2020版液化天然气的低温特性
液化天然气技术

3、LNG发电
(1)常规蒸汽发电 利用天然气在锅炉中燃烧, 产生高温高压蒸汽推动蒸汽轮机,从而带动发电 机发电。这种发电热效率低只有38%左右,目前 已很少使用; (2)燃气-蒸汽联合循环发电 利用天然气在燃 气轮机中直接燃烧做功,是燃气轮机带动发电机 发电。再利用燃气轮机产生的高温尾气,通过余 热锅炉产生高温高压蒸汽推动蒸汽轮机,然后带 动发电机发电,此时为双循环,即联合循环发电。
广东珠海液化天然气项目 该项目是中国海洋石油总公司利用南 海番禺气田天然气作资源,建设的第一套 天然气液化装置试点工程,位于广东省珠 海市横琴岛,紧邻中海石油(中国)有限公 司珠海终端天然气处理厂,液化能力约2亿 立方米/年,LNG产量约14万吨/年。现在 已经投产,产品已经进入深圳城市燃气管 网
3-液位计
4-LNG储罐
5-压力控制阀 6-球阀
8-电磁阀 7-充液阀
10-加热水管
11-发动机
9-蒸发器及两级减压器
LNG汽车燃料供给系统工作原理
当发动机运行时,LNG在储罐中气液共存, 正常工作压力不低于0.2MPa,当罐内压力低于 0.2MPa时,压力控制阀开启,自增压器工作, 将一部分气态天然气充入储罐,使罐内达到工作 压力。当发动机停运时,随着热量的不断吸入, LNG不断地被气化,当储罐的压力高于0.6MPa 时,安全阀打开,迅速放出部分气态天然气,保 证储罐不受破坏。 使用时从罐内流出的LNG经过气化器吸收发 动机冷却水废气热量而气化,并使其温度升高, 然后经过两级减压,经管路输送到混合器,并与 空气混合进入发动机
液化天然气技术
一、液化天然气基本知识
1、什么是液化天然气? 天然气在常压下,当冷却至约-162℃时,则 由气态变成液态,称为液化天然气(英文 Liquefied Natural Gas, 简称LNG)。 天然气在液化过程中进一步得到净化,甲烷 纯度更高,不含二氧化碳,硫化物,无色、无味、 无毒且无腐蚀性。 液化天然气的体积约为同量气态天然气体积 的1/600,大大方便存储和运输。 液化天然气比水轻,重量仅为同体积水的 45%。
液化天然气(LNG)的输送方式浅析

液化天然气 (LNG)的输送方式浅析摘要:伴随液化天然气贸易的不断增大,无论通过那种方式进行运输,安全高效率的运输是非常重要,要不断革新技术上的系列问题,高度重视对各种类型储存容器研发,加强对LNG用配套仪表的研发、LNG应用终端的开发研究,不断提高LNG的应用领域,更好为经济建设服务。
关键词:液化、天然气、输送方式1液化天然气的主要特性1.1易燃性液态天然气同样具有易燃的特性,其在约-160℃的低温环境下,燃烧体积比为6%~13%,燃烧速度大约在0.3m/s。
因此,在空间较大的环境下,液态天然气以及其BOG很少会发生燃烧而爆炸。
在遇到火源后,天然气会处于低速燃烧的状态,且燃烧会扩散到氧气所及的地方。
但若周围空间有限,天然气与周围空气混合达到爆炸极限时,也会发生爆炸事故。
1.2低温性液化天然气可以实现常压低温存储,常压下其沸点约为-162℃,正是液化天然气的这个低温特性,使得其在存储、运输、使用均是在低温下进行的。
另外,针对这一特性,要特别注意在对液化天然气进行低温处理时,首先要注意系统在这一环境下其设备和管道材料的低温性能,避免低温造成材料的硬脆断裂和收缩等问题;其次,要注意低温环境下产生的翻腾问题(同一个储气罐中,不同成分的超低温液体在吸热蒸发作用下,两个液层之间传质传热,从而发生上下剧烈对流混合,短时间内急剧产生大量蒸汽,造成罐内压力急剧增加,罐体受损);最后要注意系统的冷温控制、BOG处理以及低温泄露(针对金属罐体出现的热胀冷缩,在超低温的环境下,罐体的一些金属部件由于出现冷缩问题。
1.3快相变性液化天然气由于其低温特性,在与周围介质如水接触时,难免会出现快速的相态转变。
当两种温度相差十分悬殊的液体接触时(通常情况下高温的液体是低温液体沸点温度的111倍以上),低温液体表面层温度急速上升,高温液体在极短的时间内产生大量蒸汽,就像水落在烧红的铁块上的状况。
当液化天然气发生泄漏与水发生接触时,就会出现这种现象。
液化天然气(LNG)特性

液化天然气(LNG)特性LNG是英文Liquefied Natural Gas的简称,即液化天然气。
它是天然气(甲烷CH4)在经净化及超低温状态下(-162℃、一个大气压)冷却液化的产物。
液化后的天然气其体积大大减少,约为0℃、1个大气压时天然气体积的1/600,也就是说1立方米LNG气化后可得600立方米天然气。
无色无味,主要成份是甲烷,很少有其它杂质,是一种非常清洁的能源。
LNG基本参数LNG主要成分是甲烷(90%以上)、乙烷、氮气(0.5-1%)及少量C3~C5烷烃的低温液体。
LNG是由天然气转变的另一种能源形式。
1)LNG的主要成份为甲烷,化学名称为CH4,还有少量的乙烷C2H6、丙烷C3H8以及氮N2等其他成份组成。
2)临界温度为-82.3℃。
3)沸点为-161.25℃,着火点为650℃。
4)液态密度为0.420~0.46T/m3,气态密度为0.68-0.75kg/m3。
5)气态热值38MJ/m3,液态热值50MJ/kg。
6)爆炸范围:上限为15%,下限为5%。
7)辛烷值ASTM:130。
8)无色、无味、无毒、无腐蚀性。
9)体积约为同量气态天然气体积的1/600。
LNG用途车用:LNG是一种清洁、高效的能源,其作为优质的车用燃料,与汽油相比,具有抗爆性能好、发动机寿命长、燃料费用低、环保性能好、储存效率高、安全性好等优点。
城市燃气:LNG可以有效供应管网没有辐射到的地区,并且可以有效缓解城市燃气用气高峰情况下的调峰需求。
季节变化等因素导致用气不均匀性明显,调峰需求突出,各地区城市燃气纷纷建设LNG调峰储备设施,缓解用气不均匀情况。
工业燃料、发电:LNG运输灵活,在管道未辐射情况下,加装气化装置供应工业用户、电厂。
LNG发电在环保、调峰等方面相对于传统电厂具有决定优势,新兴的分布式能源是未来发展方向。
冷能利用:冷能是在自然条件下,利用一定温度差所得到的能量。
在LNG气化过程中,约能产生870Kj/Kg的低温能量。
液化天然气的低温特性

液化天然气的低温特性1.引言液化天然气(LNG)是通过将天然气通过低温(-162°C)致密度,使其体积减小了600倍,便于运输和储存。
LNG的输送是一个复杂的过程,涉及液化和气化之间的转换。
其中,液化是非常重要的一步。
本文将从低温理论出发,探讨液化天然气的低温特性。
2.液态天然气的物理性质液化天然气(LNG)是液态天然气。
液态天然气是我们熟知的物质之一,质量大约为1/600的气体。
当天然气被液化时,它的密度可以增加约600倍。
因此,LNG的用途非常广泛,包括运输、发电、供暖、烹饪、制造化学品和石油产品等领域。
液态天然气的物理性质如下:•密度:在常压下,液态天然气的密度约为425 kg/m³,比重约为0.425 g/mL。
•沸点:液态天然气的沸点约为-162°C,对应的绝对零度温度为111 K。
•比热容:液态天然气的比热容为2.24 kJ/(kg·K)。
•热导率:液态天然气的热导率很低,约为0.025 W/(m·K)。
•粘度:液态天然气的粘度很低,约为0.14×10-3 Pa s。
3.液态天然气的低温特性液态天然气的低温特性是LNG工业中的一个重要问题。
一方面,液态天然气需要保持在极低的温度下(-162°C)以保持其液态状态;另一方面,低温条件会带来一系列问题,如蒸发损失和冷却效应。
3.1 温度控制液态天然气的温度必须控制在-162°C以下,否则它将蒸发为天然气。
在LNG储罐中,温度可以通过以下方式进行控制:•储罐的内部可以涂上特殊材料,以充当隔热层,从而防止液态天然气受到外部温度的影响。
•储罐中经常注入液态氮或液态天然气,以保持低温状态。
3.2 蒸发和损耗尽管液态天然气需要处于极低的温度下,但它还是会在一定程度上蒸发。
蒸发量取决于如下因素:•储罐的温度•储罐的压力•储罐的大小•储罐的材料•储罐中气体的组成等。
通常情况下,液态天然气的蒸发损耗占总量的1%~2%。
液化天然气的使用

1气瓶简介
气瓶系统简介
气瓶所有的外部管路、阀件都设置在气瓶的一端,并用保护环或
保护罩进行防护。阀门系统的设置能够满足液化天然气的充装和 供给。
内胆设置了两级安全阀(管路系统中)会在内胆超压时起到
保护的作用。在超压情况下主安全阀(Svp)(开启压力为1.75MPa, 250psi)首先打开,其作用泄放由于绝热层和支撑正常的漏热损 失导致的压力上升、或真空遭破坏后以及在失火条件下的加速漏 热导致的压力上升。副安全阀(Svs)(开启压力为2.9MPa,420psi) 的压力设定比主安全阀高,在主安全阀失效或发生堵塞时,副安 全阀启动。
利用化学反应来灭火。需要熟练的操作,如有障碍物的,灭 火是不可能的 利用化学反应来灭火。需要熟练的操作,如有障碍物的,灭 火是不可能的 使液化天然气与火焰隔绝,减少火焰大小,从而使蒸发量降 低 可以控制但不能灭火,直接喷到液化天然气上将增大蒸汽和 火焰的高度,对没有气体的火焰比较适合
控制没有气体的火焰,冷却附近设备
熟悉液化天然气
• 要使用 LNG
– 必须气化低温液体并使其提升到工 作温度。
– 为了供给发动机充足的压力,必须 调节并维持罐内压力。
• 气化。
– 燃料离开罐后流经一个利用发动机 冷却液使燃料汽化的热交换器。高 压调节器用来维持供至发动机的规 定气压。
熟悉液化天然气
• 罐排气
– 储存罐设计可在规定压力下工作。 如果罐内压力升高至预计水平以上, 会先将气体排到排气管。这种气体 是纯甲烷,因为甲烷有着先气化然 后升到罐上部的趋势。
警告: 保护眼睛和暴露的皮肤 保持设备所在区域通风良好 在维修或保养设备时确保系统已泄压 远离易燃品、电火花、火源
安全防护
冷灼伤时的处理方法 1. 当皮肤与低温表面粘接时,可用热水加热方法使皮肉解冻,然后再挪开 冻结部位,并将伤员 移至温暖的地方(约20℃)。 2. 除去所有妨碍冻伤部位血液循环的衣物。 3. 将冻伤的部位立即进行水浴,水温要求40~45℃,不允许使用干燥或直接 加热的方式;如果 水温超过45℃,就会加剧损伤冻伤区的身体组织。 4. 立即将伤员送往医院做进一步治疗。 5. 如果伤员大面积冻伤,且体温已经下降,就需要将伤者浸泡在40~45℃的 水中,再尽快将伤 者送往医院。 6. 冻伤的身体部位在加热后开始疼痛、肿胀,如果伤势不严重,应当对冻 伤部位进行缓慢、持 续地加热,直至皮肤由灰白色变成粉红色或红色。 7. 伤员不许抽烟、喝酒,这样会减少流往冻伤组织的血液量、注射破伤风 针,防止感染。
液化天然气的一般特性

液化天然气的一般特性 GB/T 19204-2003前言本标准等同采用CEN BS EN 1160:1997“Installations and equipment for liquefied natural gas—General characteristics of liquefiednatural gas"(液化天然气装置和设备液化天然气的一般特性)。
为便于使用者查阅原文,本标准的排版基本与原文相同,末做变动。
为保证标准的实施,对易发生混淆的部分给予英文(原文)注解。
关于计量单位,本标准以法定计量单位为主,即法定计量单位值在前,非法定计量单位的相应值标在其后的括号内。
本标准的附录A、附录B为资料性附录。
本标准由中国海洋石油总公司提出。
本标准由全国天然气标准化技术委员会归口。
本标准起草单位:中海石油研究中心开发设计院、中国石油西南油气田分公司天然气研究院、中国石油天然气集团公司华东勘察设计研究院、中国石化股份有限公司中原油田分公司。
本标准主要起草人:付昱华、张邦楹、徐晓明、吴瑛、罗勤。
CEN前言本标准由从事液化天然气装置和设备的CEN/TC 282技术委员会编制,该委员会的秘书处由法国标准化组织协会管理。
本标准最迟于1996年12月,应以同样的原文发表,或是以签注认可的方式确定其具有国家标准的地位,与其相冲突的国家标准同时应予以撤消。
根据CEN/CENELEC的内部规章,下列国家的国家标准组织须执行本标准:奥地利,比利时,丹麦,芬兰,法国,德国,希腊,冰岛,爱尔兰,意大利,卢森堡,荷兰,挪威,葡萄牙,西班牙,瑞士,瑞典,英国。
1 范围本标准给出液化天然气(LNG)特性和LNG工业所用低温材料方面以及健康和安全方面的指导。
本标准也可作为执行CEN/TC 282技术委员会(液化天然气装置和设备)的其他标准时的参考文件。
本标准还可供设计和操作LNG设施的工作人员参考。
2 规范性引用文件下列文件中的条款通过本标准的引用而成为本标准的条款。
液化天然气手册译著

液化天然气手册译著一、液化天然气的基础知识 (1)1.1液化天然气的定义与组成 (1)1.2液化天然气的物理性质 (1)二、液化天然气的生产工艺 (2)2.1原料气的预处理 (2)2.2液化工艺 (2)三、液化天然气的储存 (2)3.1储存设备类型 (2)3.2储存安全措施 (2)四、液化天然气的运输 (3)4.1海上运输 (3)4.2陆地运输 (3)五、液化天然气的接收终端 (3)5.1接收终端的功能与组成 (3)5.2接收终端的运营管理 (3)六、液化天然气的应用 (3)6.1发电领域的应用 (3)6.2工业和民用领域的应用 (4)七、液化天然气的环境影响与应对措施 (4)7.1环境影响 (4)7.2应对措施 (4)八、液化天然气行业的发展趋势 (4)8.1技术创新趋势 (4)8.2市场发展趋势 (4)一、液化天然气的基础知识1.1液化天然气的定义与组成液化天然气(LNG)是将天然气经过净化、低温液化而成的产物。
其主要成分为甲烷,还包含少量的乙烷、丙烷、丁烷等烃类物质以及微量的氮、二氧化碳等非烃类气体。
这些成分的比例不同会影响LNG的物理和化学性质,例如热值、密度等。
了解其组成对于LNG的生产、储存、运输和使用具有关键意义。
1.2液化天然气的物理性质LNG具有特殊的物理性质。
它在常温常压下为气态,但在低温高压下会液化。
其密度比气态天然气大得多,大约是水的45%左右。
LNG无色、无味、无毒且无腐蚀性。
它的沸点极低,通常在162℃左右,这一特性决定了LNG在储存和运输过程中需要特殊的低温设备,以保证其保持液态状态。
二、液化天然气的生产工艺2.1原料气的预处理原料气预处理是LNG生产的重要环节。
首先要对天然气进行脱硫处理,因为硫的存在会腐蚀设备并且在低温下可能形成固体堵塞管道。
还需脱除二氧化碳、水等杂质。
脱除二氧化碳可采用化学吸收法或物理吸附法等多种方法,脱水通常采用分子筛吸附等方式,以保证原料气达到LNG生产所需的纯度要求。
液化天然气

液化天然气液化天然气(Liquefied Natural Gas)简称LNG,是通过脱水、脱硫、去除杂质及重烃类,在常压下冷却至约-162℃而成的液态天然气。
LNG组分纯净,无色、无味、无毒且无腐蚀性,能量密度大,便于携带和运输,是一种经济性清洁能源,广泛应用于交通运输、工商业、城市高峰调峰等领域。
一、LNG物理化学特性1、组成LNG是以甲烷为主要组分的烃类混合物,其中含有通常存在于天然气中少量的乙烷、丙烷、氮等其他组分。
2、密度LNG的密度取决于其组分,通常在430kg/m3—470kg/m3之间,但是在某些情况下可高达520kg/m3。
密度还是液体温度的函数,其变化梯度约为1.35kg/m3〃℃。
3、温度LNG的沸腾温度取决于其组分,在大气压力下通常在-166℃到-157℃之间。
沸腾温度随蒸气压力的变化梯度约为1.25×10-4℃/Pa。
4、LNG的蒸发(1)蒸发气的物理性质LNG作为一种沸腾液体大量的储存于绝热储罐中。
任何传导至储罐中的热量都会导致一些液体蒸发为气体,这种气体称为蒸发气。
其组分与液体的组分有关。
一般情况下,蒸发气包括20%的氮,80%的甲烷和微量的乙烷。
其含氮量是液体LNG中含氮量的20倍。
当LNG蒸发时,氮和甲烷首先从液体中气化,剩余的液体中较高相对分子质量的烃类组分增大。
对于蒸发气体,不论是温度低于-113℃的纯甲烷,还是温度低于-85℃含20%氮的甲烷,它们都比周围的空气重。
在标准条件下,这些蒸发气体的密度大约是空气密度的0.6倍。
(2)闪蒸如同任何一种液体,当LNG已有的压力降至其沸点压力以下时,例如经过阀门后,部分液体蒸发,而液体温度也将降到此时压力下的新沸点,此即为闪蒸。
由于LNG为多组分的混合物,闪蒸气体的组分与剩余液体的组分不一样,其原因与闪蒸汽所述的原因类似。
作为指导性数据,在压力为1×105Pa~2×105Pa时的沸腾温度条件下,压力每下降l×l03Pa,1m3的液体产生大约0.4kg的气体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( 安全管理 )
单位:_________________________
姓名:_________________________
日期:_________________________
精品文档 / Word文档 / 文字可改
2020版液化天然气的低温特性
Safety management is an important part of production management. Safety and production are in
the implementation process
2020版液化天然气的低温特性
LNG的低温常压储存是在液化天然气的饱和蒸气压接近常压时的温度进行储存,也即是将LNG作为一种沸腾液体储存在绝热储罐中。
常压下LNG的沸点在-162℃左右,因此LNG的储存、运输、利用都是在低温状态下进行的。
低温特性除了表现在对LNG系统的设备、管道的材料要注意防止低温条件下的脆性断裂和冷收缩对设备和管路引起的危害外,也要解决系统保冷、蒸发气处理、泄漏扩散以及低温灼伤等方面的问题。
一、隔热保冷
LNG系统的保冷隔热材料应满足导热系数小、密度低、吸湿率和吸水率小、抗冻性强的要求,并在低温下不开裂、耐火性好、无气味、不易霉烂、对人体无害、机械强度高、经久耐用、价格低廉、方便施工等要求。
二、蒸发特性
LNG是作为沸腾液体储存在绝热储罐中。
外界任何传入的热量都会引起一定量液体蒸发成为气体,这就是蒸发气(BOG)。
蒸发气的组成与液体组成有关。
标准状况下蒸发气密度是空气的60%。
当LNG压力降至沸点压力以下时,将有一定量的液体蒸发而成为气体,同时液体温度也随之降到其在该压力下的沸点,这就是LNG 的闪蒸。
通过烃类气体的气液平衡计算,可得到闪蒸气的组成及气量。
当压力在100~200kPa范围内时,1m3
处于沸点下的LNG每降低1kPa压力时,闪蒸出的气量约为0.4kg。
当然,这与LNG的组成有关,以上数据可作估算参考。
由于压力、温度变化引起的LNG蒸发产生的蒸发气的处理是液化天然气储存运输中经常遇到的问题。
三、泄漏特性
LNG倾倒在地面上时,起初迅速蒸发,然后当从地面和周围大气中吸收的热量与LNG蒸发所需的热量平衡时便降至某一固定的蒸发速度。
该蒸发速度的大小取决于从周围环境吸收热量的多少。
不同表面由实验测得的LNG蒸发速度如表2-4[2]
所示。
表2-4LNG蒸发速度kg/(m2 ·h)
材料
60s后蒸发速度
骨料
480
湿沙
240
干沙
195
水
190
标准混凝土
130
轻胶体混凝土
65
LNG泄漏到水中时产生强烈的对流传热,以致在一定的面积内蒸发速度保持不变。
随着LNG流动泄漏面积逐渐增大,直到气体蒸发量等于漏出液体所能产生的气体量为止。
泄漏的LNG开始蒸发时,所产生的气体温度接近液体温度,其密度大于环境空气。
冷气体在未大量吸收环境空气中热量之前,沿地面形成一个流动层。
当从地面或环境空气中大量吸收热量以后,温度上升时,气体密度小于环境空气。
形成的蒸发气和空气的混合物在温度继续上升过程中逐渐形成密度小于空气的云团。
云团的膨胀和扩散与风速和大气的稳定性有关。
LNG泄漏时,由于液体温度很低,大气中的水蒸气也被冷凝而形成“雾团”,这是可见的,可以作为可燃性云团的示踪物,指示出云团的区域范围。
泄漏的LNG以喷射形式进入大气,同时进行膨胀和蒸发,还进行与空气的剧烈混合。
大部分LNG包在初始形成的类似溶胶的云团之中,在进一步与空气混合的过程中完全气化。
LNG与外露的皮肤短暂地接触,不会产生什么伤害,可是持续地
接触,会引起严重的低温灼伤和组织损坏。
四、储存特性
(一)分层
LNG是多组分混合物,因温度和组分的变化会引起密度变化,液体密度的差异使储罐内的LNG发生分层。
一般,罐内液体垂直方向上温差大于0.2℃、密度差大于0.5kg/m3
时,认为罐内液体发生了分层。
LNG储罐内液体分层往往是因为充装的LNG密度不同或是因为LNG氮含量太高引起的。
(二)翻滚
若储罐内的液体已经分层,被上层液体吸收的热量一部分消耗于液面液体蒸发所需的潜热,其余热量使上层液体温度升高。
随着蒸发的持续,一上层液体密度增大,下层液体密度减小,当上下两层液体密度接近相等时,分层界面消失,液层快速混合并伴随有液体大量蒸发,此时的蒸发率远高于正常蒸发率,出现翻滚。
翻滚现象的出现,在短时间内有大量气体从LNG储罐内散发出来,如不采取措施,将导致设备超压。
(三)快速相态转变(RPT)
两种温差极大的液体接触时,若热液体温度比冷液体沸点温度高1.1倍,则冷液体温度上升极快,表面层温度超过自发成核温度(当液体中出现气泡时),此过程热液体能在极短时间内通过复杂的链式反应机理以爆炸速度产生大量蒸气,这就是LNG或液氮接触时出现RPT现象的原因。
LNG溢入水中而产生RPT不太常见,且后果也不太严重。
云博创意设计
MzYunBo Creative Design Co., Ltd.。