2020版液化天然气的低温特性

2020版液化天然气的低温特性
2020版液化天然气的低温特性

( 安全管理 )

单位:_________________________

姓名:_________________________

日期:_________________________

精品文档 / Word文档 / 文字可改

2020版液化天然气的低温特性

Safety management is an important part of production management. Safety and production are in

the implementation process

2020版液化天然气的低温特性

LNG的低温常压储存是在液化天然气的饱和蒸气压接近常压时的温度进行储存,也即是将LNG作为一种沸腾液体储存在绝热储罐中。常压下LNG的沸点在-162℃左右,因此LNG的储存、运输、利用都是在低温状态下进行的。低温特性除了表现在对LNG系统的设备、管道的材料要注意防止低温条件下的脆性断裂和冷收缩对设备和管路引起的危害外,也要解决系统保冷、蒸发气处理、泄漏扩散以及低温灼伤等方面的问题。

一、隔热保冷

LNG系统的保冷隔热材料应满足导热系数小、密度低、吸湿率和吸水率小、抗冻性强的要求,并在低温下不开裂、耐火性好、无气味、不易霉烂、对人体无害、机械强度高、经久耐用、价格低廉、方便施工等要求。

二、蒸发特性

LNG是作为沸腾液体储存在绝热储罐中。外界任何传入的热量都会引起一定量液体蒸发成为气体,这就是蒸发气(BOG)。蒸发气的组成与液体组成有关。标准状况下蒸发气密度是空气的60%。

当LNG压力降至沸点压力以下时,将有一定量的液体蒸发而成为气体,同时液体温度也随之降到其在该压力下的沸点,这就是LNG 的闪蒸。通过烃类气体的气液平衡计算,可得到闪蒸气的组成及气量。当压力在100~200kPa范围内时,1m3

处于沸点下的LNG每降低1kPa压力时,闪蒸出的气量约为0.4kg。当然,这与LNG的组成有关,以上数据可作估算参考。由于压力、温度变化引起的LNG蒸发产生的蒸发气的处理是液化天然气储存运输中经常遇到的问题。

三、泄漏特性

LNG倾倒在地面上时,起初迅速蒸发,然后当从地面和周围大气中吸收的热量与LNG蒸发所需的热量平衡时便降至某一固定的蒸发速度。该蒸发速度的大小取决于从周围环境吸收热量的多少。不同表面由实验测得的LNG蒸发速度如表2-4[2]

所示。

表2-4LNG蒸发速度kg/(m2 ·h)

材料

60s后蒸发速度

骨料

480

湿沙

240

干沙

195

190

标准混凝土

130

轻胶体混凝土

65

LNG泄漏到水中时产生强烈的对流传热,以致在一定的面积内蒸发速度保持不变。随着LNG流动泄漏面积逐渐增大,直到气体蒸发量等于漏出液体所能产生的气体量为止。

泄漏的LNG开始蒸发时,所产生的气体温度接近液体温度,其密度大于环境空气。冷气体在未大量吸收环境空气中热量之前,沿地面形成一个流动层。当从地面或环境空气中大量吸收热量以后,温度上升时,气体密度小于环境空气。形成的蒸发气和空气的混合物在温度继续上升过程中逐渐形成密度小于空气的云团。云团的膨胀和扩散与风速和大气的稳定性有关。LNG泄漏时,由于液体温度很低,大气中的水蒸气也被冷凝而形成“雾团”,这是可见的,可以作为可燃性云团的示踪物,指示出云团的区域范围。泄漏的LNG以喷射形式进入大气,同时进行膨胀和蒸发,还进行与空气的剧烈混合。大部分LNG包在初始形成的类似溶胶的云团之中,在进一步与空气混合的过程中完全气化。

LNG与外露的皮肤短暂地接触,不会产生什么伤害,可是持续地

LNG组成与特性

液化天然气(LNG)的组成 1.1.1 液化天然气(LNG)的概念 液化天然气简单地说就是液化了的天然气,它是天然气经脱水、脱除酸性气体等净化处理后,经节流膨胀及外加冷源的方法逐级冷却,在约-1620C液化而得到。 液化天然气的英文为:liquefied natural gas,缩写为LNG。 1.1.2 液化天然气(LNG)的组成 液化天然气是一种液态状况下的无色流体,主要由甲烷组成,组分可能含有少量的乙烷、丙烷、氮或通常存在于天然气中的其他组分。 某些典型液化天然气(LNG)气源组分见表2-4、2-5。 表2-4 我国生产和进口的典型液化天然气组成 表2-5 世界主要基本负荷型LNG工厂产品组成(mol%)

资料来源:World LNG Outlook, 1999 Edition, Cedigaz. 1.1.3 甲烷的基本性质 作为液化天然气主要组分的甲烷,其分子式为CH4,分子结构是正四面体空间构型,是最简单的烷烃,常温常压下为无色无味的极难溶于水的可燃气体。 甲烷基本无毒,但浓度过高时,能使空气中的含氧量明显降低,使人窒息。当空气中甲烷含量达25%~30%时,可引起头痛、头晕、乏力、注意力不集中、呼吸和心 跳加速,若不及时脱离,可致窒息死亡。 气态甲烷在不同温度压力下的密度、液态甲烷的密度、液态甲烷的气化潜热、液态甲烷的蒸气压分别见表2-6、2-7、2-8、2-9 [2]。 表2-6 气态甲烷在不同温度压力下的密度 表2-7 液态甲烷的密度 表2-8 液态甲烷的气化潜热

表2-9 液态甲烷的蒸气压 1.1.4 液化天然气(LNG)中常见组分的基本性质 液化天然气(LNG)中常见组分的某些基本性质,见表2-10。 表2-10 液化天然气常见组分的基本性质[273.15K、101325Pa]

高低温试验箱保温性能的测试及评定方法

高低温试验箱保温性能的测试及评定方法 2014/9/15 高低温试验箱保温性能的测试及评定方法 高低温试验箱的相关性能: 1、高低温试验箱的工作室应设有观察窗和照明装置,便于操作人员在试验时能随时观测箱内试样情况; 2、加热和制冷器件的热量和冷量不应直接辐射在试样上,确保试验结果的可靠性; 3、制冷系统不应有漏气、漏水、漏油缺陷; 4、高低温试验箱应设有测试孔,以方便用户引线; 5、试验箱内应有放置或悬挂试验样品的样品架。样品架应有足够的耐高温、低温性能; 6、试验箱内壁应使用耐热不易氧化和具有一定机械强度的材料制造。应无影响试验的污染源; 7、箱门应密封良好,密封条应有良好的抗高温老化、耐低温硬化性能; 8、外观涂镀层应平整光滑、色泽均匀,不得有露底、起泡、起层或擦伤痕迹; 9、保温材料应能耐高温并具有阻燃性能。保温层应有足够的厚度,能保证高低温试验箱外部易触及部位的温度在高温试验时不高于50℃,在低温试验及环境温度为15℃~35℃、相对湿度≤85%时不应有凝露现象。

本测试在做过升温及降温试验期间进行,当试验箱达到最高测试温度并稳定3h后,用表面温度计检查试验箱外壁、观察窗框架及其它易触及部位的温度,如不高于50℃,在低温条件下,当环境温度为30~35℃、相对湿度为75%~85%时,箱外壁、箱门及密封处不应有明显的凝露现象。 当试验箱达到最低测试温度并稳定3h后,用肉眼观察箱外壁、箱门密封处的凝露情况,如无明显的露珠或水膜上述凝露现象等事宜。 以上高低温试验箱升温及降温速率测试方法摘自 GB10592-89高低温试验箱标准。本标准要求较高,若只需要符合GB/T2423.1-2008、GB/T2423.2-2008标准,升降温速率则为:升:1-3度/min、降:0.7-1度/min。

高低温试验

高低温试验 一、概念:高低温箱具有较宽的温度控制范围,其性能指标均达到国家标准GB/T10592高低温试验箱技术条件,适用于按GB/T2 423.1、2《电工电子产品环境试验试验A:低温试验方法,试验B:高温试验方法》对产品进行低温及高温试验。适用于电工电子产品(包括元件、设备及其它产品)的高低温度试验; 2). 本产品设计先进合理,能适应长期、稳定、安全、可靠的试验要求, 同时配有真空透明视窗,能清晰看到工作室试验状态,采用高级进口数显 温控仪,显示直观、操作简便,具有国际先进水平。 3). 该类产品主要部件采用进口件,性能优异,外观美观,可靠性好,是实验室环境试验设备的理想选择。 高低温试验箱 二、设备的用途

该设备主要是针对于电工、电子产品,以及其原器件,及其它材料在高温、低温的环境下贮存、运输、使用时的适应性试验。 该试验设备主要用于对产品按照国家标准要求或用户自定要求,在低温、高温、条件下,对产品的物理以及其他相关特性进行环境模拟测试,测试后,通过检测,来判断产品的性能,是否仍然能够符合预定要求,以便供产品设计、改进、鉴定及出厂检验用。 三、设备的结构特征 该设备主要由箱体、制冷系统、加热系统、空气循环系统以及控制系统组成。 箱体的外壳为采用冷轧钢板静电喷塑,内胆采用优质304SUS不锈钢板,箱门中间设大面积观察窗,并配有观察灯,使用户可以清晰地看到试样的试验情况。外型整体美观大方。保温层为硬质聚氨脂发泡加上少量的超细玻璃棉,具有强度高,保温性有好等特点。 该设备主要温度控制仪采用智能数显温湿度控制仪,人性化设计的操作方法,易学易用,并且不同功能档次的仪表操作相互兼容。输入采用数字校正系统,内置常用热电偶和热电阻非线性校正表格,测量精确稳定。具备位式调节和AI人工智能调节功能,0.2级精度,多种报警模式。升温、降温、加湿、去湿独立,独特的BTHC平衡调温调湿方式。 制冷系统采用法国“泰康”全封闭进口压缩机组,机械式单级制冷或复迭低温回路系统,全自动控制与安全保护协调系统。加热采用不锈钢翅片加热管。

液化天然气的计量方法及其标准化

液化天然气的计量方法及其标准化 液化天然气, 标准化, 计量 第36卷第2期 石油与天然气化工 CHEMlCAL ENGlNEERlNG OF OlL& GAS 1575 液化天然气的计量方法及其标准化 张福元王劲松孙青峰。罗勤许文晓 (1.中石油西南油气田公司天然气研究院2.西气东输管道公司南京计量检测中心 3.中石油天然气与管送分公司LNG处). 摘要介绍了国际贸易中通用的液化天然气计量方法和相关标准,结合我国实际情况提出 了液化天然气计量方案的建议。 关键词储罐容积标定液位测量密度计算/ } 液化天然气(以下简称LNG)是一种新兴的一级能源,其形成产业的历史尚不足50年。与压缩天 然气(.G)一样,LNG也是商品天然气的一种特殊形式,生产此种形式天然气的目的是解决资源地域分布与市场需求之间的特殊矛盾。上世纪90年代以来,由于LNG生产和储运工艺技术开发都取得了长足进步,随着全球经济一体化进程的加速,LNG产业的发展极为迅速。近10多年来,LNG消费量的年平均增长率达到6.16%,远高于其它一级能源(天然气:2.20%,核能:2.47%,水力能:1.52%,石油:1.06%,煤炭: 0.85% )。 为缓解天然气供不应求且缺口严重的矛盾,在充分进行了可行性研究的基础上,我国政府做出大 规模引进LNG以解决沿海经济发达地区能源短缺问题的重大决策,并于2001年审批了中海油的广东LNG试点项目和福建LNG项目。而后又审批了中石油、中石化和中海油其他8个LNG项目。目前广东项目已经投产,福建项目将于2007年投产。我国的LNG产业步人了高速发展的轨道。由于LNG属新兴产业,目前在我国基本上是个空白的领域。为适应产业发展的需要,全国天然气标准化技术委员会(SAC /TC244)于2000年设立了液化天然气标准技术工作组,着手制定急需的技术标准,并开展LNG专业的标准体系研究,目前已经发布了1项国家标准,报批了3项国家标准,发布了2项行业标准。这些标准都属于基本建设类的标准,没有涉及到计量方面。 l 液化天然气计量方法 从LNG产业链看,其计量可分为液化前、气化前和气化后的计量,液化前和气化后的计量属于管 道天然气计量,国内的技术和标准化都处于国际水平上,在此只讨论LNG气化前的计量方法。从原理上讲,LNG气化前的计量与油品类似,可分为动态和静态计量两种方式。由于LNG气化前是处于极低温度(约一165 oC)下储存和输送,虽然个别流量计(如质量式)能对其流量进行动态测量,但流量计当时尚不可能进行检定或校准,故其量的测量只能使用静态计量方式。LNG静态计量与油品的静态计量类似,都是通过测量储罐的液位等参数后计算其体积,再使用密度计算质量,不同的是;所使用的设备和方法受到极低温度的限制,在能量计量方式中,还要计算发热量和能量。当前国外LNG气化前的计量方法概要如下: (1)储罐容积标定。储罐容积标定方法有物理;测量、立体照相测量和三角测量3种方法; (2)液位测量。液位测量有电容液位计、浮式液位计和微波液位计3种; (3)液相和气相温度测量。液相和气相温度测.量有电阻温度计和热电偶2种; (4)样品采集。要求使用特殊设备采集液体样品,并使之均匀气化,压缩到气体样品容器中供组成分析 用; 158 液化天然气的计量方法及其标准化 (5)组成分析。LNG的组成分析方法与管输天然气的方法相同; (6)密度计算。使用组成分析和测量的液体温度数据计算; (7)体积计算。使用测量的液位、温度和压力,利用储罐容积标定(校正)表计算; (8)质量计算。使用计算的密度和体积计算;

液化石油气与液化天然气的特性

2 液化石油氣與液化 天然氣之特性 2-1 液化石油氣之組成 2-2 液化石油氣的一般性質 2-3 液化石油氣之燃燒性質 2-4 液化天然氣 2-5 液化天然氣之特性 C h a p t e r

油氣雙燃料車-LPG 引擎 2-2 所謂液化石油氣,其英文名稱為“Liquid Petroleum Gas ”仍石油氣液化後所得之產品,通常取英文名詞中之三個字首“LPG ”為簡稱。中文俗稱“液化瓦斯”,主要成分乃石油中所含的丙烷、丁烷之類比較容易液化的液化氣體製成的;對象由丙烷與丁烷等之碳氫化合物,俗稱為烴,而若其組成中碳原子數少於5者稱之為低級碳氫化合物或稱低烴類。 甲烷(CH 4)、乙烷(C 2H 6)、丙烷(C 3H 8)、丁烷(C 4H 10)等,其分子式概屬於2n 2n H C +型(n 為碳原子數目),稱為烷系碳氫化合物或石腊烴。 乙烯(C 2H 4)、丙烯(C 3H 6)、丁烯(C 4H 8)等,其分子式概屬於C n H 2n 型,稱為烯系碳氫化合物或稱烯烴。 液化石油氣(LPG)中所含之碳氫化合物以石腊烴為主,但仍含有少量之低級烯烴(碳原子量少於5的烯烴),因此液化石油氣可說是低級碳氫化合物的混合氣體。 一般高壓氣體依其狀態可概分為三種,即壓縮氣體、溶解氣體及液化氣體等。 1. 壓縮氣體是指將氣體壓縮,而壓縮後在常溫下仍為氣體,如氫氣、氧氣、氮氣等,其在容器內之壓力通常約為150kg/cm 2。 2. 溶解氣體是指在容器內先填入多孔性質的固體,再注入溶劑,最後才把氣體以高壓灌入溶解而成;如乙炔氣,因若單獨將乙炔氣加以壓縮,則有分解爆炸之危險,故通常以丙酮為溶劑,使成溶解氣體狀態存在容器內。 3. 液化氣體是指如丙烷、丁烷、丙烯、丁烯氯氣、二氧化碳等氣體,在常溫常壓下為氣體狀態,但經壓縮後則易變成液態,故能以液態保存在容器內,容器內之壓力則隨所裝氣體之種類及溫度條件而異。 目前台灣的液化石油氣(LPG),都為中國石油公司所供應,有的從苗栗、新竹一帶盛產的天然氣中分離而得,內含丙烷、丁烷各佔約50%;另外就是靠由高雄煉油廠在原油提煉過程中之油氣製成,其丙烷與丁烷之比例約為30%與70%,並滲有少量之其他烯烴或烷烴。 4. LPG 之分類 依據美國ASTM 的分類方法,可分為4大類: (1) 商用丙烷(Commercial propane) 供寒帶地區對燃料成分要求較嚴之地區,以及對燃料要求較嚴格之引擎使用。 (2) 商用混合丙丁烷(Commercial PB mixture) 為一般狀況所使用。

微电子器件试验二极管高低温特性测试及分析完整版

微电子器件试验二极管高低温特性测试及分析 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

电子科技大学微固学院 标准实验报告 (实验)课程名称微电子器件 电子科技大学教务处制表 电子科技大学 实验报告 学生姓名:学号:指导教师:张有润 实验地点: 211楼605 实验时间: 一、实验室名称:微电子器件实验室 二、实验项目名称:二极管高低温特性测试及分析 三、实验学时:3 四、实验原理: 1、如图1,二极管的基本原理是一个PN结。具有PN结的特性——单向导电 性,如图2所示。 图 1 二极管构成原理 2、正向特性:二极管两端加正向电压,产生正向电流。正向电压大于阈值电压时,正向电流急剧增加,如图2 AB段。 3、反向特性:二极管两端加上反向电压,在开始的很大范围内,反向电流很小,直到反向电压达到一定数值时,反向电流急剧增加,这种现象叫做反向击穿,此时对应电压称为反向击穿电压。 4、温度特性:由于二极管核心是PN结,导电能力与温度相关,温度升高,正向特性曲线向左移动,正向压降减小;反向特性曲线向下移动,反向电流增大。

图 2 二极管直流特性 五、实验目的: 学习晶体管图示仪的使用,掌握二极管的高低温直流特性。 六、实验内容: 1、测量当二极管的正向电流为100A时的正向导通压降; 2、测试温度125度时二极管以上参数,并与室温下的特征参数进行比较。 七、实验器材(设备、元器件): 二极管、晶体管特性图示仪、恒温箱 八、实验步骤: 1、测晶体管的正向特性。各旋钮位置为: ?峰值电压范围 0~10V ?极性(集电极扫描)正(+) ?功耗限制电阻 ~1kΩ(适当选择) ?x轴作用电压0 .1V/度 ?y轴作用电流10A/度 2、测晶体管的反向特性。各旋钮位置为: ?峰值电压范围 0~10V ?极性(集电极扫描)正(+) ?功耗限制电阻 10k~100kΩ(适当选择) ?x轴作用电压1V/度 ?y轴作用电流A/度 3、对高温时的二极管进行参数测量。 九、实验数据及结果分析: 实验数据: 十、实验结论:

LNG液化天然气化站安全运行管理(标准版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 LNG液化天然气化站安全运行管 理(标准版) Safety management is an important part of production management. Safety and production are in the implementation process

LNG液化天然气化站安全运行管理(标准 版) LNG就是液化天然气(LiquefiedNaturalGas)的简称,主要成分是甲烷。先将气田生产的天然气净化处理,再经超低温(-162℃)加压液化就形成液化天然气。LNG无色、无味、无毒且无腐蚀性,其体积约为同量气态天然气体积的1/600,LNG的重量仅为同体积水的45%左右。 一、LNG气化站主要设备的特性 ①LNG场站的工艺特点为“低温储存、常温使用”。储罐设计温度达到负196(摄氏度LNG常温下沸点在负162摄氏度),而出站天然气温度要求不低于环境温度10摄氏度。 ②场站低温储罐、低温液体泵绝热性能要好,阀门和管件的保冷性能要好。

③LNG站内低温区域内的设备、管道、仪表、阀门及其配件在低温工况条件下操作性能要好,并且具有良好的机械强度、密封性和抗腐蚀性。 ④因低温液体泵启动过程是靠变频器不断提高转速从而达到提高功率增大流量和提供高输出压力,所以低温液体泵要求提高频率和扩大功率要快,通常在几秒至十几秒内就能满足要求,而且保冷绝热性能要好。 ⑤气化设备在普通气候条件下要求能抗地震,耐台风和满足设计要求,达到最大的气化流量。 ⑥低温储罐和过滤器的制造及日常运行管理已纳入国家有关压力容器的制造、验收和监查的规范;气化器和低温烃泵在国内均无相关法规加以规范,在其制造过程中执行美国相关行业标准,在压力容器本体上焊接、改造、维修或移动压力容器的位置,都必须向压力容器的监查单位申报。 二、LNG气化站主要设备结构、常见故障及其维护维修方法 1.LNG低温储罐

液化天然气的一般特性 Microsoft Word 文档

前言 本标准等同采用CEN BS EN 1160:1997“Installations and equipment for liquefied natural gas—General characteristics of liquefiednatural gas"(液化天然气装置和设备液化天然气的一般特性)。 为便于使用者查阅原文,本标准的排版基本与原文相同,末做变动。为保证标准的实施,对易发生混淆的部分给予英文(原文)注解。 关于计量单位,本标准以法定计量单位为主,即法定计量单位值在前,非法定计量单位的相应值标在其后的括号内。 本标准的附录A、附录B为资料性附录。 本标准由中国海洋石油总公司提出。 本标准由全国天然气标准化技术委员会归口。 本标准起草单位:中海石油研究中心开发设计院、中国石油西南油气田分公司天然气研究院、中国石油天然气集团公司华东勘察设计研究院、中国石化股份有限公司中原油田分公司。 本标准主要起草人:付昱华、张邦楹、徐晓明、吴瑛、罗勤。 本标准等同采用CEN BS EN 1160:1997“Installations and equipment for liquefied natura l gas—General characteristics of liquefiednatural gas"(液化天然气装置和设备液化天然气的一般特性)。 为便于使用者查阅原文,本标准的排版基本与原文相同,末做变动。为保证标准的实施,对易发生混淆的部分给予英文(原文)注解。 关于计量单位,本标准以法定计量单位为主,即法定计量单位值在前,非法定计量单位的相应值标在其后的括号内。 本标准的附录A、附录B为资料性附录。 本标准由中国海洋石油总公司提出。 本标准由全国天然气标准化技术委员会归口。 本标准起草单位:中海石油研究中心开发设计院、中国石油西南油气田分公司天然气研究院、中国石油天然气集团公司华东勘察设计研究院、中国石化股份有限公司中原油田分公司。 本标准主要起草人:付昱华、张邦楹、徐晓明、吴瑛、罗勤。 CEN前言 本标准由从事液化天然气装置和设备的CEN/TC 282技术委员会编制,该委员会的秘书处由法国标准化组织协会管理。 本标准最迟于1996年12月,应以同样的原文发表,或是以签注认可的方式确定其具有国家标准的地位,与其相冲突的国家标准同时应予以撤消。 根据CEN/CENELEC的内部规章,下列国家的国家标准组织须执行本标准:奥地利,比利时,丹麦,芬兰,法国,德国,希腊,冰岛,爱尔兰,意大利,卢森堡,荷兰,挪威,葡萄牙,西班牙,瑞士,瑞典,英国。 1 范围 本标准给出液化天然气(LNG)特性和LNG工业所用低温材料方面以及健康和安全方面的指导。 本标准也可作为执行CEN/TC 282技术委员会(液化天然气装置和设备)的其他标准时的参考文件。 本标准还可供设计和操作LNG设施的工作人员参考。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其岁后所有

微电子器件试验二极管高低温特性测试及分析

电子科技大学微固学院 标准实验报告(实验)课程名称微电子器件 电子科技大学教务处制表 电子科技大学 实验报告 学生姓名:学号:指导教师:张有润 实验地点: 211楼605 实验时间: 一、实验室名称:微电子器件实验室 二、实验项目名称:二极管高低温特性测试及分析 三、实验学时:3 四、实验原理: 1、如图1,二极管的基本原理是一个PN结。具有PN结的特性——单向导电性,如图2所示。 图 1 二极管构成原理 2、正向特性:二极管两端加正向电压,产生正向电流。正向电压大于阈值电压时,正向电流急剧增加,如图2 AB段。

3、反向特性:二极管两端加上反向电压,在开始的很大范围内,反向电流很小,直到反向电压达到一定数值时,反向电流急剧增加,这种现象叫做反向击穿,此时对应电压称为反向击穿电压。 4、温度特性:由于二极管核心是PN结,导电能力与温度相关,温度升高,正向特性曲线向左移动,正向压降减小;反向特性曲线向下移动,反向电流增大。 图 2 二极管直流特性 五、实验目的: 学习晶体管图示仪的使用,掌握二极管的高低温直流特性。 六、实验内容: 1、测量当二极管的正向电流为100?A时的正向导通压降; 2、测试温度125度时二极管以上参数,并与室温下的特征参数进行比较。 七、实验器材(设备、元器件): 二极管、晶体管特性图示仪、恒温箱 八、实验步骤: 1、测晶体管的正向特性。各旋钮位置为: ?峰值电压范围 0~10V ?极性(集电极扫描)正(+) ?功耗限制电阻 0.1~1kΩ(适当选择) ?x轴作用电压0 .1V/度

?y轴作用电流10?A/度 2、测晶体管的反向特性。各旋钮位置为: ?峰值电压范围 0~10V ?极性(集电极扫描)正(+) ?功耗限制电阻 10k~100kΩ(适当选择) ?x轴作用电压1V/度 ?y轴作用电流0.1?A/度 3、对高温时的二极管进行参数测量。 九、实验数据及结果分析: 实验数据: 图 3 常温二极管直流特性 十、实验结论:

LNG车辆使用规范

LNG车辆使用规范 一.LNG基本知识 1. 什么是LNG? 所谓LNG实际上是英文Liquefied Natural Gas的缩写,简称LNG,也可称为液化天然气,是天然气在常压下,当冷却至约-162℃时,则由气态变成了液态。 2. LNG的组成是什么?它有什么特点? LNG的主要成份为甲烷,化学名称为CH 4,还有少量的乙烷C 2 H 6 、丙烷C 3 H 8 以及氮N 2 等其他成份组成。它的物理性质为无色、无味、无毒且无腐蚀性的液体,密度为0.430T/m3,气态密度为0.688kg/Nm3,体积约为同量气态天然气体积的1/625。其沸点为-162.5℃,熔点为-182℃,着火点为650℃,爆炸浓度范围:上限为15%,下限为5%。 3. LNG作为车用燃料有什么优点? LNG作为优质的车用燃料,与汽柴油相比,它具有辛烷值高、抗爆性能好、发动机寿命长、燃料费用低、环保性能好等优点。它可将汽柴油车尾气中CH混合物排放减少72%,NOx减少39%,CO减少90%,SOx、Pb降为零,有利于保护环境,减少城市污染。 4. LNG使用安全吗? 其实LNG是一种非常安全的汽车燃料,它汽化后的密度很低,只有空气的一半左右,稍有泄漏就会立即飞散开来,而且它的可燃范围小(5%-15%),点燃温度高(650℃),非密闭空间内不致引起爆炸。 LNG的危险性在于它的物理性质:

A. LNG在标准状态下具有极低的温度:-162℃到-125℃; B. 具有很大的气液体积比,如果减压措施不当,将导致压力迅速升高。LNG 的气液体积比大致为:620/1.; C. 天然气是易燃性气体(燃点538°C)和窒息性气体; D. 在密闭空间可能产生爆炸(空气中可燃极限5~15%)。 二. LNG车辆的安全操作 1、LNG车辆的安全驾驶 由于LNG车辆的发动机特性决定了它在发动机低转速时的输出功率较柴油发动机稍小,因而相对来说提速较慢,所以在驾驶操作时要注意车辆的正确使用和操作。 发动机启动时应注意先关闭所有仓门。在起动发动机前,拉好手制动,将变速箱换至空档,在空档状态下,将钥匙转到“ON”位臵,接通电源后检查各仪表指示是否正常后等待几秒后方可启动;起动时间不能超过10秒,连续起动要间隔半分钟;如果连续启动3次不能正常启动,则应仔细检查燃气系统以及电路系统有无故障;每次起动后,禁止大油门运转冷态发动机,冷起动后应逐渐提高发动机转速。起动时严禁猛踩油门。应怠速运行发动机1-3分钟才能逐步提速起步;发动机怠速时间严禁超过10分钟。 起步时应严格遵守一档起步的原则,严禁二档起步。在行驶中可根据行驶的道路状况和车辆载重选择合适的档位,尽可能以经济车速行驶。正确驾驶、平稳地接合离合器,及时换档,避免突然加速和紧急制动,减少车身和动力系统的负荷。由于燃气车辆低转速时输出功率不高,使用的是电子点火系统,所以应改变以前的柴油车驾驶习惯,在加档前可适当提速,但仍应尽量保持在发动机转速不超过1200-1500转/分时换档。 在行驶过程中,应注意观察有没有异常的声音,气味,注意观察仪表指示是

液化气的物理特性

液化气的物理特性 表示液化气物理特性的项目有沸点、熔点、临界参数、密度、比容、相对密度、蒸气压、露点、蒸发潜热、粘度、溶解度。 1、沸点 液体沸腾时的温度称为沸点。沸点和蒸发虽同属于气化现象,但蒸发只是在液体表面上进行,且在任何温度下都有蒸发现象,只不过是蒸发有快慢而已,而沸腾则是在液体内部和表面都同时发生,但必须达到一定条件才会发生,这个条件就是液体内的饱和蒸气压和外界压力相等时,才会发生液体沸腾现象。 液化气的沸点与外界压力有关,外界压力增大,沸点升高,压力减小,沸点降低。我们通常所说的沸点是规定在101.33KPa(1atm)下的液体沸腾的温度。例如:丙烯在101.33KPa下沸点为-42.05℃,压力增大到0.8MPa时,沸点会上升到20℃。为了液化气储运安全使其沸点控制到常温以下,所以液化气工作压力多定为0.7MPa。 液化石油气各组分在101.33KPa下的沸点参数见表1。 2、气体、液体密度 密度是指单位体积的物质所具有的质量,用ρ表示,单位为Kg/m3。 气体密度是随温度和压力的不同而有很大变化。因此,表示气体密度时,必须规定温度和压力条件。通常以压力为101.33KPa、温度为0℃时的数值,作为标准状态下密度值。 液化气主要成分气体密度见表2

液体的密度受温度影响较大,温度升高时,体积膨胀,密度减小。但密度受压力影响却很小,可以不予考虑。表3列出了丙烷的密度与温度的关系,由表3可知液体丙烷受温度使其密度和体积变化情况。如在15℃时,丙烷体积为100%,当温度升高30℃时,体积膨胀到105%。即比原来增加了5%。 丙烷的密度与温度的关系表3 1、气体、液体相对密度 物质的密度与某一标准物质的密度之比称为该物质的相对密度,相对密度没有单位。 气体的相对密度是指在标准状态下,气体的密度与空气密度的比值,用S表示,即: S=ρ/ρ 空 式中S——某气体的相对密度; ρ——标准状态下某气体的密度,Kg/m3。 ——标准状态下空气的密度,其值为1.293Kg/m3。 ρ 空 另一种简单方法,是用液化石油气分子量与空气量即:S=M/M 空 式中M——液化石油气的分子量; ——空气分子量,其值为29。 M 空 液体的相对密度是液体的密度与同体积4℃纯水的密度之比,用d表示,没有单位。即: d=ρ/ρ 水 式中d——某液体相对密度; ρ——某液体的密度,g/cm 2 ——在101.33Kma和4℃下,纯水的密度,其值为1 g/cm2ρ 水 液态液化气的相对密度是以0℃的数值作为标准,但操作和实际中都是在常温下进行的。液态液化气相对密度在0.5~0.6之间,即比水轻得多。气态液化

高低温储存测试规范

1.目的Purpose 此项测试为了保证产品在高低温储存后能正常工作,不至影响产品之机构及电器性能. 2.适用范围Scope 凡Monitor厂所设计生产之显示器(LCD Monitor)皆适用. 3.权责Authority and Responsibility 3.1QRE: 执行测试,并对问题点提报及对策改善追踪; 3.2工程部: 工程问题分析及对策; 3.3研发部: 设计问题分析及对策. 4.名词定义Terms Definition 4.1 High/Low Temperature Storage Test: 高低温储存试验 5.作业流程Operation Flow NA 6.作业内容Operation Description 6.1 测试设备 6.1.1 高温高溼机:MHU-800或MHU-1700 6.2 测试程序 6.2.1 检查待测机台之电气性能,内外观后,将产品放入恒温恒湿机内; 6.2.2依试验规格要求设定好程序,然后按开始执行试验; 6.2.3定时巡视并并记录其测试状况,如有不良应立即将问题反馈之工程分析,对策OK后再 继续进行测试; 6.2.4试验结束,检测产品电气与机构性能;若发现不良则将问题反馈之工程分析并追踪对 策改善状况. 6.2.5记录试验结果. 6.2.6 High/Low Temperature Storage Test Diagram

7.参考资料Concerned Document 高温高湿实验机作业指导书(H3EE011) 8.附录Attachment 8.1附录一.Low/High temp storage Test Report(MH3QM049-01),共一页 -20℃25℃ 60℃

微电子器件试验二极管高低温特性测试及分析

电子科技大学微固学院 标准实验报告 (实验)课程名称微电子器件 电子科技大学教务处制表 电子科技大学 实验报告 学生姓名:学号:指导教师:张有润 实验地点: 211楼605 实验时间: 一、实验室名称:微电子器件实验室 二、实验项目名称:二极管高低温特性测试及分析 三、实验学时:3 四、实验原理: 1、如图1,二极管的基本原理是一个PN结。具有PN结的特性——单向导电性,如图2所示。 图 1 二极管构成原理 2、正向特性:二极管两端加正向电压,产生正向电流。正向电压大于阈值电压时,正向电流急剧增加,如图2 AB段。 3、反向特性:二极管两端加上反向电压,在开始的很大范围内,反向电流很小,直到反向电压达到一定数值时,反向电流急剧增加,这种现象叫做反向击穿,此时对应电压称为反向击穿电压。 4、温度特性:由于二极管核心是PN结,导电能力与温度相关,温度升高,正向特性曲线向左移动,正向压降减小;反向特性曲线向下移动,反向电流增大。 图 2 二极管直流特性 五、实验目的:

学习晶体管图示仪的使用,掌握二极管的高低温直流特性。 六、实验内容: 1、测量当二极管的正向电流为100?A时的正向导通压降; 2、测试温度125度时二极管以上参数,并与室温下的特征参数进行比较。 七、实验器材(设备、元器件): 二极管、晶体管特性图示仪、恒温箱 八、实验步骤: 1、测晶体管的正向特性。各旋钮位置为: ?峰值电压范围 0~10V ?极性(集电极扫描)正(+) ?功耗限制电阻 ~1kΩ(适当选择) ?x轴作用电压0 .1V/度 ?y轴作用电流10?A/度 2、测晶体管的反向特性。各旋钮位置为: ?峰值电压范围 0~10V ?极性(集电极扫描)正(+) ?功耗限制电阻 10k~100kΩ(适当选择) ?x轴作用电压1V/度 ?y轴作用电流?A/度 3、对高温时的二极管进行参数测量。 九、实验数据及结果分析: 实验数据: 图 3 常温二极管直流特性 十、实验结论: 通过测试,可以知道:高温时正向导通压降降低了,这与所学理论知识一致,实验结果正确。其常温下的正向直流特性如图3所示。 十一、总结及心得体会:

LNG点供安全管理制度标准范本

管理制度编号:LX-FS-A38607 LNG点供安全管理制度标准范本 In The Daily Work Environment, The Operation Standards Are Restricted, And Relevant Personnel Are Required To Abide By The Corresponding Procedures And Codes Of Conduct, So That The Overall Behavior Can Reach The Specified Standards 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

LNG点供安全管理制度标准范本 使用说明:本管理制度资料适用于日常工作环境中对既定操作标准、规范进行约束,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 1 安全教育 充装站的工作人员上岗前必须经过安全教育。 1.1一级安全教育:是本单位生产设施范围内的教育,由技术负责人执行。安全教育的主要内容如下: (1) 以《安全生产法》、《危险化学品安全管理条例》、《特种设备安全监察条例》等法律法规为重点内容,进行生产、安全管理制度等方面的教育。 ⑵通过事故案例进行安全生产正、反两方面的经验教训教育。 ⑶进行消防、防泄漏、防火、防爆等应急事故处

液化天然气LNG仪表及电气设备标准

液化天然气LNG仪表及电气设备标准 1.1液位计 1.1.1LNG储罐 1.1.1.1LNG储罐应配备两套独立的液位计。仪表选型时应考虑密度的变化。设计和安装应使其更换不影响储罐操作。 1.1.1.2储罐中应配备两个高液位警报器,可以是液位计的一部分。它们应相互独立。在设置警报时应让作业者有充分的时间来中止液流,避免液位超出最大允许充装高度,且警报器应安装在充装作业者能听见的位置。在7.1.1.3节中所要求的在高液位液流切断装置不能代替这一警报器。 1.1.1.3LNG储罐应配备高液位液流切断装置,它们应与全部计量仪器分开设置。 1.1.2致冷剂和易燃工艺流体储罐 1.1. 2.1各储罐应配备液位计。如果储罐有可能充装得过满,应按7.1.1.2的要求配备高液位警报器。 1.1. 2.27.1.1.3要求的高液位液流切断装置同样适用于易燃致冷剂。 1.2压力表。各储罐应配备一台压力表,装在储罐最高液位以上的位置。 1.3真空表。在有真空夹套的设备上,应配备仪器或接口以便检查在环形空间中的绝对压力。

1.4温度指示器。现场装配的储罐上应配备温度检测装置,以便在储罐投入使用时控制温度,或作为检查和标定液位计的一种辅助手段。 1.4.1气化器。在气化器上应配备温度指示器,监测LNG、气化气及热媒流体的进、出口温度,以确保传热面的效率。 1.4.2低温容器和设备的加热基础。低温容器和设备的基础,可能受到土地结冰或霜冻的不利影响,应配备温度监测系统。 1.5事故切断 应设计液化、储存、和气化设备的仪表,在电力或仪表风的供应发生故障时,能让系统回到并保持在安全的状态,直到操作人员采取适当措施或者重新启动此系统,或者保护系统。 1.6电气设备 1.6.1电气设备和配线的类别和设置应符合NFPA 70《国家电气规范?》或CSA C2 2.1《加拿大电气规范》关于处于危险区域中的有关规定。 1.6.2在表7.6.2所规定的分区内设置的固定电气设备和配线应符合表7.6.2和图7.6.2(a)~ (d)中的有关要求,并符合NFPA 70《国家电气规范?》中关于危险区域中的有关规定。

液化天然气的一般特性

液化天然气的一般特性 GB/T 19204-2003 前言 本标准等同采用CEN BS EN 1160:1997“Installations and equipment for liquefied natural gas—General characteristics of liquefiednatural gas"(液化天然气装置和设备液化天然气的一般特性)。 为便于使用者查阅原文,本标准的排版基本与原文相同,末做变动。为保证标准的实施,对易发生混淆的部分给予英文(原文)注解。 关于计量单位,本标准以法定计量单位为主,即法定计量单位值在前,非法定计量单位的相应值标在其后的括号内。 本标准的附录A、附录B为资料性附录。 本标准由中国海洋石油总公司提出。 本标准由全国天然气标准化技术委员会归口。 本标准起草单位:中海石油研究中心开发设计院、中国石油西南油气田分公司天然气研究院、中国石油天然气集团公司华东勘察设计研究院、中国石化股份有限公司中原油田分公司。 本标准主要起草人:付昱华、张邦楹、徐晓明、吴瑛、罗勤。 CEN前言 本标准由从事液化天然气装置和设备的CEN/TC 282技术委员会编制,该委员会的秘书处由法国标准化组织协会管理。 本标准最迟于1996年12月,应以同样的原文发表,或是以签注认可的方式确定其具有国家标准的地位,与其相冲突的国家标准同时应予以撤消。

根据CEN/CENELEC的内部规章,下列国家的国家标准组织须执行本标准:奥地利,比利时,丹麦,芬兰,法国,德国,希腊,冰岛,爱尔兰,意大利,卢森堡,荷兰,挪威,葡萄牙,西班牙,瑞士,瑞典,英国。 1 范围 本标准给出液化天然气(LNG)特性和LNG工业所用低温材料方面以及健康和安全方面的指导。 本标准也可作为执行CEN/TC 282技术委员会(液化天然气装置和设备)的其他标准时的参考文件。 本标准还可供设计和操作LNG设施的工作人员参考。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其岁后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 EN 1473 液化天然气装置和设备,陆上装置设计 3 术语和定义 下列术语和定义适用于本标准 液化天然气liquefied natrual gas 一种在液态状况下的无色流体,主要由甲烷组成,组分可能含有少量乙烷,丙烷、氮或通常存在于天然气中的其他组分

高低温试验箱性能特点分析

高低温试验箱性能特点分析 一、技术特点: 1.温度范围: 指产品工作室能耐受和(或)能达到的极限温度。通常含有能控制恒定的概念,应该是可以相对长时间稳定运行的极值。一般温度范围包括极限高温和极限低温。 2.温度波动度: 这个指标也有叫温度稳定度,控制温度稳定后,在给定任意时间间隔内,工作空间内任一点的最高和最低温度之差。这里有个小小的区别工作空间并不是工作室,是大约工作室去掉离箱壁各自边长的1/10的一个空间。这个指标考核产品的控制技术。一般标准要求指标为1℃或0.5℃。 3.温度均匀度: 旧标准称均匀度,新标准称梯度。温度稳定后,在任意时间间隔内,工作空间内任意两点的温度平均值之差的最大值。这个指标比下面的温度偏差指标更可以考核产品的核心技术,因此好多公司的样本及方案刻意隐藏此项。一般标准要求指标为2℃。 4.温度偏差: 温度稳定后,在任意时间间隔内,工作空间中心温度的平均值和工作空间内其它点的温度平均值之差。虽然新旧标准对此指标的定义和称呼相同,但检测已有所改变,新标准更实际,更苛刻一点,但考核时间短点。一般标准要求指标为2℃,纯高温试验箱200℃以上可按实际使用温度摄氏度(℃)2%要求。 二、设备的主要配置: 1、高低温试验箱送风方式分为六种:一般采用上送风,其回风方式为正面下部回风;下送风,

其回风方式为顶部回风等。 2、大面积的蒸发器:空调内装备了大迎风面积的蒸发器,大风量、小焓差产生最大的显冷量。 3、高效全封闭压缩机:空调采用了高效节能全封闭低噪音压缩机,压缩机内有过热保护器的曲轴加热器。 4、可自动清洗的电极式加湿器“空调机配置电极式加湿器,迅速产生洁净的蒸汽加湿罐为可自动清洗式。 5、新风换气系统:多种新风机可兼容配备。 6、EU4级的空气过滤器可反复清洗,使机房空气清洁无尘。 7、多种制冷剂可选择:空调机既可使用R22为制冷剂,也可以选择R134A或R407C环保型制冷剂。 8、选型多样化:设备选型时既可以选择单模块机组,也可以选择双模块机组或多模块机组。 9、模块化结构:智能恒温恒湿机房专用精密空调采用模块化结构设计。 10、冷凝器:可以全天候工作,安全保护满足IP55标准。安全灵活,支架可拆卸节约空间,方便安装和运输等。 11、安放灵活:一台机器的不同模块可以在机房中的不同位置安放,充分利用机房的有效面积,同时使机房内的空气气流组织更加均匀。 12、搬运方便:模块化恒温恒湿机组在运输或安装过程中可以分为多个模块,能够方便灵活地装入集装箱、电梯,通过狭小的门窗和过道,也可以人工搬运。 13、多种联网可选:第一远程电脑联网、第二短程电脑联网、第三多个操作器联网、动力电源设备集中联网监控。 14、高低温试验箱安全可靠的双电极式加热器:空调机内装有高效大散热面积的电加热器,有效地避免电离效应。电加热器配有安全热保护器,确保运行安全、稳定。 三、系统原理: 1、加热系统: 设备主要部件是发热材料。常用的发热材料按材质不同分为金属、非金属和半导体三大类。金属材料常用的有镍铬合金、铁铬合金,以及钨等;非金属材料有碳化硅、二硅化钼和石墨等;半导体材料有以钛酸钡系列化合物构成的电热材料,按其结构可分为单一电热材料和复合电热材料两大类。 高低温试验箱中的发热材料普遍使用电阻式合金材料,主要有铁铬铝系电热合金材料和镍铬合金材料。在发热材料的选用上,必须考虑材料的脆性、高温强度以及最高使用温度。铁铬铝系电热合热材料和镍铬合金材料的工作温度都可达1200度,完全可以满足试验设备的加热需要,但镍铬合金材料的高温强度比铁铬铝系电热合金材料更高。 设备内的温度受控于电阻丝的供电功率,电阻丝由高可靠度的固态继电器或可控硅控制供电。改变固态继电器或可控硅的导通/关断占空比,可以实现输出功率调节,从而控制高低温试验箱内的加热温度。 2、油分离器的作用: 作用一:分离制冷剂蒸气中挟带的冷冻机油。高低温试验箱的压缩机与冷能器之间装有油分离器,压缩机的排气带有冷冻机油,因此油分离器是用来分离制冷剂蒸气中挟带的冷冻机油,使冷冻机油返回压缩机曲轴箱的。 作用二:制冷系统回油。冷冻机油随制冷剂进入制冷系统中,特别是进入冷凝器、蒸发器以后,将在传热表面形成油膜,从而影响换热设备的换热效果,并且容易引起膨胀阀和毛细管油堵,如果制冷系统回油不好,极有可能造成压缩机缺油而导致压缩机线圈烧毁或缸体损坏。因此,是否是高品质合理的冷冻机油直接影响设备的寿命。

高低温泵的特点

高低温泵的特点 低温泵在结构上具有下列特点: 1) 在结构上对称布置,使泵在低温下均匀收缩。为了保持低温和防止介质泄漏,采用双壳体的结构。 2) 为了防止摩擦发热而导致液化气汽化而烧坏摩擦面,多采用平衡孔、对称布置和止推轴承,很少采用平衡盘来平衡轴向力(必要时采用平衡鼓)。 3) 为了改善吸入条件、气体分离、不受气温的影响和轴向伸缩,采用立式简袋泵结构较为有利。 4) 在结构上还应避免低温脆性的影响。 5) 轴承应注意低温的影响,如同间隙大小并适当选取摩擦性能好的材料(如四氟乙烯、石墨等)。 6) 轴承应考虑干摩擦的可能并采取防止冻结的措施和启动的预冷的措施。 7) 选用材料时应注意材料的低温脆性。 8) 在使用时应采取保冷、除湿、预冷、防冻等措施。

高温泵的结构特点如下: 1) 泵的热膨胀:由于泵和转子采用:由于泵体和转子采用不同材料制成,由于膨胀系数和温度的不同,它们之间的间隙在热态下会变小,因此、首先应考虑在冷态 下的间隙比一般泵大些。此外,轴套和轴(径向和轴向)的间隙配合要适当,而且要考虑热态下的间隙配合要适当,而且要考虑热态下的对中心。 2) 泵的支承:由于不可避免的热膨胀会使泵体歪曲变形。通常采用中心支承的结构以保证泵体自由地均匀膨胀,避免发生泵体变形造成轴弯曲而抱轴。 3) 泵体的耐压强度:一般高温泵均处于较高的压力下工作,因此,必须考虑泵在高温下的耐压强度。此外还必须考虑由于配管热膨胀而施加在泵体的负荷作用。 4) 泵体的轴封的密封:泵体采用适用于高温下密封的垫片(如缠绕式垫片)和轴封采用高温下工作可靠的机械密封与浮环密封并相应地采取冷却和冲洗等措施。 5) 机座和轴封等相应地采取冷却措施。 此外,在使用方面应采取适当的预热和升温措施。为了不使泵体内外温差过大,可采用保温措施。

相关文档
最新文档