运筹学复习资料

合集下载

运筹学复习资料

运筹学复习资料

一、单选题1.排队系统的状态转移速度矩阵中()元素之和等于零A、每一列B、每一行C、对角线D、次对角线答案: B2.设有一单人打字室,顾客的到达为普阿松流,平均到达时间间隔为20分钟,打字时间服从指数分布,平均时间为15分钟,顾客在打字室内平均等待时间为().A、1.5小时B、0.75小时C、2.5小时D、3小时答案: B3.以下哪项是面向决策结果的方法的程序().A、收集信息→确定目标→提出方案→方案优化→决策B、确定目标→收集信息标→决策→提出方案→优化方案C、确定目标→收集信息标→提出方案→方案优化→决策D、确定目标→提出方案→收集信息标→优化方案→决策答案: C4.某人要从上海搭乘汽车去重庆,他希望选择一条线路,经过转乘,使得车费最少。

此问题可以转化为().A、最大流量问题求解B、最短路问题求解C、最小树问题求解D、最小费用最大流问题求解答案: B5.为了使各因素之间进行两两比较得到量化的判断矩阵,引入()的标度.A、1~7B、1~8C、1~9D、随便答案: C6.设有一单人打字室,顾客的到达为普阿松流,平均到达时间间隔为20分钟,打字时间服从指数分布,平均时间为15分钟,若顾客在打字室内的平均逗留时间超过1.25小时,则主人将考虑增加设备及打字员,问顾客的平均到达概率为()时,主人才会考虑这样做?A、小于2B、大于2C、小于1.25D、大于1.25答案: D7.动态规划求解的一般方法是什么A、图解法B、单纯形法C、逆序求解D、标号法答案: C8.整数规划数学模型的组成部分不包括().A、决策变量B、目标函数C、约束条件D、计算方法答案: D二、判断题1.风险情况下采用EMV决策准则的前提是决策应重复相当大的次数.A、正确B、错误答案:正确2.正偏差变量应取正值,负偏差变量应取负值.A、正确B、错误答案:错误3.部分变量要求是整数的规划问题称为纯整数规划.A、正确B、错误答案:错误4.方案层在层次模型的最底层.A、正确B、错误答案:错误5.排队系统中,等待时间=逗留时间+服务时间.A、正确B、错误答案:错误6.银行储蓄所有四个服务窗口,到达顾客自选窗口排队,后该储蓄所改为按顾客到达先后发号排队等待,这种改变将有助于缩短顾客的平均等待时间.A、正确B、错误答案:正确7.判断矩阵的维数n越大,判断的一致性将越差,应放宽对高维判断矩阵一致性要求.A、正确B、错误答案:正确8.用层次分析法解决问题,构造好问题的层次结构图是解决问题的关键.A、正确B、错误答案:正确9.不平衡运输问题不一定有最优解.A、正确B、错误答案:错误10.根据决策者对物体之间两两相比的关系,主观做出比值的判断,这样得到的矩阵称作判断矩阵.A、正确B、错误答案:正确三、名词解释1.人工变量答案:亦称人造变量.求解线性规划问题时人为加入的变量。

运筹学复习考点

运筹学复习考点
状态值,各条弧代表了可行的方案选择。 • 正确。
整理课件
59
• (4)动态规划的基本方程是将一个多阶段的决策问题转化为一系列具 有递推关系的单阶段决策问题。
• 正确。 • (5)建立动态规划模型时,阶段的划分是最关键和最重要的一步。 • 错误。 • (6)动态规划是用于求解多阶段优化决策的模型和方法,这里多阶段
• 错误。
• 唯一最优解时,最优解是可行域顶点,对应基本可行解;无穷多最优 解时,除了其中的可行域顶点对应基本可行解外,其余最优解不是可 行域的顶点。
• (12)若线性规划问题具有可行解,且其可行域有界,则该线性规划 问题最多具有有限个数的最优解。
• 错误。
• 如果在不止一个可行解上达到最优,它们的凸组合仍然是最优解,
结束时间不允许有任何延迟。 • 正确。 • (10)网络关键路线上的所有作业,其总时差和自由时差均为零。 • 正确。 • (11)任何非关键路线上的作业,其总时差和自由时差均不为零。 • 错误。
整理课件
57
• (12)若一项作业的总时差为零,则其自由时差一定为零。 • 正确。 • (13)若一项作业的自由时差为零,则其总时差比为零。 • 错误。 • (14)当作业时间用a,m,b三点估计时,m等于完成该项作业的期
既可以是时间顺序的自然分段,也可以是根据问题性质人为地将决策 过程划分成先后顺序的阶段。
• 正确。
整理课件
60

整理课件
61
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
整理课件
62
5 3 6 -6 0
0
801001
5
14 1 2 0 0 0
-6
4 0 1 -1 1 0

运筹学复习

运筹学复习
X=(0,0,8,16,12)T为基解,且为基可行解
3.用单纯形表求解LP问题
例、用单纯形表求解LP问题
max Z 2x1 x2
5x2 15
s.t
6
x1 2x2 x1 x2
24 5
x1, x2 0
解:化标准型
max Z 2x1 x2 0x3 0x4 0x5
5x2 x3
约束系数矩阵A 约束系数矩阵转置A'
6. 弱对偶性 设X 为原问题的可行解,Y '为对偶问题的可行解,则恒有
CX Y 'b
证明: 设X ,Y '分别为原问题和对偶问题的可行解.
AX b AX b Y ' AX Y 'b
A'Y C ' Y ' A C Y 'A C Y 'AX C X
CX Y ' AX Y 'b
CX Y 'b 证毕
推论: (1) max问题(原问题)任一可行解的目标值为min问题(对 偶问题)目标值的一个下界;min问题(对偶问题)任一可行 解的目标值为max问题(原问题)目标值的一个上界。
(2)(无界性)若原问题(对偶问题)为无界解,则对偶问题 (原问题)为无可行解。
15
6
x1 2x2 x1 x2
x4 24 x5 5
x1, , x5 0
单纯形表
单纯形表结构
c j
CX
B
B
b
c1 x1 b '1
cm xm bm'
cj zj
x x x x C c12 c21 0 cm 0 0cn
1
2
m
n min

运筹学 本(复习资料)

运筹学 本(复习资料)

《运筹学》课程复习资料一、判断题:1.图解法与单纯形法虽然求解的形式不同,但从几何上理解,两者是一致的。

[ ]2.线性规划问题的每一个基本解对应可行解域的一个顶点。

[ ]3.任何线性规划问题存在并具有惟一的对偶问题。

[ ]4.已知y i*为线性规划的对偶问题的最优解,若y i*>0,说明在最优生产计划中第i种资源已完全耗尽。

[ ] 5.运输问题是一种特殊的线性规划问题,因而其求解结果也可能出现下列四种情况之一:有惟一最优解,有无穷多最优解,无界解,无可行解。

[ ]6.动态规划的最优性原理保证了从某一状态开始的未来决策独立于先前已做出的决策。

[ ]7.如果线性规划问题存在最优解,则最优解一定可以在可行解域的顶点上获得。

[ ]8.用单纯形法求解Max型的线性规划问题时,检验数Rj>0对应的变量都可以被选作入基变量。

[ ]9.对于原问题是求Min,若第i个约束是“=”,则第i个对偶变量yi≤0。

[ ]10.用大M法或两阶段法单纯形迭代中若人工变量不能出基(人工变量的值不为0),则问题无可行解。

[ ]11.如图中某点vi 有若干个相邻点,与其距离最远的相邻点为vj,则边[vi,vj]必不包含在最小支撑树内。

[ ]12.在允许缺货发生短缺的存贮模型中,订货批量的确定应使由于存贮量的减少带来的节约能抵消缺货时造成的损失。

[ ] 13.根据对偶问题的性质,当原问题为无界解时,其对偶问题无可行解,反之,当对偶问题无可行解时,其原问题具有无界解。

[ ] 14.在线性规划的最优解中,若某一变量xj为非基变量,则在原来问题中,改变其价值系数cj,反映到最终单纯形表中,除xj的检验数有变化外,对其它各数字无影响。

[ ]15.单纯形迭代中添加人工变量的目的是为了得到问题的一个基本可行解。

[ ]16.订购费为每订一次货所发生的费用,它同每次订货的数量无关。

[ ]17.一个动态规划问题若能用网络表达时,节点代表各阶段的状态值,各条弧代表了可行方案的选择。

运筹学期末考试复习资料

运筹学期末考试复习资料

《运筹学》课程综合复习资料一、判断题1.求解LP 问题时,对取值无约束的自由变量,通常令"-'=j j j x x x ,其中:0≥"'j j x x ,在用单纯形法求得的最优解中,有可能同时出现0>"'j jx x 。

答案:错2.在PERT 计算中,将最早节点时刻等于最迟节点时刻、且满足0)(),()(=--i t j i t j t E L 节点连接而成的线路是关键线路。

答案:对3.在一个随机服务系统中,当其输入过程是一普阿松流时,即有(){}()t n en t n t N P λλ-==!,则同一时间区间内,相继两名顾客到达的时间间隔是相互独立且服从参数为λ的负指数分布,即有()te t X p λλ-==.答案:对4.已知*i y 为线性规划的对偶问题的最优解,若*i y =0,说明在最优生产计划中第i 种资源一定有剩余。

答案:对5.用单纯形法求解单纯形表时,若选定唯一入基变量k x (检验数>0),但该列的1,2...m=i 0ik a ≤,则该LP 问题无解。

答案:对6.对偶单纯形法中,若选定唯一出基变量i x (i x <0),但i x 所在行的元素(系数矩阵中)全部大于或等于0,则此问题无解。

答案:对7.LP 问题的可行域是凸集。

答案:对8.动态规划实质是阶段上枚举,过程上寻优。

答案:对9.动态规划中,定义状态变量时应保证在各个阶段中所做决策的相互独立性。

答案:对10.目标规划中正偏差变量应取正值,负偏差变量应取负值。

答案:错11.LP问题的基可行解对应可行域的顶点。

答案:对12.若LP问题有两个最优解,则它一定有无穷多个最优解。

答案:对13.若线性规划的原问题有无穷多最优解,则其对偶问题也一定有无穷多最优解。

答案:对14.对偶问题的对偶问题一定是原问题。

答案:对15.对于同一个动态规划问题,逆序法与顺序法的解不一样。

《运筹学》复习资料整理总结

《运筹学》复习资料整理总结

《运筹学》复习资料整理总结1. 建立线性规划模型的步骤。

确定决策变量 确定目标函数 确定约束条件方程2. 线性规划问题的特征。

都有一个追求的目标,这个目标可表示为一组变量的线性函数,按照问题的不同,追求的目标可以为最大,也可以为最小。

问题中有若干个约束条件,用来表示问题中的限制或要求,这些约束条件可以用线性等式或线性不等式表示。

问题中用一组决策变量来表示一种方案。

3. 线性规划问题标准型的特征。

4. 化标准型的方法。

123123123123min z 2+223-8340,0,x x x x x x x x x x x x =+-+=⎧⎪-+-≤⎨⎪≤≥⎩为自由变量123123123123min z 2+223-634,0,x x x x x x x x x x x x =+-+=⎧⎪-+-≥⎨⎪≥⎩为自由变量5. 基本解:令其余的变量取值为0,则得到Ax=b 的一个解y,称此解为线性规划问题的基本解。

6. 基本可行解:若基本解y 满足y ≥0,则称这个解为基本可行解。

7. 可行解:满足约束条件的解x=(x1、x2、……xn )T 称为线性规划问题的可行解。

8. 最优解:函数达到最优的可行解叫做最优解。

9.图解法适合于变量个数为2个的线性规划问题。

10.单纯形法解线性规划问题如何确定初始基本可行解。

(1)约束条件为≤,先加入松弛变量x1、x2……xm后变为等式,取松弛变量为基本变量(2)约束条件为=,先加入人工变量xm+1、xm+2……xm+n,人工变量价值系数为m(3)约束条件为≥,先加入多于变量xn+1、xn+2……xm+n后变为等式,在添加人工变量xn+m+111.单纯形法最优解的检验准则。

(1)若基本可行解x’对应的典式的目标函数中非基变量的系数全部满足cN-cBB-1Pj≤0,则基本可行解x’为原问题的最优解。

(2)若基本可行解x’对应的典式的目标函数中所有非基变量的系数满足cN-cBB-1Pj≤0,且有一非基变量的系数满足Ck-Zk=0,则原问题有无穷多组最优解12.对目标函数为极小(min)型的线性规划问题,用单纯形法解的三种处理方法。

运筹学复习资料资料讲解

运筹学复习资料资料讲解

运筹学复习一、 填空题1、线性规划中,满足非负条件的基本解称为基本可行解,对应的基称为可行基线.2、性规划的目标函数的系数是其对偶问题的右端常数;而若线性规划为最大化问题,则3、对偶问题为最小化问题。

4、在运输问题模型中,1m n +-个变量构成基变量的充要条件是不含闭回路。

5、动态规划方法的步骤可以总结为:逆序求解最优目标函数,顺序求__最优策略、最优路线和最优目标函数值。

6、工程路线问题也称为最短路问题,根据问题的不同分为定步数问题和不定步数问题;7、对不定步数问题,用迭代法求解,有函数迭代法和策略迭代法两种方法。

8、在图论方法中,通常用点表示人们研究的对象,用边表示对象之间的某种联系。

9、一个无圈且连通的图称为树。

10、图解法提供了求解只含有两个决策变量的线性规划问题的方法.11、图解法求解生产成本最小线性规划问题时,等成本线越往左下角移动,成本越低.12、如果线性规划问题有有限最优解,则该最优解一定在可行域的边界上上达到。

13、线性规划中,任何基对应的决策变量称为基变量.14、原问题与对偶问题是相互对应的. 线性规划中,对偶问题的对偶问题是原问题.15、在线性规划问题中,若某种资源的影子价格为10,则适当增加该资源量,企业的收益将_会 (“会”或“不会”)提高.16、表上作业法实质上就是求解运输问题的单纯形法.17、产销平衡运输问题的基变量共有m+n-1个.18、动态规划不仅可以用来解决和时间有关的多阶段决策问题,也可以处理与时间无关的多阶段决策问题.19、构成动态规划模型,需要进行以下几方面的工作:正确选择阶段(k )变量,正确选择状态(Sk )变量,正确选择_ 决策(UK )变量,列出状态转移方程, 列出_阶段指标函数_,建立函数基本方程.20、动态规划方法可以用来解决和某些与时间有关的问题,但也可以用来解决和某些与时间无关的问题.在图论方法中,图是指由点与边和点与弧组成的示意图.21、网络最短路径是指从网络起点至终点的一条权之和最小的路线.简述单纯形法的计算步骤:第一步:找出初始可行解,建立初始单纯形表。

运筹学复习

运筹学复习

2014-2015复习一、名词解释(5道,15分)1.优化2.线性规划生产和经营管理中经常提出如何合理安排,使人力、物力等各种资源得到充分利用,获得最大的效益,这就是规划问题。

3.可行解:满足约束条件解为可行解。

4.可行域所有可行解的集合为可行域。

5.基:设A为约束条件②的m× n阶系数矩阵(m<n),其秩为m,B是矩阵A中m阶满秩子矩阵(∣ B∣≠0),称B是规划问题的一个基。

6.基本可行解:满足变量非负约束条件的基本解,简称基可行解。

7.影子价格在一对 P 和 D 中,若 P 的某个约束条件的右端项常数bi (第i种资源的拥有量)增加一个单位时,所引起目标函数最优值z* 的改变量称为第 i 种资源的影子价格,其值等于D问题中对偶变量yi*。

8.灵敏度分析:当某一个参数发生变化后,引起最优解如何改变的分析。

可以改变的参数有:bi ——约束右端项的变化,通常称资源的改变;cj ——目标函数系数的变化,通常称市场条件的变化;pj ——约束条件系数的变化,通常称工艺系数的变化;其他的变化有:增加一种新产品、增加一道新的工序等。

9.运输问题10.整数规划要求一部分或全部决策变量取整数值的规划问题称为整数规划。

11.0-1规划决策变量只能取值0或1的整数规划。

12.松弛问题13.目标规划目标规划是在线性规划的基础上,为适应经济管理多目标决策的需要而由线性规划逐步发展起来的一个分支。

14.偏差变量15.链图中某些点和边的交替序列,若其中各边互不相同,且对任意vi,t-1和vit均相邻称为链。

16.路链中所有顶点不相同,这样的链称为路17.最小生成树如果G2是G1的部分图,又是树图,则称G2是G1的部分树(或支撑树)。

树图的各条边称为树枝,一般图G1含有多个部分树,其中树枝总长最小的部分树,称为该图的最小部分树(或最小支撑树)。

18.PERT网络图注重于对各项工作安排的评价和审查。

19.关键路线法各弧权重总和最大的路线,或称主要矛盾路线,它决定网络图上所有作业需要的最短时间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《运筹学》综合复习资料
一、判断题
1、LP 问题的可行域是凸集。

2、LP 问题的基可行解对应可行域的顶点。

3、LP 问题的最优解一定是可行域的顶点,可行域的顶点也一定是最优解。

4、若LP 问题有两个最优解,则它一定有无穷多个最优解.
5、求解LP 问题时,对取值无约束的自由变量,通常令"-'=j j j x x x ,其中∶0≥"
'
j j
x x ,
在用单纯形法求得的最优解中,有可能同时出现0>"
'
j j
x x .
6、在PERT 计算中,将最早节点时刻等于最迟节点时刻、且满足0)(),()(=--i t j i t j t E L 节点连接而成的线路是关键线路
7、在一个随机服务系统中,当其输入过程是一普阿松流时,即有
(){}()t
n e
n t n t N P λλ-==!

则同一时间区间,相继两名顾客到达的时间间隔是相互独立且服从参数为λ的负指数分
布,即有()t
e t X p λλ-==
8、分枝定界求解整数规划时,分枝问题的最优解不会优于原(上一级)问题的最优解. 9、对偶问题的对偶问题一定是原问题。

10、运输问题是一种特殊的LP 问题,因而其求解结果也可能会有唯一的最优解或无穷多个最优解。

11、动态规划中,定义状态变量时应保证在各个阶段中所做决策的相互独立性。

12、用割平面法求解整数规划时,每次增加一个割平面/线性约束条件后,在新的线性规划可行域中,除了割去一些不属于整数解的可行解外,还割去了上级问题不属于整数解的最优解。

13、在求解目标规划时,遵循的基本原则就是在考虑低级目标时,不能破坏已经满足的高级目标。

14、根据对偶问题的性质,当原问题为无界解时,其对偶问题无可行解,反之,当对偶问题无可行解时,其原问题具有无界解。

15、已知*i y 为线性规划的对偶问题的最优解,若*i y =0,说明在最优生产计划中第i 种资源一定有剩余。

16、表上作业法中,按最小元素法给出的初始调运方案,从每一空格出发可以找出而且仅能找出唯一的闭回路。

17、目标规划中正偏差变量应取正值,负偏差变量应取负值。

二、计算题 1.某LP 模型为∶
,,,3
5.0218
41023..19508943214343214321≥≤+≤++++++=x x x x x x x x x x t s x x x x z Max
单纯形表已解至如下表:
填上表缺数据,回答该问题的最优解,最优目标函数值。

2.某运输问题的运价及各产地、销地的数据如下表,试确定总运费最低的运输方案。

3. 某公司计划制造Ⅰ、Ⅱ两种家电产品,已知各制造一件时分别占用的设备A 、B 的台
时、调试时间及每天可用的设备能力和单件产品的获利情况如下表:
(1)建立获利最大的线性规划模型并求解(可不考虑整数要求)
(2)对上问中获利最大的线性规划模型建立其对偶规划模型,并回答其最优解和说明该公司的短缺资源是哪些?
(3)如获利最大的线性规划模型要求其变量为整数,试用割平面法解之。

(4) 如该公司新研制的产品Ⅲ对三种资源的单位产品消耗是(3 4 2T),预期盈利为3元∕件,试判断且仅判断产品Ⅲ是否值得生产?
4.某公司有某种高效率设备3 台,拟分配给所属甲、乙、丙工厂,各工厂得到设备后,获利情况如下表,试建立最优分配方案。

(1) 正确设定状态变量、决策变量并写出状态转移方程;(2) 写出规的(形式)基本方程;(3) 求解。

5.
(1)3343122211312======x x x x x x );(2)若价值系数4,2C 由1变为3,所求最优解是否仍为最优解;(3)若所有价值系数均增加1,
最优解是否改变?
6.有一辆卡车最大载重为10吨,用以装载3种货物,每种货物的单位重量及相应的单位价值如下表所示,问如何装载可使运输货物的总价值最大?
三、建立模型并计算
1.设有A ,B ,C ,D 四个工人,可以完成1,2,3,4四项工作任务,由于每个工人完成不同的任务成本不同,试建立总成本最低的指派模型并求解。

2.12n 1b 2…b n (吨液量/日)。

为适应油田开发的需要,规划在该油区打m 口调整井A 1,A 2…A m ,且这些井的位置已经确定。

根据预测,调整井的产量分别为a 1,a 2…a m (吨液量/日)。

考虑到原有计量站富余的能力,决定不另建新站,而用原有老站分工管辖调整井。

按规划要求,每口井只能属于一个计量站。

假定A i 到B j 的距离d ij 已知,试确定各调整井与计量站的关系,使新建集输管线总长度最短。

(设定变量,写出模型)。

3.不允许缺货、补充时间无限短的确定型存储模型的假设条件是: 不允许缺货 补充时间无限短
需连续的且需求速率R为常数
单位物资单位时间的存储费用C1是常数
每次定购费C3(不考虑货款)是常数
试:(1)画出存储量变化曲线;(2)分析费用,建立总平均费用最低的订货模型(订货周期、订货量)。

四、绘图并计算
某工程的PERT数据如下表∶
(1)画出网络图并予节点以正确的编号;(2)计算最早.最迟节点时刻;(3) 据所画网络图填写计算下表。

《运筹学》综合复习资料参考答案
一、判断题
1. 参考答案:
2. 参考答案:
063461343231231413======x x x x x x
3. 参考答案:
(1) 2
172
32
721===z x x
(2) 2
14
1
0321===y y y ,短缺资源为设备B 与调试工序。

(3) 823
21===z x x
(4) ()1243234102141021545112033
=⎪⎪⎪

⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛----=x σ,故产品Ⅲ值得生产。

4. 参考答案:
(1) 设状态变量s k 表示k 阶段开始时,可供分配的机器台数;决策变量x k 表示k 阶段分配给k 工厂机器台数,则状态转移方程为:k
k k x s s -=+1
(2) ()()()1,2,3,max )(0
)(1
10441=+==++-=≤≤+k s f x s v s f s f k k k k k x s s s x k k k
k k k
k
(3) ()1431
201321====f x x x
5.参考答案:
(1)最优调运方案:x 12=2 x 13=6 X 21=4 x 22=3 x 23=3 X 31=4
(2)是 (3)不改变
6.参考答案:
运送第一种货物2件,运送第二种货物1件,共重10砘,可达最大价值为13。

三、建立模型并计算 1. 参考答案:
111142332411====x x x x
2. 参考答案:
设ij x 表示i 井是否连到j 站
positive
iable n
j b x
a m i x
t s x d z Min j
m i ij
i
n
j ij
m i n
j ij
ij var 111.
.1
111
=≤===∑∑∑∑====
3.参考答案:
平均存储费用:
平均存储量
Rt Rtdt t t 2110=⎰ 平均存储费用 t RC 12
1
订货费:
一个周期的平均每天的订货费
t
C 3
S
T
0 t
总平均费用:
()t
C t RC t C 3121
+=
模型的建立:
令 ()02131=-=t C RC dt t dC (其中33222C dt
d =)
则得:
13
2*RC C t =
1
3
2*C RC Q =()R C C t C 312*= 四、绘图并计算 参考答案:。

相关文档
最新文档