为:∑==m j ijijrr wj 122式中:r ij —第j 种参数与基准参数c hla 的相关系数; m —评价参数的个数。
中国湖泊(水库)的chla 与其它参数之间的相关关系rij 及rij2见下表。
中国湖泊(水库)部分参数与c hla 的相关关系r i j 及ri j2值※※:引自金相灿等著《中国湖泊环境》,表中rij 来源于中国26个主要湖泊调查数据的计算结果。
营养状态指数计算公式为:⑴ TLI (chl )=10(2.5+1.086ln c hl ) ⑵ TLI (TP )=10(9.436+1.624ln T P ) ⑶ TLI (TN )=10(5.453+1.694ln T N ) ⑷ TLI (SD )=10(5.118-1.94lnS D ) ⑸ TLI (CODMn )=10(0.109+2.661ln C OD )式中:叶绿素a chl单位为mg/m3,透明度SD单位为m;其它指标单位均为mg/L。
2、湖泊(水库)富营养化状况评价指标:叶绿素a(chla)、总磷(TP)、总氮(TN)、透明度(SD)、高锰酸盐指数(CODMn)3、湖泊(水库)营养状态分级:采用0~100的一系列连续数字对湖泊(水库)营养状态进行分级:TLI(∑)<30 贫营养(Oligot rophe r)30≤TLI(∑)≤50 中营养(Mesotr opher)TLI(∑)>50 富营养(Eutrop her)50<TLI(∑)≤60 轻度富营养(lighteutrop her)60<TLI(∑)≤70 中度富营养(Middle eutrop her)TLI(∑)>70 重度富营养(Hypereutrop her)在同一营养状态下,指数值越高,其营养程度越重。
湖泊(水库)富营养化评价方法及分级技术规定
湖泊(水库)富营养化评价方法及分级技术规定(中国环境监测总站,总站生字[2001]090号)1、湖泊(水库)富营养化状况评价方法:综合营养状态指数法 综合营养状态指数计算公式为:TLI (∑)=∑Wj·TLI(j )式中:TLI (∑)—综合营养状态指数;Wj —第j 种参数的营养状态指数的相关权重。
TLI (j )—代表第j 种参数的营养状态指数。
以chla 作为基准参数,则第j 种参数的归一化的相关权重计算公式为:∑==m j ijijr r wj 122式中:r ij —第j 种参数与基准参数chla 的相关系数; m —评价参数的个数。
中国湖泊(水库)的chla 与其它参数之间的相关关系r ij 及r ij 2见下表。
中国湖泊(水库)部分参数与chla 的相关关系r ij 及r ij 2值※※:引自金相灿等著《中国湖泊环境》,表中r ij 来源于中国26个主要湖泊调查数据的计算结果。
营养状态指数计算公式为:⑴ TLI (chl )=10(2.5+1.086lnchl ) ⑵ TLI (TP )=10(9.436+1.624lnTP ) ⑶ TLI (TN )=10(5.453+1.694lnTN ) ⑷ TLI (SD )=10(5.118-1.94lnSD )⑸ TLI(COD Mn)=10(0.109+2.661lnCOD)式中:叶绿素a chl单位为mg/m3,透明度SD单位为m;其它指标单位均为mg/L。
2、湖泊(水库)富营养化状况评价指标:叶绿素a(chla)、总磷(TP)、总氮(TN)、透明度(SD)、高锰酸盐指数(COD Mn)3、湖泊(水库)营养状态分级:采用0~100的一系列连续数字对湖泊(水库)营养状态进行分级:TLI(∑)<30 贫营养(Oligotropher)30≤TLI(∑)≤50 中营养(Mesotropher)TLI(∑)>50 富营养 (Eutropher)50<TLI(∑)≤60 轻度富营养(light eutropher)60<TLI(∑)≤70 中度富营养(Middle eutropher)TLI(∑)>70 重度富营养(Hyper eutropher)在同一营养状态下,指数值越高,其营养程度越重。
湖泊(水库)富营养化评价方法及分级技术规定及计算示例
湖泊(水库)富营养化评价方法及分级技术规定及计算示例(中国环境监测总站,总站生字[2001]090号)1、湖泊(水库)富营养化状况评价方法:综合营养状态指数法 综合营养状态指数计算公式为:TLI (∑)=∑Wj·TLI (j )式中:TLI (∑)—综合营养状态指数;Wj —第j 种参数的营养状态指数的相关权重。
TLI (j )—代表第j 种参数的营养状态指数。
以chla 作为基准参数,则第j 种参数的归一化的相关权重计算公式为:∑==m j ijijrr wj 122式中:r ij —第j 种参数与基准参数chla 的相关系数; m —评价参数的个数。
中国湖泊(水库)的chla 与其它参数之间的相关关系r ij 及r ij 2见下表。
中国湖泊(水库)部分参数与chla 的相关关系r ij 及r ij 2值※※:引自金相灿等著《中国湖泊环境》,表中r ij 来源于中国26个主要湖泊调查数据的计算结果。
营养状态指数计算公式为:⑴ TLI (chl )=10(2.5+1.086lnchl ) ⑵ TLI (TP )=10(9.436+1.624lnTP ) ⑶ TLI (TN )=10(5.453+1.694lnTN )⑷TLI(SD)=10(5.118-1.94lnSD)⑸TLI(COD Mn)=10(0.109+2.661lnCOD)式中:叶绿素a chl单位为mg/m3,透明度SD单位为m;其它指标单位均为mg/L。
2、湖泊(水库)富营养化状况评价指标:叶绿素a(chla)、总磷(TP)、总氮(TN)、透明度(SD)、高锰酸盐指数(COD Mn)3、湖泊(水库)营养状态分级:采用0~100的一系列连续数字对湖泊(水库)营养状态进行分级:TLI(∑)<30 贫营养(Oligotropher)30≤TLI(∑)≤50 中营养(Mesotropher)TLI(∑)>50 富营养(Eutropher)50<TLI(∑)≤60 轻度富营养(light eutropher)60<TLI(∑)≤70 中度富营养(Middle eutropher)TLI(∑)>70 重度富营养(Hyper eutropher)在同一营养状态下,指数值越高,其营养程度越重。
湖泊富营养化 2
浮游动物是生物操纵的关键因子之一,而大型 浮游动物则是最重要的、 最可能压低浮游植物数 量的因素植物过量生长。
滤食性鱼类可以调控浮游动物,减少鱼类捕食 压力有利于大型植食浮游动物种群的发展, 而其 密度的增加反过来又能很好的控制浮游植物的过 量生长。
2.3.3应用
武汉东湖,70年代每年都会出现“水华” 。 形成水花蓝藻主要是微囊藻属、 鱼腥藻属和束丝 藻属的种类, 其中危害最大的是铜锈微囊藻。
2.1.4应用
1) 司友斌等以巢湖湖水、 合肥环城河水及安徽农大 池塘水作为供试水样, 研 究浮床香根草对富营养化 水体的净化效果。试验表 明, 香根草在富营养化水 体中生长良好, 在56d 生 长期内, 对总氮去除率分 别为85.13%、91.12% 和 96.17% , 对氨氮去除率达 到 100%(在试验第 35d 时 即降为 0) , 对总磷也有 较高去除率,分别为 98.10%, 96.17%, 97.10%。
水稻浮床
2.2人工湿地
2.2.1定义:人工湿地是人工建造和管理控制的、
工程化的湿地, 通过模拟自然湿地, 人为设计与 建造的由饱和基质、 挺水与沉水植被、 动物和 水体组成的复合体。 它改变了湿地的传统形态,通过科学的设计和 改造,用自然生态系统中的物理、 化学和生物的 三重协同作用来实现对水体的净化。
厦门员筜湖生态浮床
2.1.3技术特点:
1.塑料泡沫大量堆放产生的二次污染。生态浮床通 常采用塑料泡沫板作为浮体的载体,使废弃塑料泡 沫有用武之地。 2.生态浮床技术将浮床陆生植物作为先锋种植于河 湖水面, 利用陆生植物生长过程中对大量N、P 吸 收和光合作用, 去除水中N、P, 无须施肥, 避免 肥料对水体污染, 且病虫害少。 3.生态浮床不受光照等条件限制, 可避免沉水植物 人工种植后, 由于光照等生境条件难以保障其正 常生育而死亡的现象。 4.浮床陆生植物多为经济种类或观赏种类 ( 如香草 根、美人蕉等) , 不仅可以净化水质, 还可创造 一定的经济效益。
湖泊富营养化
5、有些产生毒素:甲藻产生石房毒素、进入 食物链
湖泊富营养化
第11页
湖泊富营养化
第12页
七、湖泊富营养化防治
1、加强生态管理:预防含N、P及生活污水未经 处理直接排入河流;
2、污水深度处理:彻底去除有机污染物;
3、化学杀藻:漂白粉、CuSO4 (0.1~0.5mg/L)撒 入产生赤潮河流或海洋;
湖泊富营养化
第10页
六、富营养化危害
1、水体外观呈色、变浊、影响景观:
内陆湖:水华(水花 Water bloom);
海洋:赤潮(红潮 Red tide)
2、水体散发不良气味:土腥素(geosmin), 硫醇、吲哚、胺类、酮类等;
3、溶解氧下降:分解有机物及藻类残体造成 细菌大量繁殖,消耗掉水中氧气。
湖泊富营养化
第6页
五、富营养化类型及判别标准
因为影响富营养化现象原因很复杂,在不一 样生态环境条件下,水体之间富营养化程度存在 很大差异。同一水体在不一样阶段也可能相差十 分悬殊。为了研究富营养化演替规律,普通将富 营养化现象分为贫营养型、中营养型及富营养型 三种基础类型。其间又可细分出几个亚型,如特 贫营养型、贫—中营养型、中—富营养型等
第2页
伴随时间推移,自外部进入湖中营养盐类逐 步积聚,湖水中营养物质增多,湖泊生物生产能 力提升,生物量增加,水中溶解氧含量下降,水 色发暗,透明度降低,水生生物种群组成逐步由 适合富营养状态下种群所代替,湖泊对应由贫营 养型发展为中营养型,进而演变为富营养型。
湖泊富营养化
第3页
三、主要表现
富营养化现象发展到一定阶段,表现为浮游 藻类异常增殖。以蓝绿藻类为主水藻泛浮水面, 严重时形成“水花”或“湖靛”。在迎风湖岸或 湖湾处,糜集水面藻类可成糊状薄膜,湖面呈暗 绿色,透明度极低,可散发出腥臭味。而且还会 分泌出大量藻类毒素,抑制鱼类和其它生物生长, 对人畜造成危害,并严重污染环境。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(一)富营养化湖泊的微生物修复
B.反硝化作用:
(A)异养脱氮细菌的反硝化作用:
2NO3-+5H2A→ 5A +2OH-+4H2O +N2↑ 假单胞菌属 、色杆菌属 、微球菌属 (脱氮微球菌等 )、芽
(一)富营养化湖泊的微生物修复
B、“絮团”和底泥中有机碳的微生物降解
组成“絮团”和底泥的有机碎屑、细菌和藻 类,约含纤维素 15%~60%,半纤维素10%~30%, 木素 5%~30%和蛋白质 2%~15%;可溶性物质, 如糖、氨基糖、有机酸和氨基酸,占干物质重的 10%。这些组成物的分解直接关系到“絮团”和 底泥中有机碳的微生物转化。
湖泊富营养化生物修复
富营养化湖泊生物修复
目前,中国湖泊污染情况严重,80%以上的 湖泊受到污染,许多湖泊已达不到Ⅲ类水水质 标准,鱼虾基本绝迹,而代之以适应污染的各 类底栖微小生物类群,湖泊水体的颜色、气味 均有不同程度的恶化,部分湖泊甚至成为纳污 水体。许多知名湖泊的地理位置处于大、中城 市周边,它们的污染导致城市景观质量下降, 严重影响了这些地区居民的身心健康。水质污 染导致湖泊及其沿岸的生物多样性下降,特别 是一些对人类有益的或有潜在价值的物种消失。 因此,水体治理、修复刻不容缓。
一、湖泊富营养化的成因
分为天然富营养化和人为富营养化。天然富营养化 要经过几千年甚至几万年才能完成,而人类经济活动可 导致湖泊在短短几年内就出现富营养化;人为富营养化 是当代湖泊富营养化的主要因素。
碳、氮、磷是生成藻类的决定性因素,也是构成湖 泊水体富营养化的决定性因素。由于藻类可利用的氮远 比可利用的磷多,因此,磷常被作为富营养化的限制因 子。当磷含量达到0.6mg/L时,藻类产量几乎不受氮元素 含量的影响。我国环境标准规定,在静止水体中,总磷 浓度0.02mg/L、NH4+浓度为0.5mg/L为富营养化的临界 值。
(一)富营养化湖泊的微生物修复
(3)有机碳的去除
A、概念的更新
传统上,人们以为湖泊有机碳主要存在于底泥。然而 ,近来 的研究表明,大部分湖泊有机碳以水体悬浮物的形式存在。悬浮 物是有机碎屑、细菌、藻类和矿物质等细微颗粒组成的胶粘状物 (简称“絮团”) ,其比重略大于 1 ,在风力作用下极易悬浮于 水体,并长期滞留在水体中,参与水中固体物质通量的上下交换, 并大幅降低水体透明度 (可使透明度降到 20~40cm)。在水土 界面上滞留的“絮团”,其对有机质、氮、磷的贡献远大于底泥。 通常,底泥疏浚很难去除这些“絮团”,即便用专门设备吸走, 未疏浚处的“絮团”又很易迁移到此处补缺。生态系统一旦失衡, 这些“絮团”便会迅速增生。因此,在修复富营养化湖泊时,要 尤其着力去除悬浮在水体中和水土界面的“絮团”,采取生物技 术措施降解“絮团”中的有机质。只有消除“絮团”,水体透明 度才能从根本上提高。
碳水化合物、木素、菌体细胞壁的微生物降 解。
(二)其他修复技术
1、机械清淤 如前所述 ,机械清淤是最常见的削减湖泊营养元
素的途径。然而 ,机械清淤工程存在 2个问题 : (1)成本高。 (2)不能从根本上控制湖泊富营养化。清 淤在短期内会改善水质 ,但从月和季的长时段看 ,清 淤不是彻底控制湖泊富营养化的方法。 2、引水冲洗
在富营养化湖泊生物修复中,创设工艺条件,甚至接种专性 菌剂,满足以上脱氮要素的要求,均将有助于水体氮素的去除。
(一)富营养化湖泊的微生物修复
(2)磷的去除
在富营养化湖泊修复中,物理修复 (清 淤 )、设置水生植物生态工程往往比微生物修 复更为有效。原因是:磷素本身不能转化为气 体消失,也不能被永久性固定于底泥。即便采 用在废水处理工程设施中常用的积磷菌来除磷, 由于它不可能象工程设施那样于末端排放并二 次处置,其效果也大为逊色。
(一)富营养化湖泊的微生物修复
2、理论依据 (1)氨氮的脱除 A. 硝化作用: NH4+→NH2OH→NO2-→NO3-
湖泊水体中,使NH4+转化为NO2-(亚硝化阶段) 的菌有欧洲亚硝化单胞菌、亚硝化单胞菌、亚硝化球菌 属等;使NO2-转化为NO3-(硝化阶段)的菌有活跃硝 化杆菌、维氏硝化杆菌、硝化囊菌属等。
湖泊富营养化生物修复ቤተ መጻሕፍቲ ባይዱ
水体富营养化是大量氮、磷等营养物质进 入水体,引起蓝细菌、微小藻类极其浮游生物 恶化繁殖,最终导致水质急剧下降的一种污染 现象。
水体出现富营养化现象时,浮游生物大量 繁殖,水面往往呈现蓝色、红色、棕色、乳白 色等,视占优势的浮游生物的颜色而异。这种 现象,在海水称作赤潮,在淡水中称作水华。
二、消除湖泊富营养化的关键问题
从技术上说,消除湖泊富营养化的 关键还在于削减湖泊水体的氮、磷以及 底泥有机碳和氮、磷的负荷。消除水体 中藻类疯长的基础,达到降低水体中藻 类生物量、提高水体透明度的目的。
三、削减湖泊水体氮、磷及有机碳负荷
的技术途径
削减湖泊水体氮、磷及有机碳负荷 的技术途径除了消除点源 (截流污染源 并施行清污分流 )、减少和控制面源污 染这类最基本的途径外,最常见的有机 械清淤法,另外引水冲洗生物修复法也 是有效的方法。湖泊生物修复包含微生 物修复和水生生物修复两大内容,两者 不可弃一,互相配合,才能获取总体治 理效果。
(一)富营养化湖泊的微生物修复
1、生物修复的目标
以地表水和湖泊水水质国家标准为修复目 标。环境管理部门要求控制3项基本指标:氨 氮、全磷、透明度。通常把氨氮定在地表水Ⅱ 类标准,0.5mg·L-1;总磷定在湖泊水Ⅲ类 标准,0.025mg·L-1(地表水Ⅱ类标准可放宽 到0.1mg·L-1);透明度定在湖泊水Ⅳ类标准, 1.5m(地表水透明度无标准;富营养化湖泊水 体透明度一般仅0.2~0.3m)。
胞杆菌 (蜡状芽胞杆菌等 )的一些种均属这类菌。在厌氧条件下 则利用硝酸盐的氧来氧化有机底物,而使NO3-还原成N2。 (B)自养脱氮细菌的反硝化作用:
脱氮硫杆菌在缺氧条件下能利用NO3-的氧将硫或硫代硫酸 盐氧化成硫酸盐,释放N2,从中获得能量来同化CO2 。 5S +6KNO3+2CaCO3 → 3K2SO4+2CaSO4+2CO2 ↑ +3N2 ↑