大数据时代下软件工程关键技术探讨
大数据时代下软件与工程的特点和关键技术

42软件开发与应用Software Development And Application电子技术与软件工程Electronic Technology & Software Engineering大数据时代是我国进行发展道路中必须进行的一个环节。
大数据时代在人类生活中扮演了丰富的角色。
由此可得,在软件工程设计分析是我们必须要结合大数据的整体时代背景。
将软件工程的发展和开发与大数据时代相融合。
在与大时代数据相融合时,也必须将传统的数据信息传递结构进行优化,并加强信息能力的处理,从而提升软件工程的兼容性。
1 大数据时代的相关概述许多种类的网络技术正在不断出现之中,有效的推动了计算机科技水平迈向新的阶段,致使大数据技术对于人们在生产生活方面的影响愈发深入。
现在,各个社会主体之间的界限正在变得愈加模糊,繁杂的信息数据变成了促进社会进步的动力,使得企业及各类社会机构的生产、运营方式出现了较大改变。
同时,大数据时代不仅为这些企业及社会机构带来了发展机遇,也由此产生了相应的挑战。
大数据技术可以帮助人们更为便捷的获取自身所需的各类信息,有效的促进了企业的进一步发展,促使企业可以不断提高自身的核心竞争力,加速了社会的改革与创新,但在此过程中,企业及各类机构除了需要面对来自人才方面的挑战,还需要担负起由实施各种战略所引起的不良影响。
因此,各相关工作人员应致力于研发提升软件工程技术水平的各项技术,借以将挑战转化成为机遇,寻求多种发展路径,以期进一步提高软件工程的技术水平。
2 大数据时代的软件是大数据工程的关键技术2.1 众包软件服务工程众包的软件与服务管理工程与众包软件信息服务管理工程都可以拥有的一个重要共同点在于,这两类信息处理技术都是属于信息服务型的技术,且由其所提供服务产生的各类服务数据的信息量均较大较为集中。
现如今,在国内的学术界之中,已然将开发众包的软件服务工程列入了作为一个重点的学术研究领域与方向。
大数据时代下软件工程技术的应用

大数据时代下软件工程技术的应用随着大数据时代的到来,大数据应用日益成为人们生活和工作中的重要一部分。
软件工程技术在大数据时代下的应用也变得越来越重要。
软件工程技术包括软件设计、开发、测试、维护和项目管理等方面。
在大数据时代下,软件工程技术的应用主要体现在以下几个方面。
1. 大数据分析大数据分析是目前大数据最重要的应用之一。
软件工程师可以运用数据仓库、数据挖掘、机器学习、人工智能等技术,对大数据进行分析处理,提取出有价值的信息和知识,为企业决策和市场营销提供支持。
对于海量的数据,如何高效地存储和处理也是一个难点。
软件工程师可以运用大数据处理平台和分布式计算技术,对海量数据进行并行处理和分布式存储,大大提升数据处理效率和数据存储能力。
3. 大数据可视化大数据可视化是将大数据处理结果以直观的方式呈现出来,便于人们对数据进行理解和分析。
软件工程师可以运用可视化技术,通过图形化展示数据关系和趋势,为企业决策提供参考。
在大数据时代下,数据安全也是一个重要的挑战。
软件工程师可以运用数据加密、安全协议和访问控制等技术,保障数据的隐私和安全。
在软件工程技术的应用中,产生了很多新技术和新方法。
例如,数据仓库、数据挖掘、机器学习、人工智能等技术都是在大数据时代中应用的新技术。
这些新技术和新方法能够极大地提高大数据的处理效率和准确性,也能够提高公司效益和竞争力。
大数据时代下,软件工程技术的应用不仅仅是IT领域的问题,它渗透到了各个行业,包括医疗、金融、教育等领域。
在医疗领域,大数据应用可以帮助医生更准确地诊断疾病,提高治疗效率。
在金融领域,大数据应用可以帮助银行评估客户信用风险,提高贷款审批效率和准确性。
在大数据时代下,软件工程技术的应用也面临着一些挑战。
首先是对海量数据存储和处理的需求。
其次是大数据处理平台和算法的选择和优化。
此外,大数据的安全和隐私保护也是一个重大问题。
总的来说,软件工程技术在大数据时代下的应用已经不可避免。
大数据时代下软件工程技术的应用

大数据时代下软件工程技术的应用近年来,随着信息化、数字化、网络化的发展,大数据已经成为了信息技术领域的一个热门话题。
大数据的出现,不仅为企业和个人提供了更加精准、高效的信息服务,也为软件工程技术的应用提供了更广阔的空间。
软件工程技术是指通过系统化、科学化和规范化的方法,将软件开发过程加以管理和优化,从而提高软件开发的质量和效率。
在大数据时代下,软件工程技术的应用主要体现在以下几个方面:1. 数据采集与处理大数据时代下,我们面对的是海量的数据。
如何有效地采集和处理这些数据,使之转化为有价值的信息,成为了软件工程师需要面对的重要问题。
因此,在软件开发过程中,需要运用数据采集技术和数据处理技术来处理海量数据,提取数据中的有价值信息。
2. 数据挖掘与分析大数据中蕴含着大量的信息,如果能够有效地挖掘和分析这些信息,就能够为企业和个人提供更精准、高效的服务。
因此,软件工程师需要具备数据挖掘和分析的技术,实现对数据的深度挖掘和分析。
在这个过程中,需要运用机器学习、自然语言处理、数据可视化等技术,将海量数据转化为有用的信息。
3. 个性化服务与推荐系统在大数据时代下,软件工程师需要根据用户的需求和喜好,提供更加个性化的服务。
为此,推荐系统成为了重要的应用方向。
推荐系统通过分析用户的历史行为和兴趣爱好,从海量的数据中为用户提供个性化的推荐服务。
软件工程师需要掌握推荐算法和个性化服务的技术,以提高软件的用户体验。
4. 系统架构与设计在大数据时代下,软件系统需要处理大量的数据,并具备高并发、高可用、高性能的特点。
因此,软件工程师需要针对大数据应用场景,设计适合的系统架构和技术架构,包括分布式计算、缓存、消息队列等技术。
同时,需要考虑系统的扩展性、可维护性和安全性。
总之,在大数据时代下,软件工程技术的应用需要充分地结合大数据技术的特点,采用科学的方法、规范的流程和先进的技术,有效地解决海量数据处理和信息挖掘的问题,为企业和用户提供更加精准、高效的服务。
大数据时代下的软件工程技术

大数据时代下的软件工程技术提纲:1. 大数据时代对软件工程技术的影响和变革。
2. 软件工程技术在大数据时代的应用和发展趋势。
3. 大规模分布式系统的设计和实现技术。
4. 建筑工程领域中大数据时代软件工程技术的案例分析。
5. 大数据时代下软件工程技术的未来发展趋势。
一、大数据时代对软件工程技术的影响和变革随着信息技术日益发展,数据量呈现爆炸式增长,人们对数据的处理和分析需求也越来越高。
在这种背景下,大数据成为了一个新时代的关键词。
在大数据时代,常规的软件工程技术已经无法满足日益增长的数据需求,大数据技术的发展也促使了软件工程技术的变革和创新。
在大数据时代,软件工程技术发生了如下变革:1. 数据处理能力:随着数据量的增加,传统软件工程遇到瓶颈,需要更高效的数据处理技术。
在大数据时代,分布式计算和并行计算技术应运而生,可更高效地处理大规模数据。
2. 数据可视化:大数据时代,如何呈现数据变得尤为重要。
目前,大数据可视化技术已经得到了广泛的应用,许多企业已经将数据可视化技术应用到管理和决策中。
3. 数据安全性:在大数据时代背景下,数据安全性尤为重要。
数据泄露和黑客攻击都会对企业带来灾难性的影响。
因此,数据安全成为大数据时代下软件工程技术需要加强的关键点。
4. 数据治理:自动化处理和分析海量数据需要一个良好组织和管理的数据基础。
数据治理需要建立良好的数据管理机制、规则和策略,使得数据能够更好的被管理、组织和使用。
5. 数据质量:大数据时代的数据质量也是一个需要解决的问题。
数据质量的提升需要研究数据验证和清洗技术、数据查询和消除重复数据等。
二、软件工程技术在大数据时代的应用和发展趋势在大数据时代,软件工程技术需要和大数据技术融合,以应对数据量和数据分析的挑战。
下面我们介绍软件工程技术在大数据应用中的应用和发展趋势:1. 数据库技术:数据库是大数据应用中最常用的工具之一。
传统数据库已经无法满足大数据的存储和查询需求,各种高性能、分布式数据库出现,采用分布式架构来存储和处理大规模数据。
大数据在计算机软件工程中的实践研究

《大数据在计算机软件工程中的实践研究》摘要:随着信息技术的飞速发展,大数据时代已然来临。
大数据技术在计算机软件工程中的应用日益广泛,为软件的开发、测试、维护等各个环节带来了新的机遇和挑战。
本文深入探讨了大数据在计算机软件工程中的实践应用,包括大数据对软件开发模式的影响、在软件测试中的作用、在软件维护中的价值以及面临的挑战和未来发展趋势。
关键词:大数据;软件工程;实践一、引言在当今数字化时代,数据的规模呈爆炸式增长,大数据已成为推动各行业发展的重要力量。
计算机软件工程作为信息技术领域的核心组成部分,也在大数据的浪潮中不断演进。
大数据技术为计算机软件的开发、运行和维护提供了丰富的数据资源和强大的分析工具,使得软件能够更好地满足用户需求,提高性能和可靠性。
二、大数据的概念与特点(一)大数据的概念大数据是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
(二)大数据的特点1.数据量大:大数据的数据规模通常非常庞大,达到 PB 级甚至 EB 级。
2.数据类型多样:包括结构化数据、半结构化数据和非结构化数据,如文本、图像、音频、视频等。
3.数据处理速度快:大数据要求能够快速地对大量数据进行处理和分析,以满足实时性需求。
4.数据价值密度低:虽然大数据中蕴含着丰富的信息,但数据价值密度相对较低,需要通过有效的分析方法才能提取出有价值的信息。
三、大数据在软件开发中的实践应用(一)需求分析在软件开发的需求分析阶段,大数据可以帮助开发人员更好地了解用户需求。
通过收集和分析用户的行为数据、反馈数据等,可以挖掘出用户的潜在需求和痛点,为软件的功能设计提供依据。
例如,电商平台可以通过分析用户的浏览历史、购买记录等数据,了解用户的购物偏好和需求,从而优化商品推荐系统。
(二)设计与架构大数据技术可以为软件的设计和架构提供参考。
软件工程下的现代化开发技术

软件工程下的现代化开发技术在当今数字化时代,软件工程领域正经历着前所未有的变革,现代化开发技术不断涌现,为软件开发带来了更高的效率、更好的质量和更强的适应性。
这些技术的出现不仅改变了软件开发的方式,也对开发人员的技能和思维模式提出了新的要求。
现代化开发技术中,敏捷开发方法备受瞩目。
传统的软件开发流程往往是线性的、冗长的,从需求分析到设计、编码、测试,每个阶段都按部就班地进行,一旦前面的阶段出现问题,后面的工作就会受到严重影响。
而敏捷开发则强调快速迭代、灵活应变。
开发团队被分成多个小的、自组织的小组,每个小组能够快速完成一个小的功能模块,并及时进行反馈和调整。
通过频繁的沟通和协作,团队能够更快地响应变化,确保软件产品始终符合用户的需求。
另一个重要的现代化开发技术是云计算。
云计算为软件开发提供了强大的计算和存储资源,使得开发团队无需再担心硬件设施的限制。
通过使用云服务,开发人员可以轻松地部署和扩展应用程序,根据实际需求动态调整资源配置。
这不仅降低了成本,还提高了开发的效率和灵活性。
同时,云计算还提供了各种服务,如数据库服务、服务器less 架构等,让开发人员能够更加专注于业务逻辑的实现,而无需花费大量时间在基础设施的搭建和维护上。
容器技术也是软件工程中的一大创新。
容器将应用程序及其依赖项打包在一起,形成一个可移植的单元,使得应用能够在不同的环境中快速部署和运行。
与传统的虚拟机相比,容器更加轻量、高效,启动速度更快。
通过使用容器技术,开发团队可以实现开发、测试和生产环境的一致性,减少因环境差异导致的问题。
此外,容器编排工具如Kubernetes 还能够对大量的容器进行自动化管理和调度,进一步提高了应用的可靠性和可扩展性。
微服务架构的出现改变了软件系统的构建方式。
过去,软件系统通常是一个庞大的单体应用,所有的功能都集成在一起。
随着业务的发展,单体应用变得越来越复杂,难以维护和扩展。
微服务架构将一个大型的应用拆分成多个小型的、独立的服务,每个服务都可以独立开发、部署和扩展。
软件工程专业职业发展的关键技能与能力

软件工程专业职业发展的关键技能与能力在当今大数据和人工智能时代,软件工程领域日益受到重视。
对于软件工程专业毕业生来说,拥有关键的技能和能力是实现职业成功的关键。
本文将讨论软件工程专业职业发展的关键技能和能力,并探讨如何培养和提升这些技能。
一、技术能力1.编程技能作为软件工程师,精通编程是至关重要的。
掌握流行的编程语言(如Java、Python、C++等)以及相应的开发工具和框架,能够编写高质量、高效率的代码是软件工程专业所需的基本技能。
2.架构设计能力软件系统的设计和架构是软件开发过程中的核心。
软件工程专业的学生应该学习和了解不同的架构模式(如MVC、微服务架构等),并能够根据需求设计出可扩展、可维护的系统架构。
3.算法与数据结构软件工程师需要具备良好的算法和数据结构知识。
了解常用的算法和数据结构,能够设计和实现高效的算法解决实际问题,提高软件系统的性能和响应能力。
4.测试与调试软件测试和调试是保证软件质量的重要环节。
掌握测试方法和工具,能够编写有效的测试用例和调试代码,发现和修复软件中的错误和缺陷。
二、协作能力1.团队合作软件工程师通常需要与多个团队成员合作完成项目。
具备良好的团队合作能力,能够有效地沟通、协调和合作,共同完成项目任务。
2.沟通能力软件工程师需要与客户、项目经理以及其他团队成员进行频繁沟通。
良好的沟通能力能够准确理解需求,有效传达和表达自己的想法,并且能够解释和演示技术概念给非技术人员。
3.问题解决能力在软件开发过程中会遇到各种问题和挑战。
具备解决问题的能力,包括快速定位和修复bug,分析和解决技术难题,能够在面对困难时保持冷静并找到解决方案。
三、持续学习与自我提升能力1.学习新技术软件工程领域发展迅速,新的技术和工具层出不穷。
具备持续学习的能力,能够跟上行业的最新动态和技术趋势,不断学习和掌握新的技术,提高自己的竞争力。
2.自我驱动与自我管理软件工程师通常需要独立完成任务并按时交付。
大数据时代下软件工程关键技术分析

大数据时代下软件工程关键技术分析大数据时代下,软件工程的关键技术扮演着至关重要的角色。
随着互联网的迅速发展和智能手机的普及,数据量呈现爆炸式增长,而如何高效地处理、存储和分析这些海量数据成为了一项急切需要解决的挑战。
在这样的背景下,大数据技术成为了软件工程中的一大支柱,而更深层次的数据处理、数据挖掘、数据分析等技术也成为了软件工程师需要不断学习的关键技术之一。
本文将针对大数据时代下软件工程的关键技术进行分析,以期对软件工程师在大数据时代的学习和发展提供一定的参考。
1. 大数据技术在大数据时代下,大数据技术是软件工程师需要掌握的重要技能之一。
大数据技术主要包括了数据处理、数据存储、数据分析等方面的技术。
数据处理技术包括了数据的清洗、加工、转换等过程,这是因为大数据的来源往往十分复杂,需要经过一系列的处理才能够得到准确的信息。
而数据存储技术则是指如何高效地存储海量数据,包括了分布式存储、云存储、内存数据库等技术。
数据分析技术则是指如何对海量数据进行有效的分析,包括了数据建模、数据挖掘、数据可视化等技术。
在大数据时代下,软件工程师需要掌握这些技术,才能够更好地开发和维护大数据领域的软件系统。
2. 分布式系统在处理大数据时,传统的集中式系统已经不能够满足需求,而分布式系统成为了一种更加合适的方案。
在分布式系统中,数据被分布式存储在多个服务器上,不仅能够提高数据处理的速度和效率,还能够增加系统的容灾能力和可靠性。
软件工程师需要掌握分布式系统的设计、部署和维护技术,了解分布式系统的工作原理及其内部通信机制,以便能够更好地开发大规模分布式系统、并且能够更好地解决分布式系统上的各种问题。
3. 数据挖掘与机器学习在大数据时代下,数据挖掘和机器学习成为了软件工程中至关重要的技术。
数据挖掘是指从海量数据中发现潜在的隐藏模式和规律,以便能够为决策和预测提供支持。
而机器学习则是指通过训练数据,让计算机模拟人类的学习过程,并根据学习到的模型进行预测或决策。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大数据时代下软件工程关键技术探讨
发表时间:2019-05-29T17:30:31.750Z 来源:《防护工程》2019年第4期作者:赵阳刘春龙董晓峰晋超琼陈瑞昱[导读] 随着计算机网络技术的高速发展,大数据被广泛应用于社会各个行业的工作当中,提升社会工作效率。
北方自动控制技术研究所山西太原 030006摘要:随着计算机网络技术的高速发展,大数据被广泛应用于社会各个行业的工作当中,提升社会工作效率。
基于大数据的时代背景之下,软件工程技术与大数据技术相辅相成,共同组成了影响社会运行速率的重要技术内容。
随着我国社会经济的进一步发展,对软件工程技术的需求逐渐加大,相关科研人员要紧跟社会发展步伐,致力于软件工程技术的开发与利用,提升数字化信息处理效率,推动我国经
济、政治、文化全方面进步。
下面,就大数据时代下软件工程关键技术展开论述。
关键词:大数据时代;软件工程;关键技术
引言
随着我国计算机技术的不断成熟和发展,软件应用日益广泛,无论是从计算机存储或是整个IT环境,在硬件平台的搭设基础上,越来越多的软件功能丰富的大数据时代的主体内容。
作为人类发社会发展的必经道路,大数据时代在不断适应和改造人类认知世界的过程中,不断丰富着人们的生产生活。
因此,在软件工程设计分析时,我们要结合大数据的整体时代背景,进一步缓和软件工程发展的进程,并且不断优化传统的信息结构资源,强化软件工程的信息处理能力,提升软件工程与网络的结合度。
1软件工程技术定义在大数据时代,软件工程基础被应用于多个方面,涉及到工业、农业、航空、政府等各个行业领域,用于提升生活、工作的效率,促进社会经济发展。
软件工程技术主要包括软件工程原理、软件工程过程、软件工程方法等内容,是在计算机网络技术的基础上,利用编程语言对相关软件的功能、操作进行优化和提升,是在程序与程序设计发展到一定规模并且逐渐商品化的过程中形成的。
2大数据时代下软件工程关键技术 2.1软件服务工程技术
软件服务开发符合我国当下社会主流需求,也是社会发展的主流需要。
其在技术上主要应用在服务功能比较明显的软件开发之中,主要是指以工程化形式,利用计算机系统编程语言、开发程式及步骤、数据系统等内容,实现具备服务功能、应用功能软件的开发。
软件工程开发以服务能力为核心,以虚拟特征以及分布样式为基础,对用户具体应用情况进行调试,保障用户应用软件工程系统科学性、稳定性、安全性。
与此同时,服务软件工程技术可实现应用数据之间的整合,提高软件管理操作能力,对各项操作流程等进行明确。
在大数据时代背景下,服务软件工程开发技术更加倾向于局域网内部应用,可以保护局域网内部用户不会受到木马病毒恶意袭击,极大程度保障软件工程应用安全性。
例如,某企业应用服务软件工程技术,致力于服务与应用效果软件系统开发,将其应用在企业整体业务管理之中,为了提高软件服务工程应用效率,赋予了软件私人订制功能,强化软件服务工程自定义效果。
2.2众包软件服务工程
在众多软件工程技术中,大多数均具备的功能为处理信息、数据的集中性,可以生成大量数据信息,并呈现出集中性等特征。
众包软件工程技术在世界各国均得到了广泛普及,是各国的重点研究对象。
该技术在应用过程中可以流式数据、密集数据研究为主,实现系统化服务平台构建,其核心应用价值在于具有很强服务能力,并以群体信息服务等方式,优化自身应用价值。
该软件工程技术相比较企业技术而言,具有明显优势,其在数据实质表现上具有真实性特征,忽略了软件形式要点,并不具备单位量化特征,重点突出在集中性上。
众包软件工程技术具有很广阔发展空间,在市场有很强的发展前景,其技术能力与软件开发程度、系统管理能力息息相关,开发单位需重视该技术中数据传输有效性,促进软件长久稳定发展。
众包软件工程技术以专业理论分析为依据,可从整体角度实现数据信息传输、处理等功能,以全面服务为核心,实现软件系统开发。
企业及有关部门需强化众包软件开发技术应用,提高技术应用水平,在技术上进行创新,提高自身竞争实力。
2.3密集型数据科研技术 “第四范式”是密集数据研究一种,在2007年由吉姆?格雷提出。
在该技术理论研究过程中,强调大数据储存技术应用价值性,以统一的理论方法作为数据研究主要支撑。
在该技术开发与应用过程中,对其传统软件工程中一、二、三范式进行理论与数据分析,提高其短时间内的数据储存与信息处理能力。
在经过反复试验对比之后,研究人员改变传统思维模式,首先致力于“第四范式”数据结构研究,在整合驱动大数据基础上,对软件服务价值进行了全面概述。
针对密集型数据分析方式,传统的数据周期、信息流程方法已经无法适用,在模型效果上存在滞后性。
研究人员以原本数据、信息、模型研究为基础,对其数据服务、信息服务等进行推演,逐渐构建出第四范式模型,对其服务能力、服务价值等进行了全面优化。
“第四范式”是大数据时代下,软件工程开发关键技术之一,在不断的研究中得以完善,可以实现密集数据生命周期有效提高,以全新的数据模型,为软件工程开发提供技术保障。
有关部门需给予高度重视,使其能够适应未来社会的发展。
2.4软件工程技术在企业中应用
软件工程技术在企业中应用主要体现在两个方面,一是在信息通信中应用,二是在信息解决问题中应用。
以某企业发展为例,某企业在运行过程中应用计算机软件工程监测技术,实现用户信息数据有效处理,并对用户信息进行科学保存。
软件工程技术在逐渐发展中,其功能也在不断完善,信息通信功能可以为企业留存大量客源,具有十分巨大的行业价值。
在信息解决方面应用软件工程技术,其主要应用方向在于系统平台管理,在大数据时代下,软件工程技术需具备以下五个环节,分别为产品抽样、产品样本采集、信息优化修改、构建数据模型、生产效果评定。
企业应用软件工程技术进行信息问题解决,可以实现企业整体数据的有效分析与整合,保障企业内部信息准确、全面。
所以。
企业要重视软件工程关键技术应用,提高自身软件技术应用能力,致力于企业经济效益提高,进而提高自身竞争能力。
3计算机软件技术发展过程中的各种应用 3.1信息通信方面
一方面信息通信有助于企业将流失的客源损失度降低到最低程度;另一方面企业在这个分析软件中发现具有行业发展价值以及运转过程中存在的商业潜力,这些对于企业立足于未来行业发展具有至关重要的意义。
例如,通讯行业在运营过程中一般需要应用到计算机软件记录监测有关用户的具体信息和实时计费,通过对这些用户信息保存的资料加以分析,一定程度上可以扩大企业规模,取得更好的经济效益,创造出更高的社会效益。
3.2企业信息解决问题方面
通过应用各种计算机管理软件,不同行业领域可以选择性实现多种系统化的功能,比如在风险分析和评估过程中首先要获得客户的信息资料,实时记录企业人员的流动动态等问题。
大数据时代下企业的数据开发需要经过抽样—开发—修改—模型—评定五项环节。
首先是抽样。
简单来讲,从产品生产的系统过程中抽取出具有代表性的产品当成采集样本。
其次是开发,主要针对数据的处理开展一系列的优化处理方式,涉及到导入、选择及合并等多个流程。
然后是修改。
这一流程的操作前提是对于数据信息进行优化创建和选择,还可能涉及到产品的编码及变量转换等。
再者是模型。
模型流程的存在将预测结果变得更加精确可靠,同时这还是企业选定方案能否正常通过的首要前提。
最后是评定。
评定的作用是通过和模型之间的比较,让技术人员对数据加以分析整合,保证信息的准确性。
结语
综上所述,随着大数据时代的到来,我国各领域的发展都将被大数据思想和软件工程技术创新所影响,人们的生产生活方式将受到前所未有的改变。
在现如今的软件工程中,要进一步在实践中开展研究,对传统的软件理论进行革新。
以创新传统软件技术的眼光解决限制软件工程发展的各项问题,并结合现代网络发展的形式,在大数据时代下促进行业的发展。
参考文献:
[1]刘洋.数据时代下软件工程关键技术探究[J].电脑知识与技术,2017,13(15):128-129.
[2]何雷.大数据时代下软件工程关键技术探究[J].信息系统工程,2017(02):47.。