2018-2019学年河北省唐山市玉田县七年级(下)期中数学试卷解析版
2018-2019学年度第二学期期中质量检测七年级数学试卷及答案

26.(本题满分 12 分) (1)如图①,△OAB、△OCD 的顶点 O 重合,且∠A+∠B+∠C+∠D=180°,则∠AOB+ ∠COD= ▲ °;(直接写出结果) (2)连接 AD、BC,若 AO、BO、CO、DO 分别是四边形 ABCD 的四个内角的平分线. ①如图②,如果∠AOB=110°,那么∠COD 的度数为 ▲ ;(直接写出结果) ②如图③,若∠AOD=∠BOC,AB 与 CD 平行吗?为什么?
x
y
=-2,求
a
的值.
25.(本题满分 8 分) (1)观察下列式子: ① 21 20 =2-1=1= 20 ; ② 22 21 =4-2=2= 21 ; ③ 23 22 =8-4=4= 22 ; …… 根据上述等式的规律,试写出第 n 个等式,并说明第 n 个等式成立; (2)求 20 21 22 22 019 的个位数字.
A.4
B.5
C.6
D.7
4. 下列式子从左到右的变形中,属于因式分解的是·············································· ( ▲ )
A. 4x x = 5x
B. (x 2)2 = x2 4x 4
C. a2 a 1= a(a 1) 1
说明: (x 3)(x 7) 、 x(x 1) 计算正确分别给 1 分.
19.(本题满分 6 分,每小题 3 分)因式分解: 解:(1)原式= x2 (2y)2 ·········································································· 1 分
说明: (2a)3 、 a5 a2 计算正确分别给 1 分.
最新冀教版七年级数学下册期中测试题及答案解析三-精品试卷

2018—2019学年冀教版七年级(下)期中检测数学试卷一、选择题(本题共16个小题,每小题3分,共18分)1.(3分)下面各图中∠1和∠2是对顶角的是()A.B.C.D.2.(3分)体育课上,老师测量跳远成绩的依据是()A.平行线间的距离相等B.两点之间,线段最短C.垂线段最短D.两点确定一条直线3.(3分)如图,与∠1是同位角的是()A.∠2 B.∠3 C.∠4 D.∠54.(3分)下列图形中,由AB∥CD,能得到∠1=∠2的是()A.B.C.D.5.(3分)如图,直线a,b被直线c所截,a∥b,∠1=∠2,若∠3=40°,则∠4等于()A.40°B.50°C.70°D.80°6.(3分)如图,直线AB∥CD,P是AB上的动点,当点P 的位置变化时,三角形PCD的面积将()A.变大B.变小C.不变D.变大变小要看点P向左还是向右移动7.(3分)如图已知∠1=∠2,∠BAD=∠BCD,则下列结论:①AB∥CD,②AD∥BC,③∠B=∠D,④∠D=∠ACB,正确的有()A.1个B.2个C.3个 D.4个8.(3分)如图,在△ABC和△DBC中,∠A=50°,∠2=∠1,则∠ACD的度数是()A.50°B.120°C.130°D.无法确定9.(3分)判断下列说法错误的是()A.2是8的立方根B.±4是64的立方根C.﹣是﹣的立方根D.(﹣4)3的立方根是﹣410.(3分)下列各式化简结果为无理数的是()A.B.C.D.11.(3分)实数a在数轴上的位置如图所示,则|a﹣2.5|=()A.a﹣2.5 B. 2.5﹣a C.a+2.5 D.﹣a﹣2.512.(3分)有一个数值转换器,原理如下:当输入的x=64时,输出的y等于()A. 2 B.8 C.D.13.(3分)若y轴上的点A到x轴的距离为3,则点A的坐标为()A.(3,0)B.(3,0)或(﹣3,0)C.(0,3)D.(0,3)或(0,﹣3)14.(3分)如果点P(﹣4,y)在第二象限,则y的取值范围是()A.y>0 B.y<0 C.y ≥0 D.y≤015.(3分)线段CD是由线段AB平移得到的.点A(﹣1,4)的对应点为C(4,7),则点B(﹣4,﹣1)的对应点D的坐标为()A.(2,9)B.(5,3)C.(1,2)D.(﹣9,﹣4)16.(3分)一个长方形在平面直角坐标系中三个顶点的坐标为(﹣1,﹣1),(﹣1,2),(3,﹣1),则第四个顶点的坐标为()A.(2,2)B.(3,2)C.(3,3)D.(2,3)二、填空题(本题共1个小题,每小题3分,共12分)17.(3分)命题“对顶角相等”的“条件”是.18.(3分)两个角的两边两两互相平行,且一个角的等于另一个角的,则这两个角的度数分别为度,度.19.(3分)在0,3.141519,,,,,,其中是有理数.20.(3分)观察下列一组数:,,,,,…,它们是按一定规律排列的,那么这一组数的第n个数是.三、解答题(本题共6个小题,共60分)21.(8分)计算:+﹣.22.(8分)如图,过点A作BC的垂线,并指出那条线的长度是表示点A到BC的距离?23.(10分)如果一个正数的平方根为2x﹣3和5﹣x,求出这个正数及这个数的立方根.24.(10分)全球气候变暖导致一些冰川融化并消失.在冰川消失12年后,一种低等植物苔藓就开始在岩石上生长.每一个苔藓都会长成近似圆形,苔藓的直径和其生长年限,近似地满足如下的关系式:d=7×(t≥12).其中d代表苔藓的直径,单位是厘米;t代表冰川消失的时间,单位是年.(1)计算冰川消失16年后苔藓的直径;(2)如果测得一些苔藓的直径是35厘米,问冰川约是在多少年前消失的?25.(12分)已知:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求证:CD⊥AB.证明:∵DG⊥BC,AC⊥BC(已知)∴∠DGB=∠ACB=90°(垂直定义)∴DG∥AC()∴∠2=()∵∠1=∠2(已知)∴∠1=∠(等量代换)∴EF∥CD()∴∠AEF=∠()∵EF⊥AB(已知)∴∠AEF=90°()∴∠ADC=90°()∴CD⊥AB()26.(12分)如图,方格纸中的每个小方格都是边长为1个单位的小正方形,每个小正方形的顶点称为格点.△ABC的顶点都在格点上,建立平面直角坐标系后,点A、B、C的坐标分别为(1,1),(4,2),(2,3).(提示:一定要用2B铅笔作图)(1)画出△ABC向左平移4个单位,再向上平移1个单位后得到的△A1B1C1;(2)画出△ABC关于原点O对称的△A2B2C2;(3)以点A、A1、A2为顶点的三角形的面积为.参考答案与试题解析一、选择题(本题共16个小题,每小题3分,共18分)1.(3分)下面各图中∠1和∠2是对顶角的是()A.B.C.D.考点:对顶角、邻补角.分析:根据对顶角的定义对各选项分析判断后利用排除法求解.解答:解:A、∠1和∠2不是对顶角,故本选项错误;B、∠1和∠2是对顶角,故本选项正确;C、∠1和∠2不是对顶角,故本选项错误;D、∠1和∠2不是对顶角,是邻补角,故本选项错误.故选B.点评:本题考查了对顶角、邻补角,熟记概念并准确识图是解题的关键.2.(3分)体育课上,老师测量跳远成绩的依据是()A.平行线间的距离相等B.两点之间,线段最短C.垂线段最短D.两点确定一条直线考点:垂线段最短.专题:应用题.分析:此题为数学知识的应用,由实际出发,老师测量跳远成绩的依据是垂线段最短.解答:解:体育课上,老师测量跳远成绩的依据是垂线段最短.故选:C.点评:此题考查知识点垂线段最短.3.(3分)如图,与∠1是同位角的是()A.∠2 B.∠3 C.∠4 D.∠5考点:同位角、内错角、同旁内角.分析:根据同位角的定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角即可求解.解答:解:观察图形可知,与∠1是同位角的是∠4.故选C.点评:考查了同位角、内错角、同旁内角,三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.4.(3分)下列图形中,由AB∥CD,能得到∠1=∠2的是()A.B.C. D.考点:平行线的判定与性质.分析:根据平行线的性质求解即可求得答案,注意掌握排除法在选择题中的应用.解答:解:A、∵AB∥CD,∴∠1+∠2=180°,故A错误;B、∵AB∥CD,∴∠1=∠3,∵∠2=∠3,∴∠1=∠2,故B正确;C、∵AB∥CD,∴∠BAD=∠CDA,若AC∥BD,可得∠1=∠2;故C错误;D、若梯形ABCD是等腰梯形,可得∠1=∠2,故D错误.故选:B.点评:此题主要考查了平行线的判定,关键是掌握平行线的判定定理.同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.此题难度不大,注意掌握数形结合思想的应用.5.(3分)如图,直线a,b被直线c所截,a∥b,∠1=∠2,若∠3=40°,则∠4等于()A.40°B.50°C.70°D.80°考点:平行线的性质.分析:根据平角的定义求出∠1,再根据两直线平行,内错角相等解答.解答:解:∵∠1=∠2,∠3=40°,∴∠1=×(180°﹣∠3)=×(180°﹣40°)=70°,∵a∥b,∴∠4=∠1=70°.故选:C.点评:本题考查了平行线的性质,平角等于180°,熟记性质并求出∠1是解题的关键.6.(3分)如图,直线AB∥CD,P是AB上的动点,当点P 的位置变化时,三角形PCD的面积将()A.变大B.变小C.不变D.变大变小要看点P向左还是向右移动考点:平行线之间的距离.专题:动点型.分析:根据两平行线间的平行线段相等,可以推出点P在AB 上运动时到CD的距离始终相等,再根据三角形PCD的面积等于CD与点P到CD的距离的积的一半,所以三角形的面积不变.解答:解:设平行线AB、CD间的距离为h,则S△PCD=CD•h,∵CD长度不变,h大小不变,∴三角形的面积不变.故选C.点评:本题主要考查两平行线间的平行线段相等的性质,熟练掌握性质是解题的关键.7.(3分)如图已知∠1=∠2,∠BAD=∠BCD,则下列结论:①AB∥CD,②AD∥BC,③∠B=∠D,④∠D=∠ACB,正确的有()A.1个B.2个C.3个 D.4个考点:平行线的判定与性质.分析:①根据内错角相等,判定两直线平行;②根据两直线平行,同旁内角互补与同旁内角互补,两直线平行进行判定;③根据两直线平行,同旁内角互补与同角的补角相等判定;④∠D与∠ACB不能构成三线八角,无法判断.解答:解:∵∠1=∠2∴AB∥CD(内错角相等,两直线平行)所以①正确∵AB∥CD(已证)∴∠BAD+∠ADC=180°(两直线平行,同旁内角互补)又∵∠BAD=∠BCD∴∠BCD+∠ADC=180°∴AD∥BC(同旁内角互补,两直线平行)故②也正确∵AB∥CD,AD∥BC(已证)∴∠B+∠BCD=180°∠D+∠BCD=180°∴∠B=∠D(同角的补角相等)所以③也正确.正确的有3个,故选C.点评:解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题还要注意运用平行线的性质.8.(3分)如图,在△ABC和△DBC中,∠A=50°,∠2=∠1,则∠ACD的度数是()A.50°B.120°C.130°D.无法确定考点:平行线的判定与性质.专题:证明题.分析:由∠2=∠1得AB∥CD,所以得∠A+∠ACD=180°,从而求出∠ACD的度数.解答:解:∵∠2=∠1,∴AB∥CD,∴∠A+∠ACD=180,∴∠ACD=180°﹣50°=130°.故选:C.点评:此题考查的知识点是平行线的判定与性质,关键是先由∠2=∠1得AB∥CD,再由两直线平行,同旁内角互补求出∠ACD的度数.9.(3分)判断下列说法错误的是()A.2是8的立方根B.±4是64的立方根C.﹣是﹣的立方根D.(﹣4)3的立方根是﹣4考点:立方根.分析:根据立方根的定义进行判断,即可解答.解答:解:A.正确;B.4是64的立方根,故错误;C.正确;D.(﹣4)3=﹣64,﹣64的立方根是﹣4,正确;故选:B.点评:本题考查了立方根,解决本题的关键是熟记立方根的定义.10.(3分)下列各式化简结果为无理数的是()A.B.C.D.考点:立方根;算术平方根;零指数幂.分析:先将各选项化简,然后再判断.解答:解:A、=﹣3,是有理数,故A选项错误;B、(﹣1)0=1,是有理数,故B选项错误;C、=2,是无理数,故C选项正确;D、=2,是有理数,故D选项错误;故选:C.点评:本题考查了无理数、立方根及零指数幂的知识,属于基础题.11.(3分)实数a在数轴上的位置如图所示,则|a﹣2.5|=()A.a﹣2.5 B. 2.5﹣a C.a+2.5 D.﹣a﹣2.5考点:实数与数轴.分析:首先观察数轴,可得a<2.5,然后由绝对值的性质,可得|a﹣2.5|=﹣(a﹣2.5),则可求得答案.解答:解:如图可得:a<2.5,即a﹣2.5<0,则|a﹣2.5|=﹣(a﹣2.5)=2.5﹣a.故选B.点评:此题考查了利用数轴比较实数的大小及绝对值的定义等知识.此题比较简单,注意数轴上的任意两个数,右边的数总比左边的数大.12.(3分)有一个数值转换器,原理如下:当输入的x=64时,输出的y等于()A. 2 B.8 C.D.考点:算术平方根.专题:压轴题;图表型.分析:根据图中的步骤,把64输入,可得其算术平方根为8,8再输入得其算术平方根是,是无理数则输出.解答:解:由图表得,64的算术平方根是8,8的算术平方根是;故选D.点评:本题考查了算术平方根的定义,看懂图表的原理是正确解答的关键.13.(3分)若y轴上的点A到x轴的距离为3,则点A的坐标为()A.(3,0)B.(3,0)或(﹣3,0)C.(0,3)D.(0,3)或(0,﹣3)考点:点的坐标.分析:分点在y轴正半轴和负半轴两种情况讨论求解.解答:解:若点A在y轴正半轴,则A(0,3),若点A在y轴负半轴,则A(0,﹣3),所以,点A的坐标为(0,3)或(0,﹣3).故选D.点评:本题考查了点的坐标,主要利用了y轴上点的坐标特征,难点在于要分情况讨论.14.(3分)如果点P(﹣4,y)在第二象限,则y的取值范围是()A.y>0 B.y<0 C.y ≥0 D.y≤0考点:点的坐标.分析:根据第二象限内点的纵坐标是正数解答.解答:解:∵点P(﹣4,y)在第二象限,∴y的取值范围是y>0.故选A.点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).15.(3分)线段CD是由线段AB平移得到的.点A(﹣1,4)的对应点为C(4,7),则点B(﹣4,﹣1)的对应点D的坐标为()A.(2,9)B.(5,3)C.(1,2)D.(﹣9,﹣4)考点:坐标与图形变化-平移.专题:动点型.分析:直接利用平移中点的变化规律求解即可.解答:解:平移中,对应点的对应坐标的差相等,设D的坐标为(x,y);根据题意:有4﹣(﹣1)=x﹣(﹣4);7﹣4=y﹣(﹣1),解可得:x=1,y=2;故D的坐标为(1,2).故选:C.点评:本题考查点坐标的平移变换,关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变.平移中,对应点的对应坐标的差相等.16.(3分)一个长方形在平面直角坐标系中三个顶点的坐标为(﹣1,﹣1),(﹣1,2),(3,﹣1),则第四个顶点的坐标为()A.(2,2)B.(3,2)C.(3,3)D.(2,3)考点:坐标与图形性质;矩形的性质.分析:本题可在画出图后,根据矩形的性质,得知第四个顶点的横坐标应为3,纵坐标应为2.解答:解:如图可知第四个顶点为:即:(3,2).故选:B.点评:本题考查学生的动手能力,画出图后可很快得到答案.二、填空题(本题共1个小题,每小题3分,共12分)17.(3分)命题“对顶角相等”的“条件”是两个角是对顶角.考点:命题与定理.分析:根据命题由题设与结论组成可得到对顶角相等”的“条件”是若两个角是对顶角,结论是这两个角相等.解答:解:“对顶角相等”的“条件”是两个角是对顶角.故答案为:两个角是对顶角.点评:本题考查了命题:判断事物的语句叫命题;正确的命题称为真命题;错误的命题称为假命题;命题由题设与结论组成,两个互换题设与结论的命题称为互逆命题.18.(3分)两个角的两边两两互相平行,且一个角的等于另一个角的,则这两个角的度数分别为72度,108度.考点:平行线的性质.专题:方程思想.分析:如果两个角的两边互相平行,则这两个角相等或互补.根据题意,得这两个角只能互补,然后列方程求解即可.解答:解:设其中一个角是x,则另一个角是180﹣x,根据题意,得x=(180﹣x)解得x=72,∴180﹣x=108;故答案为:72、108.点评:运用“若两个角的两边互相平行,则两个角相等或互补.”而此题中显然没有两个角相等这一情况是解决此题的突破点.19.(3分)在0,3.141519,,,,,,其中0,3.141519,是有理数.考点:实数.分析:有理数是整数、有限循环小数,分数,无理数是无限不循环小数,开方开不尽的数,还有π等,由此即可判定.解答:解:0,3.141519,是有理数,,,,是无理数,故答案为:0,3.141519,.点评:本题主要考查实数中有理数和无理数的区别,比较简单,熟记有理数的定义.20.(3分)观察下列一组数:,,,,,…,它们是按一定规律排列的,那么这一组数的第n个数是.考点:规律型:数字的变化类.专题:规律型.分析:观察已知一组数发现:分子为从1开始的连续奇数,分母为从2开始的连续正整数的平方,写出第n个数即可.解答:解:根据题意得:这一组数的第n个数是.故答案为:.点评:此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键.三、解答题(本题共6个小题,共60分)21.(8分)计算:+﹣.考点:实数的运算.专题:计算题.分析:原式利用算术平方根,及立方根定义计算即可得到结果.解答:解:原式=0.2﹣2﹣=﹣2.3.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.22.(8分)如图,过点A作BC的垂线,并指出那条线的长度是表示点A到BC的距离?考点:点到直线的距离.专题:作图题.分析:根据点到直线的距离的定义,过点A作BC的垂线,交CB的延长线于E,即可得到答案.解答:解:过点A作BC的垂线,交CB的延长线于E,根据点到直线的距离的定义:从直线外一点到这条直线的垂线段长度,叫点到直线的距离.可得AE的长度即为点A到BC的距离.答:AE的长度即为点A到BC的距离.点评:此题主要考查学生对点到直线的距离的理解和掌握,同时锻炼了学生作图的能力,难度不大.23.(10分)如果一个正数的平方根为2x﹣3和5﹣x,求出这个正数及这个数的立方根.考点:立方根;平方根.分析:由于一个正数有两个平方根,并且它们是一对相反数,由此即可列出方程求出x的值,进而求出“这个正数”,再根据立方根的定义求其立方根.解答:解:根据题意列方程:2x﹣3+5﹣x=0,解得:x=﹣2,∴2x﹣3=﹣7∴这个正数为49,49的立方根是.点评:本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数.24.(10分)全球气候变暖导致一些冰川融化并消失.在冰川消失12年后,一种低等植物苔藓就开始在岩石上生长.每一个苔藓都会长成近似圆形,苔藓的直径和其生长年限,近似地满足如下的关系式:d=7×(t≥12).其中d代表苔藓的直径,单位是厘米;t代表冰川消失的时间,单位是年.(1)计算冰川消失16年后苔藓的直径;(2)如果测得一些苔藓的直径是35厘米,问冰川约是在多少年前消失的?考点:平方根.专题:应用题.分析:(1)根据题意可知分别是求当t=16时,d的值,直接把对应数值代入关系式即可求解;(2)根据题意可知是求当d=35时,t的值,直接把对应数值代入关系式即可求解.解答:解:(1)当t=16时,d=7×=7×2=14cm;(2)当d=35时,=5,即t﹣12=25,解得t=37年.答:冰川消失16年后苔藓的直径为14cm,冰川约是在37年前消失的.点评:本题主要考查了平方根、算术平方根概念的运用.会根据题意把数值准确的代入对应的关系式中是解题的关键.25.(12分)已知:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求证:CD⊥AB.证明:∵DG⊥BC,AC⊥BC(已知)∴∠DGB=∠ACB=90°(垂直定义)∴DG∥AC(同位角相等,两直线平行)∴∠2=∠ACD(两直线平行,内错角相等)∵∠1=∠2(已知)∴∠1=∠ACD(等量代换)∴EF∥CD(同位角相等,两直线平行)∴∠AEF=∠ADC(两直线平行,同位角相等)∵EF⊥AB(已知)∴∠AEF=90°(垂直定义)∴∠ADC=90°(等量代换)∴CD⊥AB(垂直定义)考点:平行线的判定与性质;垂线.专题:推理填空题.分析:灵活运用垂直的定义,注意由垂直可得90°角,由90°角可得垂直,结合平行线的判定和性质,只要证得∠ADC=90°,即可得CD⊥AB.解答:解:证明过程如下:证明:∵DG⊥BC,AC⊥BC(已知)∴∠DGB=∠ACB=90°(垂直定义)∴DG∥AC(同位角相等,两直线平行)∴∠2=∠ACD(两直线平行,内错角相等)∵∠1=∠2(已知)∴∠1=∠ACD(等量代换)∴EF∥CD(同位角相等,两直线平行)∴∠AEF=∠ADC(两直线平行,同位角相等)∵EF⊥AB(已知)∵∠AEF=90°(垂直定义)∴∠ADC=90°(等量代换)∴CD⊥AB(垂直定义).点评:利用垂直的定义除了由垂直得直角外,还能由直角判定垂直,判断两直线的夹角是否为90°是判断两直线是否垂直的基本方法.26.(12分)如图,方格纸中的每个小方格都是边长为1个单位的小正方形,每个小正方形的顶点称为格点.△ABC的顶点都在格点上,建立平面直角坐标系后,点A 、B 、C 的坐标分别为(1,1),(4,2),(2,3).(提示:一定要用2B 铅笔作图)(1)画出△ABC 向左平移4个单位,再向上平移1个单位后得到的△A 1B 1C 1;(2)画出△ABC 关于原点O 对称的△A 2B 2C 2;(3)以点A 、A 1、A 2为顶点的三角形的面积为5.考点: 作图-旋转变换;作图-平移变换.专题: 作图题.分析: (1)根据网格结构找出点A 、B 、C 平移后的对应点A 1、B 1、C 1的位置,然后顺次连接即可;(2)根据网格结构找出点A 、B 、C 关于原点O 对称点A 2、B 2、C 2的位置,然后顺次连接即可;(3)利用三角形所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.解答: 解:(1)、(2)答案如图所示;(3)以点A、A1、A2为顶点的三角形的面积为:3×4﹣×3×2﹣×2×2﹣×1×4=12﹣3﹣2﹣2=5.故答案为:5.点评:本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.。
2018-2019年度数学学科初一年级第二学期期中考试试题+答案

2018-2019学年度第二学期期中考试初一数学本试卷共4页,共100分,考试时长120分钟,考试务必将答案作答在答题卡上,在试卷上作答无效一、 选择题:本大题共10题,每小题3分,共30分,在每小题给出的四个选项中,选出符合题目要求的一项填写在答题卡相应位置 1. 下列方程中是二元一次方程的是( )A 、21x y =+B 、11y x=- C 、325x += D 、2x y xy -= 2. 下列计算结果正确的是A. 236.a a a =B. 236()a a =C. 329()a a =D.623a a a ÷= 3. .不等式组21x x >-⎧⎨<⎩的解集在数轴上表示正确的是A B C D4. 32x y =⎧⎨=⎩是方程10mx y +-= 的一组解,则m 的值A.13B. 12C.12-D.13- 5. 若a b >,则下列不等式正确的是A .33a b <B .ma mb >C .11a b -->--D .1122a b +>+6. 2016年4月15日,某校组织学生去圣泉寺开展社会大课堂活动.其中一项活动是体验民俗风情——包粽子.粽子是端午节的节日食品,是中国历史上迄今为止文化积淀最深厚的传统食品.所用食材是糯米或黄米,一粒大黄米的直径大约是0.0021m ,把0.0021用科学记数法表示应为-3-23210-1A .B .C .D . 7. 已知2x ﹣3y=1,用含x 的代数式表示y 正确的是 A .y=x ﹣1 B .x=C. y=D . y=﹣﹣23x8. 利用右图中图形面积关系可以解释的公式是 A .222()2a b a ab b +=++ B. 222()2a b a ab b -=-+ C. 22()()a b a b a b +-=- D. 2333()()a b a ab b a b +-+=+ 9. 已知a +b =5,ab =1 ,则a 2+b 2的值为 A .6 B .23 C .24 D .2710. 五月初五端午节这天,妈妈让小明去超市买豆沙馅和蛋黄鲜肉馅的粽子.豆沙馅的每个卖2元,蛋黄鲜肉馅的每个卖3元,两种的粽子至少各买一个,买粽子的总钱数不能超过15元.则不同的购买方案的个数为A.11B.12C.13D.14 二、填空题(本大题共6题,每小题3分,共18分) 11. 用不等式表示“y 的21与5的和是正数”______________. 12. 计算:(π-1)0= ,(21)2- =_______________. 13.如果一个二元一次方程组的解为 ,则这个二元一次方程组可以是 .14. 若x 2+mx+9是一个完全平方式,则m 的值为_____________ 15.我国古代数学著作《孙子算经》中有这样一个“鸡兔同笼”题目: 今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔几何?根据题意,设有鸡x 只,兔子y 只,可以列二元一次方程组为 . 16. 右边的框图表示解不等式3542x x ->-的流程,其中“系数化为1”这一步骤的依据是 .21021.0-⨯2101.2-⨯3101.2-⨯31021.0-⨯三、解答题(本题共52分,每小题4分)17.解不等式 ,并将解集在数轴上表示出来 18. 求不等式的13(1)148x x ---≥非负整数解 19.解不等式组 >20、解方程组:21、解方程组:22.解二元一次方程组 ① ②23.计算:3(a-2b+c )-4(2a+b-c )24. 计算:1021(2016)(2)4-⎛⎫-+-- ⎪⎝⎭25. 先化简,再求值:()()()()1x 5x 13x 13x 12x 2-+-+--,其中x=-2. 26. 解不等式:(x+4)(x-4)<(x-2)(x+3) 27. 列方程(或方程组)解应用题第六届北京国际电影节于2016年4月16日至4月23日在怀柔区美丽的雁栖湖畔举办.本届“天坛奖”共收到来自全世界各地的433部报名参赛影片,其中国际影片比国内影片多出27部.请问本次报名参赛的国际影片和国内影片各多少部? 28.阅读材料后解决问题:小明遇到下面一个问题:计算248(21)(21)(21)(21)++++.经过观察,小明发现如果将原式进行适当的变形后可以出现特殊的结构,进而可以应用平方差公式解决问题,具体解法如下:248(21)(21)(21)(21)++++5,4;x y y x +=⎧⎨=⎩37,35;x y x y +=⎧⎨-=⎩=248(21)(21)(21)(21)(21)+-+++=2248(21)(21)(21)(21)-+++=448(21)(21)(21)-++=88(21)(21)-+=1621-请你根据小明解决问题的方法,试着解决以下的问题:(1)24816(21)(21)(21)(21)(21)+++++=____________.(2)24816(31)(31)(31)(31)(31)+++++=_____________.(3)化简:2244881616()()()()()m n m n m n m n m n+++++.29.阅读下列材料:对于三个数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数,例如:M{-1,2,3}=;min{-1,2,3}=-1;min{-1,2,a}=)(>)(1)填空:(填a,b,c的大小关系)”③运用②的结论,填空:参考答案11 / 11。
玉田县实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

玉田县实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)9的平方根是()A. B. C. D.【答案】B【考点】平方根【解析】【解答】∵(±3)2=9,∴9的平方根是3或-3.故答案为:B.【分析】根据平方根的定义可求得答案.一个正数有两个平方根,它们互为相反数.2、(2分)如图,在下列条件中,能判断AD∥BC的是()A. ∠DAC=∠BCAB. ∠DCB+∠ABC=180°C. ∠ABD=∠BDCD. ∠BAC=∠ACD【答案】A【考点】平行线的判定【解析】【解答】解:A、∵∠DAC=∠BCA,∴AD∥BC(内错角相等,两直线平行),A符合题意;B、根据“∠DCB+∠ABC=180°”只能判定“DC∥AB”,而非AD∥BC,B不符合题意;C、根据“∠ABD=∠BDC”只能判定“DC∥AB”,而非AD∥BC,C不符合题意;D、根据“∠BAC=∠ACD”只能判定“DC∥AB”,而非AD∥BC,D不符合题意;故答案为:A.【分析】根据各个选项中各角的关系,再利用平行线的判定定理,对各选项逐一判断即可。
3、(2分)如图,下列能判定AB∥EF的条件有()①∠B+∠BFE=180°②∠1=∠2③∠3=∠4④∠B=∠5.A. 1个B. 2个C. 3个D. 4个【答案】C【考点】平行线的判定【解析】【解答】解:①∵∠B+∠BFE=180°,∴AB∥EF,故本小题正确;②∵∠1=∠2,∴DE∥BC,故本小题错误;③∵∠3=∠4,∴AB∥EF,故本小题正确;④∵∠B=∠5,∴AB∥EF,故本小题正确.故答案为:C.【分析】本题关键在于找到直线AB与EF被第三条直线所形成的的同位角、内错角与同旁内角,再根据平行线的判定定理来判断两直线平行.4、(2分)下列各数:0.3333…,0,4,-1.5,,,-0.525225222中,无理数的个数是()A. 0个B. 1个C. 2个D. 3个【答案】B【考点】无理数的认识【解析】【解答】解:是无理数,故答案为:B【分析】根据无理数的定义,无限不循环的小数就是无理数,常见的无理数有三类:①开方开不尽的;②及含的式子;③象0.101001001…这类有规律的数;从而得出答案。
2018-2019学年七年级(下)期中数学试卷(有答案和解析)

2018-2019学年七年级(下)期中数学试卷一、选择题(每题3分,共24分)1.计算a6÷a2的结果是( )A.a3 B.a4 C.a8 D.a122.二元一次方程2x+y=11的非负整数解有( )A.1个 B.2个 C.6个 D.无数个3.如图,工人师傅做了一个长方形窗框ABCD,E、F、G、H分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在( )A.A、C两点之间 B.E、G两点之间C.B、F两点之间 D.G、H两点之间4.方程3x+2y=1和2x=y+3的公共解是( )A. B. C. D.5.若将代数式中的任意两个字母互相替换,代数式不变,则称这个代数式为完全对称式、如在代数式a+b+c中,把a和b互相替换,得b+a+c;把a和c互相替换,得c+b+a;把b和c…;a+b+c 就是完全对称式、下列三个代数式:①(a﹣b)2;②ab+bc+ca;③a2b+b2c+c2a其中为完全对称式的是( )A.①② B.②③ C.①③ D.①②③6.已知方程组的解满足x+y=3,则k的值为( )A.10 B.8 C.2 D.﹣87.甲,乙两人练习跑步,若乙先跑10米,则甲跑5秒就可以追上乙;若乙先跑2秒,则甲跑4秒就可追上乙.若设甲的速度为x米/秒,乙的速度为y米/秒,则下列方程组中正确的是( )A. B.C .D .8.现有一张边长为a 的大正方形卡片和三张边长为b 的小正方形卡片的小正方形卡片((a <b <a )如图1,取出两张小正方形卡片放入“大正方形卡片”内拼成的图案如图2,再重新用三张小正方形卡片放入“大正方形卡片”内拼成的图案如图3.已知图3中的阴影部分的面积比图2中的阴影部分的面积大2ab ﹣15,则小正方形卡片的面积是( )A .10B .8C .2D .5二、填空题(每题3分,共30分)9.某细胞的直径约为0.0000102米,用科学记数法表示为 米. 10.计算:1012﹣992= .11.若(a ﹣2)x |a |﹣1+3y =1是二元一次方程,则a = .12.已知(m +n )2=7,(m ﹣n )2=3,则m 2+n 2= .13.如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2= °.14.设A =(x ﹣3)(x ﹣7),B =(x ﹣2)(x ﹣8),则A 、B 的大小关系为 .15.如图,面积为3cm 2的△ABC 纸片沿BC 方向平移至△DEF 的位置,平移的距离是BC 长的2倍,则△ABC 纸片扫过的面积为 .16.如果4x 2﹣mxy +9y 2是一个完全平方式,则m =.17.如果方程组的解中x 与y 的值相等,那么a 的值是 .18.对于正整数m ,若m =pq (p ≥q >0,且p ,q 为整数),当p ﹣q 最小时,则称pq 为m 的“最佳分解”,并规定f (m )=(如:12的分解有12×1,6×2,4×3,其中,4×3为12的最佳分解,则f (12)=).关于f (m )有下列判断:①f (27)=3;②f (13)=;③f (2018)=;④f (2)=f (32);⑤若m 是一个完全平方数,则f (m )=1.其中,正确判断的序号是 . 三、解答题(共96分) 19.(8分)计算(1)(3.14﹣π)0+(﹣4)2﹣()﹣1(2)(x ﹣3)2﹣(x +2)(x ﹣2)20.(8分)因式分解 (1)a 2﹣25 (2)xy 2﹣4xy +4x 21.(8分)解方程组 (1) (2)22.(8分)先化简再求值:4(a +2)2﹣7(a +3)(a ﹣3)+3(a ﹣1)2,其中a 是最小的正整数. 23.(8分)如图,EG ⊥BC 与点G ,∠BFG =∠DAC ,AD 平分∠BAC ,试判断AD 与BC 的位置关系,并说明理由.24.(8分)小明和小丽同解一个二元一次方程组,小明正确解得,小丽因抄错了c ,解得.已知小丽除抄错c 外没有发生其他错误,求a +b +c 的值.25.(12分)拼图游戏:一天,小嘉在玩纸片拼图游戏时,发现利用图①中的三种材料各若干,可以拼出一些长方形来解释某些等式.比如图②可以解释为:(a +2b )(a +b )=a 2+3ab +2b 2.(1)则图③可以解释为等式: .(2)在虚线框中用图①中的基本图形若干块(每种至少用一次)拼成一个长方形,使拼出的长方形面积为3a 2+7ab +2b 2,并通过拼图对多项式3a 2+7ab +2b 2因式分解:3a 2+7ab +2b 2= . (3)如图④,大正方形的边长为m ,小正方形的边长为n ,若用x 、y 表示四个长方形的两边长(x >y ),结合图案,指出以下关系式:(1)xy =;(2)x +y =m ;(3)x 2﹣y 2=m •n ;(4)x 2+y 2=其中正确的关系式的个数有( ) A .1个 B .2个 C .3个 D .4个. 26.(12分)先阅读下面的内容,再解决问题: 例题:若m 2+2mn +2n 2﹣6n +9=0,求m 和n 的值. ∵m 2+2mn +2n 2﹣6n +9=0∴m 2+2mn +n 2+n 2﹣6n +9=0∴(m +n )2+(n ﹣3)2=0∴m +n =0,n ﹣3=0∴m =﹣3,n =3 根据你的观察,探究下面的问题:(1)若x 2+4x +4+y 2﹣8y +16=0,求的值.(2)试说明不论x ,y 取什么有理数时,多项式x 2+y 2﹣2x +2y +3的值总是正数.(3)已知a ,b ,c 是△ABC 的三边长,满足a 2+b 2=10a +8b ﹣41,且c 比a 、b 都大,求c 的取值范围.27.(12分)某校七年级400名学生到郊外参加植树活动,已知用3辆小客车和1辆大客车每次可运送学生105人,用1辆小客车和2辆大客车每次可运送学生110人. (1)每辆小客车和每辆大客车各能坐多少名学生?(2)若计划租小客车m 辆,大客车n 辆,一次送完,且恰好每辆车都坐满: ①请你设计出所有的租车方案;②若小客车每辆租金150元,大客车每辆租金250元,请选出最省线的租车方案,并求出最少租金.28.(12分)“一带一路”让中国和世界更紧密,“中欧铁路”为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是每秒2度,灯B转动的速度是每秒1度.假定主道路是平行的,即PQ∥MN,且∠BAM:∠BAN=2:1.(1)填空:∠BAN= °;(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图2,若两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作∠ACD 交PQ于点D,且∠ACD=120°,则在转动过程中,请探究∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.七年级(下)期中数学试卷参考答案与试题解析一、选择题(每题3分,共24分)1.【分析】根据同底数幂的除法法则,同底数幂相除,底数不变,指数相减计算即可. 【解答】解:a6÷a2=a6﹣2=a4.故选:B.【点评】本题主要考查同底数幂的除法,熟练掌握运算性质是解题的关键.2.【分析】最小的非负整数为0,把x=0,x=1,x=2,x=3…依次代入二元一次方程2x+y=11,求y值,直至y为负数,从而得到答案.【解答】解:最小的非负整数为0,当x=0时,0+y=11,解得:y=11,当x=1时,2+y=11,解得:y=9,当x=2时,4+y=11,解得:y=7,当x=3时,6+y=11,解得:y=5,当x=4时,8+y=11,解得:y=3,当x=5时,10+y=11,解得:y=1,当x=6时,12+y=11,解得:y=﹣1(不合题意,舍去)即当x≥6时,不合题意,即二元一次方程2x+y=11的非负整数解有6个,故选:C.【点评】本题考查解二元一次方程,正确掌握代入法是解题的关键.3.【分析】用木条固定长方形窗框,即是组成三角形,故可用三角形的稳定性解释. 【解答】解:工人师傅做了一个长方形窗框ABCD,工人师傅为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在E、G两点之间(没有构成三角形),这种做法根据的是三角形的稳定性.故选:B.【点评】本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.4.【分析】组成方程组求解即可.【解答】解:解方程组得,故选:D.【点评】本题主要考查了二元一次方程的解,解题的关键是正确求出方程组的解.5.【分析】由于将代数式中的任意两个字母互相替换,代数式不变,则称这个代数式为完全对称式,由于将代数式中的任意两个字母互相替换,代数式不变,根据这个定义分别将①②③进行替换,看它们都有没有改变,由此即可确定是否完全对称式. 【解答】解:①∵(a﹣b)2=(b﹣a)2,∴①是完全对称式;②ab+bc+ca中把a和b互相替换得ab+bc+ca,∴②是完全对称式;③a2b+b2c+c2a中把a和b互相替换得b2a+a2c+c2b,和原来不相等,∴不是完全对称式;故①②正确.故选:A.【点评】此题是一个阅读材料题,考查了完全平方公式,难点在于读懂题意,然后才能正确利用题意解决问题.6.【分析】理解清楚题意,运用三元一次方程组的知识,解出K的数值.【解答】解:由题意可得,2×①﹣②得y=k﹣,②﹣③得x=﹣2,代入③得y=5,则k﹣=5,解得k=8.故选:B.【点评】本题的实质是解三元一次方程组,用加减法或代入法来解答.7.【分析】此题中的等量关系:①乙先跑10米,则甲跑5秒就可以追上乙;②乙先跑2秒,则甲跑4秒就可追上乙.【解答】解:根据乙先跑10米,则甲跑5秒就可以追上乙,得方程5x=5y+10;根据乙先跑2秒,则甲跑4秒就可追上乙,得方程4x=4y+2y.可得方程组.故选:A.【点评】此题是追及问题.注意:无论是哪一个等量关系中,总是甲跑的路程=乙跑的路程. 8.【分析】根据题意、结合图形分别表示出图2、3中的阴影部分的面积,根据题意列出算式,根据整式是混合运算法则计算即可.【解答】解:图3中的阴影部分的面积为:(a﹣b)2,图2中的阴影部分的面积为:(2b﹣a)2,由题意得,(a﹣b)2﹣(2b﹣a)2=2ab﹣15,整理得,b2=5,则小正方形卡片的面积是5,故选:D.【点评】本题考查的是整式的混合运算,正确表示出两个阴影部分的面积是解题的关键. 二、填空题(每题3分,共30分)9.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000102=1.02×10﹣5,故答案为:1.02×10﹣5.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10.【分析】直接利用平方差公式分解因式进而计算得出即可.【解答】解:1012﹣992=(101+99)×(101﹣99)=400.故答案为:400.【点评】此题主要考查了平方差公式的应用,熟练掌握平方差公式是解题关键.11.【分析】根据二元一次方程的定义知,未知数x的次数|a|﹣1=1,且系数a﹣2≠0. 【解答】解:∵(a﹣2)x|a|﹣1+3y=1是二元一次方程,∴|a|﹣1=1且a﹣2≠0,解得,a=﹣2;故答案是:﹣2.【点评】主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.12.【分析】利用完全平方公式计算即可求出所求.【解答】解:∵(m+n)2=m2+n2+2mn=7①,(m﹣n)2=m2+n2﹣2mn=3②,∴①+②得:2(m2+n2)=10,则m2+n2=5,故答案为:5【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.13.【分析】先根据三角形内角和定理求出∠4的度数,根据平行线性质求出∠3,根据邻补角定义求出即可.【解答】解:∵将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,∠1=27°,∴∠4=90°﹣30°﹣27°=33°,∵AD∥BC,∴∠3=∠4=33°,∴∠2=180°﹣90°﹣33°=57°,故答案为:57°.【点评】本题考查了三角形的内角和定理,平行线的性质,邻补角的定义的应用,解此题的关键是能求∠3的度数,难度适中.14.【分析】根据多项式乘以多项式的法则,先把A、B进行整理,然后比较即可得出答案. 【解答】解:∵A=(x﹣3)(x﹣7)=x2﹣10x+21,B=(x﹣2)(x﹣8)=x2﹣10x+16, ∴A﹣B=x2﹣10x+21﹣(x2﹣10x+16)=5>0,∴A>B,故答案为:A>B.【点评】本题主要考查多项式乘以多项式的法则,注意不要漏项,漏字母,有同类项的合并同类项.15.【分析】根据平移的性质可以知道四边形ACED 的面积是三个△ABC 的面积,△ABC 纸片扫过的面积为四边形ABDF 的面积=5个△ABC 的面积; 【解答】解:∵平移的距离是边BC 长的两倍, ∴BC =CE =EF ,∴四边形ACED 的面积是三个△ABC 的面积; ∴△ABC 纸片扫过的面积=S四边形ABFD=5×3=15cm 2,【点评】【点评】考查了平移的性质,考查了平移的性质,考查了平移的性质,本题的关键是得出四边形本题的关键是得出四边形ACED 的面积是三个△ABC 的面积.然后根据已知条件计算.16.【分析】这里首末两项是2x 和3y 这两个数的平方,那么中间一项为加上或减去2x 和3y 积的2倍.【解答】解:∵4x 2﹣mxy +9y 2是一个完全平方式, ∴﹣mxy =±2×2x ×3y , ∴m =±12.【点评】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解. 17.【分析】把y =x 代入方程组求出a 的值即可. 【解答】解:把y =x 代入方程组得:,解得:,则a 的值是3, 故答案为:3【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.18.【分析】先分解因数,进而找出最佳分解,即可得出结论. 【解答】解:①∵27的分解有27×1,9×3, ∴9×3为27的最佳分解,则f (12)==,故说法①错误;②∵13的分解有13×1,∴13×1为13的最佳分解,则f (13)=,故说法②正确;③∵2018的分解有2018×1,1009×2,∴1009×2为2018的最佳分解,则f (2018)=,故说法③错误;④∵2的分解有2×1,∴2×1为2的最佳分解,则f (2)=,∵32的分解有32×1,16×2,8×4,∴8×4为32的最佳分解,则f (22)==,∴f (2)=f (32),故说法④正确;⑤∵m 是一个完全平方数,设m =n 2(m >0),∴n ×n 为m 的最佳分解,则f (m )==1,故说法⑤正确,∴正确判断的序号为②④⑤,故答案为②④⑤.【点评】此题主要考查了新定义,分解因数,完全平方数的特点,能正确分解因数是解本题的关键.三、解答题(共96分)19.【分析】(1)原式利用零指数幂、负整数指数幂法则计算即可求出值;(2)原式利用完全平方公式,以及平方差公式计算即可求出值.【解答】解:(1)原式=1+16﹣2=15;(2)原式=x 2﹣6x +9﹣x 2+4=﹣6x +13.【点评】此题考查了平方差公式,完全平方公式,以及实数的运算,熟练掌握公式及法则是解本题的关键.20.【分析】(1)两项考虑平方差公式;(2)提取公因式x后,再用完全平方公式.【解答】解:(1)原式=(a+5)(a﹣5);(2)原式=x(y2﹣4y+4)=x(y﹣2)2.【点评】本题考查了因式分解的平方差公式和完全平方公式.题目比较简单,掌握公式是关键.21.【分析】(1)用代入法求解方程组比较简便;(2)变形2x+y=1,可用代入法求解,亦可①×2﹣②用加减法求解.【解答】解:(1),把②代入①,得2(1﹣y)+4y=5,解得,y=,把y=代入②,得x=1﹣=﹣.∴原方程组的解为.(2)由①,得y=1﹣2x③,把③代入②,得5x+2(1﹣2x)=3,解得x=1把x=1代入③,得y=1﹣2×1=﹣1.所以原方程组的解为.【点评】本题考查的是二元一次方程组的解法,题目相对简单,掌握代入、加减消元法是解决本题的关键.22.【分析】利用完全平方公式和平方差公式计算,进一步合并同类项,再进一步代入求得数值即可.【解答】解:原式=4(a2+4a+4)﹣7(a2﹣9)+3(a2﹣2a+1)=4a 2+16a +16﹣7a 2+63+3a 2﹣6a +3=10a +82,最小的正整数是1,则a =1,原式=10+82=92,.【点评】此题考查整式的混合运算,注意先利用公式计算,再进一步代入求得数值即可. 23.【分析】根据角平分线的定义可得∠BAD =∠DAC ,从而可得∠BFG =∠BAD ,再根据同位角相等,两直线平行可得EG ∥AD ,然后根据EG ⊥BC 即可证明AD ⊥BC .【解答】解:AD ⊥BC .理由如下:∵AD 平分∠BAC ,∴∠BAD =∠DAC ,∵∠BFG =∠DAC ,∴∠BFG =∠BAD ,∴EG ∥AD ,∴∠EGC =∠ADC ,又∵EG ⊥BC ,∴∠EGC =90°,∴∠ADC =90°,∴AD ⊥BC .【点评】本题考查了平行线的判定与角平分线的定义,找出相等的角是解题的关键. 24.【分析】因为小明的解正确,所以可以代入任何一个方程,代入①可求c 的值,代入②得a ﹣b =2;因为小丽抄错了c ,因此可以代入②中,得a ﹣3b =1,建立方程组,可以得出a 、b 的值,从而求出结论.【解答】解:将代入cx ﹣3y =﹣2①得,c +3=﹣2,c =﹣5, 将代入ax +by =2②得,a ﹣b =2③, 将代入②得,2a ﹣6b =2,a ﹣3b =1④,将③,④联立,, 解之得,所以.【点评】本题考查了二元一次方程组的解,要求方程组的字母系数,通常采用代入法,将正确的解代入即可.25.【分析】(1)看图即可得出所求的式子;(2)画出的矩形边长分别为(3a+b)和(a+2b)即可;(3)根据图中每个图形的面积之间的关系即可判断出正确的有几个.【解答】解:(1)由分析知:图③所表示的等式为:(2a+b)(a+2b)=2a2+5ab+2b2;(2)示意图如下3a2+7ab+2b2=(3a+b)(a+2b);(3)D.【点评】此题考查利用图形面积研究因式分解,同时也加深了对多项式乘多项式的理解. 26.【分析】(1)已知等式利用完全平方公式整理配方后,求出x与y的值,即可求出所求;(2)原式配方变形后,利用非负数的性质判断即可;(3)已知等式利用完全平方公式配方后,利用非负数的性质求出a与b的值,即可求出c的范围.【解答】解:(1)已知等式整理得:(x+2)2+(y﹣4)2=0,可得x+2=0,y﹣4=0,解得:x=﹣2,y=4,则原式=﹣2;(2)∵(x﹣1)2≥0,(y+1)2≥0,∴原式=(x﹣1)2+(y+1)2+1≥1>0,则不论x,y取什么有理数时,多项式x2+y2﹣2x+2y+3的值总是正数;(3)已知等式整理得:(a﹣5)2+(b﹣4)2=0,可得a﹣5=0,b﹣4=0,解得:a=5,b=4,则c的范围是5<c<9.【点评】此题考查了配方法的应用,非负数的性质:偶次幂,以及三角形三边关系,熟练掌握完全平方公式是解本题的关键.27.【分析】(1)设每辆小客车能坐x人,每辆大客车能坐y人,根据题意可得等量关系:3辆小客车座的人数+1辆大客车座的人数=105人;1辆小客车座的人数+2辆大客车座的人数=110人,根据等量关系列出方程组,再解即可;(2)①根据题意可得小客车m辆运的人数+大客车n辆运的人数=400,然后求出整数解即可;②根据①所得方案和小客车每辆租金150元,大客车每辆租金250元分别计算出租金即可.【解答】解:(1)设每辆小客车能坐x人,每辆大客车能坐y人,据题意:,解得:,答:每辆小客车能坐20人,每辆大客车能坐45人;(2)①由题意得:20m+45n=400,∴n=,∵m、n为非负整数,∴或或,∴租车方案有三种:方案一:小客车20车、大客车0辆,方案二:小客车11辆,大客车4辆,方案三:小客车2辆,大客车8辆;②方案一租金:150×20=3000(元),方案二租金:150×11+250×4=2650(元),方案三租金:150×2+250×8=2300(元),∴方案三租金最少,最少租金为2300元.【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,列出二元一次方程或方程组.28.【分析】(1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=2:1,即可得到∠BAN的度数;(2)设A灯转动t秒,两灯的光束互相平行,分两种情况进行讨论:当0<t<90时,根据2t=1•(30+t),可得 t=30;当90<t<150时,根据1•(30+t)+(2t﹣180)=180,可得t=110;(3)设灯A射线转动时间为t秒,根据∠BAC=2t﹣120°,∠BCD=120°﹣∠BCD=t﹣60°,即可得出∠BAC:∠BCD=2:1,据此可得∠BAC和∠BCD关系不会变化.【解答】解:(1)∵∠BAM+∠BAN=180°,∠BAM:∠BAN=2:1,∴∠BAN=180°×=60°,故答案为:60;(2)设A灯转动t秒,两灯的光束互相平行,①当0<t<90时,如图1,∵PQ∥MN,∴∠PBD=∠BDA,∵AC∥BD,∴∠CAM=∠BDA,∴∠CAM=∠PBD∴2t=1•(30+t),解得 t=30;②当90<t<150时,如图2,∵PQ∥MN,∴∠PBD+∠BDA=180°,∵AC∥BD,∴∠CAN=∠BDA∴∠PBD+∠CAN=180°∴1•(30+t)+(2t﹣180)=180,解得 t=110,综上所述,当t=30秒或110秒时,两灯的光束互相平行;(3)∠BAC和∠BCD关系不会变化.理由:设灯A射线转动时间为t秒,∵∠CAN=180°﹣2t,∴∠BAC=60°﹣(180°﹣2t)=2t﹣120°,又∵∠ABC=120°﹣t,∴∠BCA=180°﹣∠ABC﹣∠BAC=180°﹣t,而∠ACD=120°,∴∠BCD=120°﹣∠BCA=120°﹣(180°﹣t)=t﹣60°,∴∠BAC:∠BCD=2:1,即∠BAC=2∠BCD,∴∠BAC和∠BCD关系不会变化.【点评】本题主要考查了平行线的性质以及角的和差关系的运用,解决问题的关键是运用分类思想进行求解,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补.。
唐山市初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

唐山市初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)边长为2的正方形的面积为a,边长为b的立方体的体积为27,则a-b的值为()A. 29B. 7C. 1D. -2【答案】C【考点】立方根及开立方【解析】【解答】∵边长为2的正方形的面积为a,∴a=22=4,∵边长为b的立方体的体积为27,∴b3=27,∴b=3,∴a-b=1,故答案为:C.【分析】根据正方形的面积=边长的平方和算术平方根的意义可求解;根据立方体的体积=边长的立方和立方根的意义可求解。
2、(2分)关于x、y的方程组的解x、y的和为12,则k的值为()A.14B.10C.0D.﹣14【答案】A【考点】二元一次方程组的解,解二元一次方程组【解析】【解答】解:解方程得:根据题意得:(2k﹣6)+(4﹣k)=12解得:k=14.故答案为:A【分析】先将k看作已知数解这个方程组,可将x、y用含k的代数式表示出来,由题意再将x、y代入x+y=12可得关于k的一元一次方程,解这个方程即可求得k的值。
3、(2分)如图,在五边形ABCDE中,AB∥DE,BC⊥CD,∠1、∠2分别是与∠ABC、∠EDC相邻的外角,则∠1+∠2等于()A. 150°B. 135°C. 120°D. 90°【答案】D【考点】对顶角、邻补角,平行线的性质,三角形内角和定理【解析】【解答】解:连接BD,∵BC⊥CD,∴∠C=90∘,∴∠CBD+∠CDB=180∘−90∘=90∘∵AB∥DE,∴∠ABD+∠EDB=180∘,∴∠1+∠2=180∘−∠ABC+180∘−∠EDC=360∘−(∠ABC+∠EDC)=360∘−(∠ABD+∠CBD+∠EDB+∠CDB)=360∘−(90∘+180∘)=90∘故选D.【分析】连接BD,根据三角形内角和定理求出∠CBD+∠CDB=90°,根据平行线的性质求出∠ABD+∠EDB=180°,然后根据邻补角的定义及角的和差即可求出答案.4、(2分)用加减法解方程组中,消x用法,消y用法()A. 加,加B. 加,减C. 减,加D. 减,减【答案】C【考点】解二元一次方程【解析】【解答】解:用加减法解方程组中,消x用减法,消y用加法,故答案为:C.【分析】观察方程组中同一个未知数的系数特点:x的系数相等,因此可将两方程相减消去x;而y的系数互为相反数,因此将两方程相加,可以消去y。
2018-2019学年七年级(下)期中数学试卷(解析版)

七年级(下)期中数学试卷一、选择题:(每小题3分,共30分)1.如图所示是“福娃欢欢”的五幅图案,②,③,④,⑤哪一个图案可以通过平移图案①得到()A.②B.③C.④D.⑤2.如图,直线AB、CD相交于点O,若∠1+∠2=100°,则∠BOC等于()A.130°B.140°C.150° D.160°3.下列各数中,3.14159,,0.131131113…(相邻两个3之间1的个数逐次加1个),﹣π,,,无理数的个数有()A.1个 B.2个 C.3个 D.4个4.点P(﹣2,1)在平面直角坐标系中所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限5.将一个直角三角板与一张两边平行的纸条按如图所示位置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是()A.4个 B.3个 C.2个 D.1个6.如图,若m∥n,∠1=105°,则∠2=()A.55°B.60°C.65°D.75°7.下列说法中,正确的个数是()(1)﹣64的立方根是﹣4;(2)49的算术平方根是±7;(3)的立方根为;(4)是的平方根.A.1 B.2 C.3 D.48.下列命题中是假命题的是()A.同旁内角互补,两直线平行B.直线a⊥b,则a 与b的夹角为直角C.如果两个角互补,那么这两个角一个是锐角,一个是钝角D.若a∥b,a⊥c,那么b⊥c9.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(﹣1,﹣2),“马”位于点(2,﹣2),则“兵”位于点()A.(﹣1,1)B.(﹣2,﹣1)C.(﹣3,1)D.(1,﹣2)10.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4 B.∠1=∠2 C.∠D=∠DCE D.∠D+∠ACD=180°二、填空题(本题有10个小题,每小题3分,满分33分)11.的相反数是.12.若点M(a+3,a﹣2)在y轴上,则点M的坐标是.13.一个正数x的平方根是2a﹣3与5﹣a,则a=.14.的平方根为.15.把命题“对顶角相等”改写成:如果,那么.16.如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是.17.已知线段AB,点A的坐标是(3,2),点B的坐标是(2,﹣5),将线段AB平移后,得到点A的对应点A′的坐标是(5,﹣1),则点B的对应点B′的坐标为.18.比较大小:6.(用“>”或“<”连接)19.若|x﹣3|+=0,则(x+y)2014的值为.20.若|a|=5,|b|=4,且点M(a,b)在第二象限,则点M的坐标是.21.有一组按规律排列的数:,,,2,…则第n个数是.三、解答题(共60分)22.计算:(1)(2)|﹣|++2(﹣1)23.求下面各式中的x:(1)x2=4(2)8(x﹣1)3=27.24.如图所示,已知∠1=∠2=45°,∠3=100°,求∠4的度数.25.按要求画图:(1)作BE∥AD交DC于E;(2)连接AC,作BF∥AC交DC的延长线于F;(3)作AG⊥DC于G.26.如图,点E在直线DF上,点B在直线AC上,若∠1=∠2,∠3=∠4,求证:∠A=∠F解:∵∠1=∠2(已知)∠2=∠DGF ()∴∠1=(等量代换)∴BD∥CE ()∴∠3+∠C=180°()又∵∠3=∠4(已知)∴∠4+∠C=180°∴∥(同旁内角互补,两直线平行)∴∠A=∠F ().27.如图,已知:AB∥CD,求证:∠AEC=∠A+∠C.28.如图所示,三角形ABC三个顶点A、B、C的坐标分别为A (1,2)、B(4,3)、C(3,1).(1)将△ABC先向右平移2个单位长度,再向下平移3个单位长度,得到△A'B'C',则A'B'C'的三个顶点坐标分别是A'(、)、B'(、)、C'(、);(2)画出平移后的图形.(3)求△ABC的面积.(本小题必须写出解答过程)29.如图,∠B、∠D的两边分别平行.(1)在图1中,∠B与∠D的数量关系是;(2)在图2中,∠B与∠D的数量关系是;(3)用一句话归纳的结论为;请选择(1)(2)中的一种情况说明理由.(4)应用:若两个角的两边两两互相平行,其中一个角的是另一个角的,求着两个角的度数.七年级(下)期中数学试卷参考答案与试题解析一、选择题:(每小题3分,共30分)1.如图所示是“福娃欢欢”的五幅图案,②,③,④,⑤哪一个图案可以通过平移图案①得到()A.②B.③C.④D.⑤【考点】生活中的平移现象.【分析】根据平移的性质,结合图形进行分析,求得正确答案.【解答】解:A、②是由旋转得到,故错误;B、③是由轴对称得到,故错误;C、④是由旋转得到,故错误;D、⑤形状和大小没有变化,由平移得到,故正确.故选D.2.如图,直线AB、CD相交于点O,若∠1+∠2=100°,则∠BOC等于()A.130°B.140°C.150° D.160°【考点】对顶角、邻补角.【分析】两直线相交,对顶角相等,即∠AOC=∠BOD,已知∠AOC+∠BOD=100°,可求∠AOC;又∠AOC与∠BOC互为邻补角,即∠AOC+∠BOC=180°,将∠AOC的度数代入,可求∠BOC.【解答】解:∵∠AOC与∠BOD是对顶角,∴∠AOC=∠BOD,又∵∠AOC+∠BOD=100°,∴∠AOC=50°.∵∠AOC与∠BOC互为邻补角,∴∠BOC=180°﹣∠AOC=180°﹣50°=130°.故选A.3.下列各数中,3.14159,,0.131131113…(相邻两个3之间1的个数逐次加1个),﹣π,,,无理数的个数有()A.1个 B.2个 C.3个 D.4个【考点】无理数.【分析】无限不循环小数为无理数,由此可得出无理数的个数.【解答】解:由定义可知无理数有:0.131131113…,﹣π,共两个.故选:B.4.点P(﹣2,1)在平面直角坐标系中所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据各象限点的坐标的特点解答.【解答】解:点P(﹣2,1)在第二象限.故选B.5.将一个直角三角板与一张两边平行的纸条按如图所示位置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是()A.4个 B.3个 C.2个 D.1个【考点】平行线的性质.【分析】由题意可得:∠1=∠2(两直线平行,同位角相等),∠3=∠4(两直线平行,内错角相等)∠4+∠5=180°(两直线平行,同旁内角互补),∠2+∠4=180°﹣90°=90°,继而求得答案.【解答】解:∵纸条的两边平行,∴∠1=∠2(两直线平行,同位角相等),∠3=∠4(两直线平行,内错角相等)∠4+∠5=180°(两直线平行,同旁内角互补),故(1),(2),(4)正确;由题意得:∠2+∠4=180°﹣90°=90°,故(3)正确.∴其中正确的个数是:4个.故选A.6.如图,若m∥n,∠1=105°,则∠2=()A.55°B.60°C.65°D.75°【考点】平行线的性质.【分析】由m∥n,根据“两直线平行,同旁内角互补”得到∠1+∠2=180°,然后把∠1=105°代入计算即可得到∠2的度数.【解答】解:∵m∥n,∴∠1+∠2=180°(两直线平行,同旁内角互补),而∠1=105°,∴∠2=180°﹣105°=75°.故选:D.7.下列说法中,正确的个数是()(1)﹣64的立方根是﹣4;(2)49的算术平方根是±7;(3)的立方根为;(4)是的平方根.A.1 B.2 C.3 D.4【考点】立方根;平方根;算术平方根.【分析】(1)根据立方根的定义即可判定;(2)根据算术平方根的定义即可;(3)根据立方根的定义即可判定;(4)根据平方根的定义即可判定.【解答】解:(1)﹣64的立方根是﹣4,故正确;(2)49的算术平方根是±7,算术平方根是正数,故错误;(3)的立方根为,故正确;(4)是的平方根,故正确.故选C.8.下列命题中是假命题的是()A.同旁内角互补,两直线平行B.直线a⊥b,则a 与b的夹角为直角C.如果两个角互补,那么这两个角一个是锐角,一个是钝角D.若a∥b,a⊥c,那么b⊥c【考点】命题与定理.【分析】根据平行线的判定对A进行判断;根据垂直的定义对B进行判断;利用特例对C进行判断;根据平行线的性质和垂直定义对D进行判断.【解答】解:A、同旁内角互补,两直线平行,所以A选项为真命题;B、直线a⊥b,则a 与b的夹角为90°,所以B选项为真命题;C、如果两个角互补,那么这两个角可能都为90°,所以C选项为假命题;D、若a∥b,a⊥c,那么b⊥c,所以D选项为真命题.故选C.9.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(﹣1,﹣2),“马”位于点(2,﹣2),则“兵”位于点()A.(﹣1,1)B.(﹣2,﹣1)C.(﹣3,1)D.(1,﹣2)【考点】坐标确定位置.【分析】直接利用“帅”位于点(﹣1,﹣2),可得原点的位置,进而得出“兵”的坐标.【解答】解:如图所示:可得“炮”是原点,则“兵”位于点:(﹣3,1).故选:C.10.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A .∠3=∠4B .∠1=∠2C .∠D=∠DCED .∠D +∠ACD=180° 【考点】平行线的判定.【分析】根据平行线的判定分别进行分析可得答案.【解答】解:A 、根据内错角相等,两直线平行可得BD ∥AC ,故此选项错误; B 、根据内错角相等,两直线平行可得AB ∥CD ,故此选项正确; C 、根据内错角相等,两直线平行可得BD ∥AC ,故此选项错误; D 、根据同旁内角互补,两直线平行可得BD ∥AC ,故此选项错误; 故选:B .二、填空题(本题有10个小题,每小题3分,满分33分) 11.的相反数是﹣.【考点】实数的性质.【分析】根据相反数的性质,互为相反数的两个数和为0,由此求解即可. 【解答】解:根据概念(的相反数)+()=0,则的相反数是﹣.故的相反数﹣.12.若点M (a +3,a ﹣2)在y 轴上,则点M 的坐标是 (0,﹣5) . 【考点】点的坐标.【分析】让点M 的横坐标为0求得a 的值,代入即可. 【解答】解:∵点M (a +3,a ﹣2)在y 轴上,∴a +3=0,即a=﹣3,∴点M 的坐标是(0,﹣5).故答案填:(0,﹣5).13.一个正数x 的平方根是2a ﹣3与5﹣a ,则a= ﹣2 . 【考点】平方根.【分析】根据正数的两个平方根互为相反数列式计算即可得解. 【解答】解:∵正数x 的平方根是2a ﹣3与5﹣a , ∴2a ﹣3+5﹣a=0, 解得a=﹣2. 故答案为:﹣2. 14.的平方根为 ±3 .【考点】平方根.【分析】根据平方根的定义即可得出答案. 【解答】解:8l 的平方根为±3. 故答案为:±3.15.把命题“对顶角相等”改写成:如果 两角是对顶角 ,那么 它们相等 . 【考点】命题与定理.【分析】先找到命题的题设和结论,再写成“如果…那么…”的形式.【解答】解:∵原命题的条件是:“两个角是对顶角”,结论是:“它们相等”, ∴命题“对顶角相等”写成“如果…那么…”的形式为:“如果两个角是对顶角,那么它们相等”.故答案为:两角是对顶角,它们相等.16.如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是连接直线外一点与直线上所有点的连线中,垂线段最短.【考点】垂线段最短.【分析】过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段,且垂线段最短.【解答】解:根据垂线段定理,连接直线外一点与直线上所有点的连线中,垂线段最短,∴沿AB开渠,能使所开的渠道最短.故答案为:连接直线外一点与直线上所有点的连线中,垂线段最短.17.已知线段AB,点A的坐标是(3,2),点B的坐标是(2,﹣5),将线段AB平移后,得到点A的对应点A′的坐标是(5,﹣1),则点B的对应点B′的坐标为(4,﹣8).【考点】坐标与图形变化﹣平移.【分析】根据点A、A′的坐标确定出平移规律,然后求解即可.【解答】解:∵点A(3,2)的对应点A′是(5,﹣1),∴平移规律是横坐标加2,纵坐标减3,∴点B(2,﹣5)的对应点B′的坐标为(4,﹣8).故答案为:(4,﹣8).18.比较大小:>6.(用“>”或“<”连接)【考点】实数大小比较.【分析】先求出=6,即可得出答案.【解答】解:∵=6,∴>6,故答案为:>.19.若|x﹣3|+=0,则(x+y)2014的值为1.【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】根据题意目中的式子可以求得x、y的值,从而可以解答本题.【解答】解:∵|x﹣3|+=0,∴,得,∴(x+y)2014=(3﹣4)2014=(﹣1)2014=1,故答案为:1.20.若|a|=5,|b|=4,且点M(a,b)在第二象限,则点M的坐标是(﹣5,4).【考点】点的坐标.【分析】根据各象限内点的坐标特征解答即可.【解答】解:由题意,得a=﹣5,b=4,点M 的坐标是(﹣5,4), 故答案为:(﹣5,4).21.有一组按规律排列的数:,,,2,…则第n 个数是.【考点】立方根.【分析】根据数据所显示的规律可知,这组数据的规律是:,,,,…,依此可得第n个数.【解答】解:观察数据可知,这组数据的规律是:,,,,…,则第n 个数是. 故答案为:.三、解答题(共60分) 22.计算: (1)(2)|﹣|++2(﹣1)【考点】实数的运算.【分析】(1)原式利用二次根式性质,平方根、立方根定义计算即可得到结果; (2)原式利用绝对值的代数意义,立方根定义,计算即可得到结果. 【解答】解:(1)原式=3﹣6+3=0; (2)原式=﹣+2+2﹣2=3﹣.23.求下面各式中的x : (1)x 2=4 (2)8(x ﹣1)3=27.【考点】立方根;平方根.【分析】根据平方根与立方根的性质即可求出x 的值.【解答】解:(1)∵(±2)2=4, ∴x=±2, (2)∵()3=,∴x ﹣1= ∴x=24.如图所示,已知∠1=∠2=45°,∠3=100°,求∠4的度数.【考点】平行线的判定与性质.【分析】先利用平行线的判定证明a ∥b ,再利用两直线平行,同位角相等,得∠4的度数.【解答】解:∵∠1=∠2,∠3=100°, ∴a ∥b ,∴∠4=∠3=100°, 答:∠4的度数为110°.25.按要求画图:(1)作BE∥AD交DC于E;(2)连接AC,作BF∥AC交DC的延长线于F;(3)作AG⊥DC于G.【考点】作图—基本作图.【分析】(1)过点B作∠BEC=∠D即可得出答案;(2)延长DC,作∠BFC=∠ACD即可得出答案;(3)过点A作AG⊥CD,直接作出垂线即可.【解答】解:(1)如图所示:BE即为所求;(2)如图所示:BF即为所求;(3)如图所示:AG即为所求.26.如图,点E在直线DF上,点B在直线AC上,若∠1=∠2,∠3=∠4,求证:∠A=∠F 解:∵∠1=∠2(已知)∠2=∠DGF (对顶角相等)∴∠1=∠DGF(等量代换)∴BD∥CE (同位角相等,两直线平行)∴∠3+∠C=180°(两直线平行,同旁内角互补)又∵∠3=∠4(已知)∴∠4+∠C=180°∴AC∥DF(同旁内角互补,两直线平行)∴∠A=∠F (两直线平行,内错角相等).【考点】平行线的判定与性质.【分析】先证明BD∥CE,得出同旁内角互补∠3+∠C=180°,再由已知得出∠4+∠C=180°,证出AC∥DF,即可得出结论.【解答】解:∵∠1=∠2(已知)∠2=∠DGF (对顶角相等)∴∠1=∠DGF(等量代换)∴BD∥CE (同位角相等,两直线平行)∴∠3+∠C=180°(两直线平行,同旁内角互补)又∵∠3=∠4(已知)∴∠4+∠C=180°∴AC∥DF∥(同旁内角互补,两直线平行)∴∠A=∠F (两直线平行,内错角相等);故答案为:对顶角相等;∠DGF;同位角相等,两直线平行;两直线平行,同旁内角互补;AC,DF;两直线平行,内错角相等.27.如图,已知:AB∥CD,求证:∠AEC=∠A+∠C.【考点】平行线的性质.【分析】延长CE交AB于点F,根据平行线的性质可得∠C=∠1,再根据三角形外角的性质可得∠AEC=∠A+∠1,进而可得∠AEC=∠A+∠C.【解答】证明:如图,延长CE交AB于点F,∵AB∥CD,∴∠C=∠1,在△CEF中,∠AEC=∠A+∠1,∴∠A+∠C=∠AEC.28.如图所示,三角形ABC三个顶点A、B、C的坐标分别为A (1,2)、B(4,3)、C(3,1).(1)将△ABC先向右平移2个单位长度,再向下平移3个单位长度,得到△A'B'C',则A'B'C'的三个顶点坐标分别是A'(3、﹣1)、B'(6、0)、C'(5、﹣2);(2)画出平移后的图形.(3)求△ABC的面积.(本小题必须写出解答过程)【考点】作图﹣平移变换.【分析】(1)根据点的平移规律解答即可得;(2)将(1)中所得点顺次连接即可得;(3)割补法求解可得.【解答】解:(1)将△ABC先向右平移2个单位长度,再向下平移3个单位长度,得到△A'B'C',则△A'B'C'的三个顶点坐标分别是A'(3,﹣1)、B′(6,0)、C′(5,﹣2),故答案为:3,﹣1,6,0,5,﹣2;(2)如下图,△A'B'C'即为所求:(3)S△ABC=2×3﹣×1×3﹣×1×2﹣×1×2=.29.如图,∠B、∠D的两边分别平行.(1)在图1中,∠B与∠D的数量关系是相等;(2)在图2中,∠B与∠D的数量关系是互补;(3)用一句话归纳的结论为如果两个角的两边分别平行,那么这两个角相等或互补;请选择(1)(2)中的一种情况说明理由.(4)应用:若两个角的两边两两互相平行,其中一个角的是另一个角的,求着两个角的度数.【考点】平行线的性质.【分析】(1)根据平行线的性质得到∠B=∠1,∠1=∠D,然后利用等量代换即可得到∠B=∠D;(2)根据平行线的性质得到∠B=∠1,∠1+∠D=180°,然后利用等量代换即可得到∠B+∠D=180°;(3)总结(1)和(2)的结论;(4)设这两个角的度数分别为x,y,由于一个角的是另一个角的,即x=y,则x与y不相等,x+y=180°,所以y+y=180°,然后接方程求出y,再求x.【解答】解:(1)∵AB∥CD,∴∠B=∠1,∵BE∥DF,∴∠1=∠D,∴∠B=∠D;(2)∵AB∥CD,∴∠B=∠1,∵BE∥DF,∴∠1+∠D=180°,∴∠B+∠D=180°;(3)如果两个角的两边分别平行,那么这两个角相等或互补;证明见(1)和(2);故答案为相等,互补,如果两个角的两边分别平行,那么这两个角相等或互补;(4)设这两个角的度数分别为x,y,∵一个角的是另一个角的,∴x=y,即x=y,∴x与y不相等,∴x+y=180°,∴y+y=180°,解得y=108°,∴x=72°,即这两个角的度数分别为72°、108°.2017年5月3日。
2018-2019学年七年级(下)期中数学试卷及答案解析

2018-2019学年七年级(下)期中数学试卷一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的1.4的算术平方根是()A.2±B.2C.2-D.16±2.点(5,4)A-在第几象限()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,//∠的大小为()∠=︒,则2⊥,若134a b,点B在直线b上,且AB BCA.34︒B.54︒C.56︒D.66︒∆通过平移得到,且点B,E,C,F在同一条直线4.如图,DEF∆是由ABCEC=.则BE的长度是()上.若14BF=,6A.2B.4C.5D.35.将点(1,2)A-向右平移4个单位长度,再向下平移3个单位长度,则平移后点的坐标是( )A.(3,1)B.(3,1)--D.(3,1)--C.(3,1)a=,且a在数轴上对应点的位置如图所示,其中正确的是( 6.如果实数11)A.B.C.D.7.64-的立方根是( )A .8-B .4-C .2-D .不存在 8.在722,3.33,2π,122-,0,0.454455444555⋯,0.9-,127,3127中,无理数的个数有( )A .2个B .3个C .4个D .5个9.如图,点E 在AC 的延长线上,下列条件中能判断//AB CD 的是( )A .34∠=∠B .D DCE ∠=∠C .12∠=∠D .180D ACD ∠+∠=︒10.若A ∠与B ∠的两边分别平行,60A ∠=︒,则(B ∠= )A .30︒B .60︒C .30︒或150︒D .60︒或120︒11.如图是丁丁画的一张脸的示意图,如果用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成( )A .(1,0)B .(1,0)-C .(1,1)-D .(1,1)-12.已知12x y =-⎧⎨=⎩是二元一次方程组321x y m nx y +=⎧⎨-=⎩的解,则m n -的值是( ) A .1 B .2 C .3 D .413.方程组23x y k x y k -=+⎧⎨+=⎩的解适合方程2x y +=,则k 值为( ) A .2 B .2- C .1 D .12- 14.已知点(1,0)A ,(0,2)B ,点P 在x 轴上,且PAB ∆的面积为5,则点P 的坐标是( )A .(4,0)-B .(6,0)C .(4,0)-或(6,0)D .(0,12)或(0,8)-二、填空题(本大题共5小题,每小题3分,共15分)15.命题“同旁内角互补”是一个 命题(填“真”或“假” )16.将一矩形纸条,按如图所示折叠,若264∠=︒,则l ∠= 度.17.在平面直角坐标系中,点(21,32)A t t -+在y 轴上,则t 的值为 .18102.0110.1= 1.0201= .19.若一正数的两个平方根分别是21a -与25a +,则这个正数等于 .三、解答题(共7题,共63分)20.(8分)计算:(1)21210x -=;(2)3(5)80x -+=21.(10分)解方程组.(1)211312x y x y +=⎧⎨+=⎩.(2)232491a b a b +=⎧⎨-=-⎩.22.(10分)如图,已知点D 、F 、E 、G 都在ABC ∆的边上,//EF AD ,12∠=∠,70BAC ∠=︒,求AGD ∠的度数.(请在下面的空格处填写理由或数学式)解://EF AD Q ,(已知)2∴∠= ( )12∠=∠Q ,(已知) 1∴∠= ( )∴ // ,( )AGD ∴∠+ 180=︒,(两直线平行,同旁内角互补) Q ,(已知)AGD ∴∠= (等式性质)23.(7分)已知,如图,直线AB 和CD 相交于点O ,COE ∠是直角,OF 平分AOE ∠,34COF ∠=︒,求AOC ∠和BOD ∠的度数.24.(8分)如图,已知E 是AB 上的点,//AD BC ,AD 平分EAC ∠,试判定B ∠与C ∠的大小关系,并说明理由.25.(9分)如图是一个被抹去x轴、y轴及原点O的网格图,网格中每个小正方形的边长均为1个单位长度,三角形ABC 的各顶点都在网格的格点上,若记点A 的坐标为(1,3)-,点C 的坐标为(1,1)-.(1)请在图中画出x 轴、y 轴及原点O 的位置;(2)ABC ∆内部一点P 的坐标为(,)a b ,把ABC ∆向下平移2个单位长度,再向右平移3个单位长度,请你画出平移后的△111A B C ,点P 随ABC ∆平移后的坐标是 ;(3)求出ABC ∆的面积.26.(11分)【问题情境】:如图1,//∠的度数.PCD∠=︒,求APCAB CD,130PAB∠=︒,120小明的思路是:过P作//∠.PE AB,通过平行线性质来求APC(1)按小明的思路,求APC∠的度数;【问题迁移】:如图2,//∠=,当点P在B、D∠=,PCDβAB CD,点P在射线OM上运动,记PABα两点之间运动时,问APC∠与α、β之间有何数量关系?请说明理由;【问题应用】:(3)在(2)的条件下,如果点P在B、D两点外侧运动时(点P与点O、B、D三点不重合),请直接写出APC∠与α、β之间的数量关系.参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的1.4的算术平方根是( )A .2±B .2C .2-D .16±【分析】依据算术平方根的定义解答即可.【解答】解:224=Q ,4∴的算术平方根是2.故选:B .【点评】本题主要考查的是算术平方根的定义,掌握算术平方根的定义是解题的关键.2.点(5,4)A -在第几象限( )A .第一象限B .第二象限C .第三象限D .第四象限【分析】根据第四象限内点的横坐标大于零,纵坐标小于零,可得答案.【解答】解:Q 点A 的横坐标为正数、纵坐标为负数,∴点(5,4)A -在第四象限,故选:D .【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(,)++;第二象限(,)-+;第三象限(,)--;第四象限(,)+-.3.如图,//a b ,点B 在直线b 上,且AB BC ⊥,若134∠=︒,则2∠的大小为( )A .34︒B .54︒C .56︒D .66︒【分析】先根据平行线的性质,得出1334∠=∠=︒,再根据AB BC ⊥,即可得到2903456∠=︒-︒=︒.【解答】解://a b Q ,1334∴∠=∠=︒,又AB BC ⊥Q ,2903456∴∠=︒-︒=︒,故选:C .【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.4.如图,DEF ∆是由ABC ∆通过平移得到,且点B ,E ,C ,F 在同一条直线上.若14BF =,6EC =.则BE 的长度是( )A .2B .4C .5D .3【分析】根据平移的性质可得BE CF =,然后列式其解即可.【解答】解:DEF ∆Q 是由ABC ∆通过平移得到,BE CF ∴=,1()2BE BF EC ∴=-, 14BF =Q ,6EC =,1(146)42BE ∴=-=. 故选:B .【点评】本题考查了平移的性质,根据对应点间的距离等于平移的长度得到BE CF =是解题的关键.5.将点(1,2)A -向右平移4个单位长度,再向下平移3个单位长度,则平移后点的坐标是()A .(3,1)B .(3,1)--C .(3,1)-D .(3,1)-【分析】直接利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减,据此可得.【解答】解:将点(1,2)A -向右平移4个单位长度,再向下平移3个单位长度,则平移后点的坐标是(14,23)-,-+-,即(3,1)故选:C.【点评】本题主要考查了平移中点的变化规律:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.a=,且a在数轴上对应点的位置如图所示,其中正确的是( 6.如果实数11)A.B.C.D.【分析】根据被开方数越大算术平方根越大,可得答案.【解答】解:由被开方数越大算术平方根越大,得49911<<,得4<<,3 3.5a故选:C.【点评】本题考查了实数与数轴,利用被开方数越大算术平方根越大得出4991147.64-()A.8-B.4-C.2-D.不存在【分析】先根据算术平方根的定义求出64【解答】解:648Q,-=-∴-的立方根是2-.64故选:C.【点评】本题考查了立方根的定义,算术平方根的定义,先化简64-8.在722,3.33,2π,122-,0,0.454455444555⋯,0.9-,127,3127中,无理数的个数有( )A .2个B .3个C .4个D .5个【分析】根据无理数的定义求解即可.【解答】解:2π,0.454455444555⋯,0.9-是无理数, 故选:B .【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,6,0.8080080008⋯(每两个8之间依次多1个0)等形式.9.如图,点E 在AC 的延长线上,下列条件中能判断//AB CD 的是( )A .34∠=∠B .D DCE ∠=∠C .12∠=∠D .180D ACD ∠+∠=︒【分析】由平行线的判定定理可证得,选项A ,B ,D 能证得//AC BD ,只有选项C 能证得//AB CD .注意掌握排除法在选择题中的应用.【解答】解:A 、34∠=∠Q ,//AC BD ∴.本选项不能判断//AB CD ,故A 错误;B 、D DCE ∠=∠Q ,//AC BD ∴.本选项不能判断//AB CD ,故B 错误;C 、12∠=∠Q ,//AB CD ∴.本选项能判断//AB CD ,故C 正确;D 、180D ACD ∠+∠=︒Q ,//AC BD ∴.故本选项不能判断//AB CD ,故D 错误.故选:C .【点评】此题考查了平行线的判定.注意掌握数形结合思想的应用.10.若A ∠与B ∠的两边分别平行,60A ∠=︒,则(B ∠= )A .30︒B .60︒C .30︒或150︒D .60︒或120︒【分析】根据题意分两种情况画出图形, 再根据平行线的性质解答 .【解答】解: 如图 (1) ,//AC BD Q ,60A ∠=︒,160A ∴∠=∠=︒,//AE BF Q ,1B ∴∠=∠,60A B ∴∠=∠=︒.如图 (2) ,//AC BD Q ,60A ∠=︒,160A ∴∠=∠=︒,//DF AE Q ,1180B ∴∠+∠=︒,180A B ∴∠+∠=︒,180********B A ∴∠=︒-∠=︒-︒=︒.∴一个角是60︒,则另一个角是60︒或120︒.故选:D .【点评】本题考查的是平行线的性质, 解答此题的关键是要分两种情况讨论, 不要漏解 .11.如图是丁丁画的一张脸的示意图,如果用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成( )A .(1,0)B .(1,0)-C .(1,1)-D .(1,1)-【分析】根据左右的眼睛的坐标画出直角坐标系,然后写出嘴的位置对应的点的坐标.【解答】解:如图,嘴的位置可以表示为(1,0).故选:A .【点评】本题考查了坐标确定位置:平面直角坐标系中点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.12.已知12x y =-⎧⎨=⎩是二元一次方程组321x y m nx y +=⎧⎨-=⎩的解,则m n -的值是( ) A .1 B .2 C .3 D .4【分析】跟据方程组的解满足方程,可得关于m ,n 的方程,根据解方程,可得答案.【解答】解:由题意,得3421m n -+=⎧⎨--=⎩, 解得13m n =⎧⎨=-⎩, 1(3)4m n -=--=,故选:D .【点评】本题考查了二元一次方程组的解,利用方程组的解满足方程得出关于m ,n 的方程是解题关键.13.方程组23x y k x y k -=+⎧⎨+=⎩的解适合方程2x y +=,则k 值为( )A.2B.2-C.1D.1 2 -【分析】根据方程组的特点,①+②得到1x y k+=+,组成一元一次方程求解即可.【解答】解:23x y kx y k-=+⎧⎨+=⎩①②,①+②得,1x y k+=+,由题意得,12k+=,解答,1k=,故选:C.【点评】本题考查的是二元一次方程组的解,掌握加减消元法解二次一次方程组的一般步骤是解题的关键.14.已知点(1,0)A,(0,2)B,点P在x轴上,且PAB∆的面积为5,则点P的坐标是() A.(4,0)-B.(6,0)C.(4,0)-或(6,0)D.(0,12)或(0,8)-【分析】根据B点的坐标可知AP边上的高为2,而PAB∆的面积为5,点P在x轴上,说明5AP=,已知点A的坐标,可求P点坐标.【解答】解:(1,0)AQ,(0,2)B,点P在x轴上,AP∴边上的高为2,又PAB∆的面积为5,5AP∴=,而点P可能在点(1,0)A的左边或者右边,(4,0)P∴-或(6,0).故选:C.【点评】本题考查了直角坐标系中,利用三角形的底和高及面积,表示点的坐标.二、填空题(本大题共5小题,每小题3分,共15分)15.命题“同旁内角互补”是一个假命题(填“真”或“假”)【分析】根据平行线的性质判断命题的真假.【解答】解:两直线平行,同旁内角互补,所以命题“同旁内角互补”是一个假命题;故答案为:假.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果⋯那么⋯”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.16.将一矩形纸条,按如图所示折叠,若264∠=︒,则l∠=52度.【分析】从折叠图形的性质入手,结合平行线的性质求解.【解答】解:由折叠图形的性质,结合两直线平行,同位角相等可知,221180∠+∠=︒,可得152∠=︒,故答案为:52.【点评】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补.17.在平面直角坐标系中,点(21,32)A t t-+在y轴上,则t的值为12.【分析】根据y轴上的点横坐标为0,列式可得结论.【解答】解:Q点(21,32)A t t-+在y轴上,210t∴-=,12t=,故答案为:12.【点评】本题考查了平面直角坐标系中坐标轴上的点的特征,明确:①x轴上的点:纵坐标为0;②y轴上的点横坐标为0.18102.0110.1= 1.0201= 1.01.【分析】根据算术平方根的移动规律,把被开方数的小数点每移动两位,结果移动一位,进行填空即可.【解答】解:Q102.0110.1=,∴ 1.0201 1.01=;故答案为:1.01.【点评】本题考查了算术平方根的移动规律的应用,能根据移动规律填空是解此题的关键.19.若一正数的两个平方根分别是21a -与25a +,则这个正数等于 9 .【分析】根据正数的两个平方根互为相反数列方程求出a ,再求出一个平方根,然后平方即可.【解答】解:Q 一正数的两个平方根分别是21a -与25a +,21250a a ∴-++=,解得1a =-,21213a ∴-=--=-,∴这个正数等于2(3)9-=.故答案为:9.【点评】本题主要考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.三、解答题(共7题,共63分)20.(8分)计算:(1)21210x -=;(2)3(5)80x -+=【分析】(1)变形为2(x a a =为常数)的形式,根据平方根的定义计算可得;(2)变形为3(x a a =为常数)的形式,再根据立方根的定义计算可得.【解答】解:(1)方程变形得:2121x =,开方得:11x =±;(2)方程变形得:3(5)8x -=-,开立方得:52x -=-,解得:3x =.【点评】本题主要考查立方根和平方根,解题的关键是将原等式变形为3x a =或2(x a a =为常数)的形式及平方根、立方根的定义.21.(10分)解方程组.(1)211312x y x y +=⎧⎨+=⎩.(2)232491a b a b +=⎧⎨-=-⎩.【分析】方程组利用加减消元法求出解即可.【解答】解:(1)211312x y x y +=⎧⎨+=⎩①②, ②-①得:1x =,把1x =代入①得:9y =,∴原方程组的解为:19x y =⎧⎨=⎩; (2)232491a b a b +=⎧⎨-=-⎩①②,①3⨯得:696a b +=③,②+③得:105a =,12a =, 把12a =代入①得:13b =, ∴方程组的解为:1213a b ⎧=⎪⎪⎨⎪=⎪⎩. 【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.(10分)如图,已知点D 、F 、E 、G 都在ABC ∆的边上,//EF AD ,12∠=∠,70BAC ∠=︒,求AGD ∠的度数.(请在下面的空格处填写理由或数学式)解://EF AD Q ,(已知)2∴∠= 3∠ ( )12∠=∠Q ,(已知) 1∴∠= ( )∴ // ,( )AGD ∴∠+ 180=︒,(两直线平行,同旁内角互补)Q,(已知)∴∠=(等式性质)AGD【分析】由EF与AD平行,利用两直线平行同位角相等得到23∠=∠,利用∠=∠,再由12等量代换得到一对内错角相等,利用内错角相等两直线平行得到DG与BA平行,利用两直线平行同旁内角互补即可求出AGD∠度数.【解答】解://Q,(已知)EF AD∴∠=∠(两直线平行同位角相等)2312Q,(已知)∠=∠∴∠=∠(等量代换)13∴,(内错角相等两直线平行)//DG BA∴∠+∠=︒,(两直线平行,同旁内角互补)AGD CAB180Q,(已知)∠=︒CAB70∴∠=︒(等式性质).AGD110故答案为:3∠;等量代换;DG;BA;内错角相等两直线∠;两直线平行同位角相等;3平行;CAB∠;70︒;110︒∠;CAB【点评】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.23.(7分)已知,如图,直线AB和CD相交于点O,COE∠,∠是直角,OF平分AOE∠和BOD∠的度数.∠=︒,求AOCCOF34【分析】利用图中角与角的关系即可求得.【解答】解:因为90∠=︒,COFCOE∠=︒,34所以56∠=∠-∠=︒,EOF COE COF因为OF 是AOE ∠的平分线,所以2112AOE EOF ∠=∠=︒,所以1129022AOC ∠=︒-︒=︒,18011268EOB ∠=︒-︒=︒,因为EOD ∠是直角,所以22BOD ∠=︒.【点评】此题主要考查了角平分线的定义,根据角平分线定义得出所求角与已知角的关系转化求解.24.(8分)如图,已知E 是AB 上的点,//AD BC ,AD 平分EAC ∠,试判定B ∠与C ∠的大小关系,并说明理由.【分析】由//AD BC ,可得EAD B ∠=∠,DAC C ∠=∠,根据角平分线的定义,证得EAD DAC ∠=∠,等量代换可得B ∠与C ∠的大小关系.【解答】解:B C ∠=∠.理由如下://AD BC Q ,EAD B ∴∠=∠,DAC C ∠=∠.AD Q 平分EAC ∠,EAD DAC ∴∠=∠,B C ∴∠=∠.【点评】本题考查的是平行线的性质以及角平分线的性质,解题时注意:两直线平行,同位角相等.25.(9分)如图是一个被抹去x 轴、y 轴及原点O 的网格图,网格中每个小正方形的边长均为1个单位长度,三角形ABC 的各顶点都在网格的格点上,若记点A 的坐标为(1,3)-,点C 的坐标为(1,1)-.(1)请在图中画出x 轴、y 轴及原点O 的位置;(2)ABC ∆内部一点P 的坐标为(,)a b ,把ABC ∆向下平移2个单位长度,再向右平移3个单位长度,请你画出平移后的△111A B C ,点P 随ABC ∆平移后的坐标是 (3,2)a b +- ;(3)求出ABC ∆的面积.【分析】(1)根据题意画出平面直角坐标系即可;(2)根据坐标平移的规律解决问题即可;(3)利用分割法求出三角形的面积即可;【解答】解:(1)平面直角坐标系,如图所示:O 点即为所求;(2)如图所示:△111A B C ,即为所求;1(3,2)P a b +-; 故答案为:(3,2)a b +-;(3)111455223248222ABC S ∆=⨯-⨯⨯-⨯⨯-⨯⨯=.【点评】本题考查作图-平移变换,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.26.(11分)【问题情境】:如图1,//AB CD ,130PAB ∠=︒,120PCD ∠=︒,求APC ∠的度数.小明的思路是:过P 作//PE AB ,通过平行线性质来求APC ∠.(1)按小明的思路,求APC ∠的度数;【问题迁移】:如图2,//AB CD ,点P 在射线OM 上运动,记PAB α∠=,PCD β∠=,当点P 在B 、D两点之间运动时,问APC ∠与α、β之间有何数量关系?请说明理由;【问题应用】:(3)在(2)的条件下,如果点P 在B 、D 两点外侧运动时(点P 与点O 、B 、D 三点不重合),请直接写出APC ∠与α、β之间的数量关系.【分析】(1)过P 作//PE AB ,通过平行线性质可得180A APE ∠+∠=︒,180C CPE ∠+∠=︒再代入130PAB ∠=︒,120PCD ∠=︒可求APC ∠即可;(2)过P 作//PE AD 交AC 于E ,推出////AB PE DC ,根据平行线的性质得出APE α∠=∠,CPE β∠=∠,即可得出答案;(3)分两种情况:P 在BD 延长线上;P 在DB 延长线上,分别画出图形,根据平行线的性质得出APE α∠=∠,CPE β∠=∠,即可得出答案.【解答】(1)解:过点P 作//PE AB ,//AB CD Q ,////PE AB CD ∴,180A APE ∴∠+∠=︒,180C CPE ∠+∠=︒,130PAB ∠=︒Q ,120PCD ∠=︒,50APE ∴∠=︒,60CPE ∠=︒,110APC APE CPE ∴∠=∠+∠=︒.(2)APC αβ∠=∠+∠,理由:如图2,过P 作//PE AB 交AC 于E ,//AB CD Q ,////AB PE CD ∴,APE α∴∠=∠,CPE β∠=∠,APC APE CPE αβ∴∠=∠+∠=∠+∠;(3)如图所示,当P 在BD 延长线上时,CPA αβ∠=∠-∠;如图所示,当P 在DB 延长线上时,CPA βα∠=∠-∠.【点评】本题主要考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目是一道比较典型的题目,解题时注意分类思想的运用.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年河北省唐山市玉田县七年级(下)期中数学试卷一、选择题(1-6小题每小题3分,7-12小题每小题3分,共30分,其中每小题给出的四个选项中,只有一个选项符合题意)1.(3分)如图所示,在图形B到图形A的变化过程中,下列描述正确的是()A.向上平移2个单位,向左平移4个单位B.向上平移1个单位,向左平移4个单位C.向上平移2个单位,向左平移5个单位D.向上平移1个单位,向左平移5个单位2.(3分)计算2a3•3a3的结果是()A.5a3B.6a3C.6a6D.6a93.(3分)计算x÷x3的结果是()A.B.C.x2D.x44.(3分)下列运算正确的是()A.(a3)2=a5B.(2a2)2=4a4C.(a+3)2=a2+9D.a2•a3=a65.(3分)如图,下列条件中不能判定AB∥CD的是()A.∠3=∠4B.∠1=∠5C.∠1+∠4=180°D.∠3=∠56.(3分)下列命题中,是假命题的是()A.两条平行线被第三条直线所截,同旁内角互补B.相等的两个角是对顶角C.两点确定一条直线D.平行于同一条直线的两条直线平行7.(2分)在如图所示的四种沿AB进行折叠的方法中,不一定能判断纸带两条边a,b互相平行的是()A.如图1,展开后测得∠1=∠2B.如图2,展开后测得∠1=∠2且∠3=∠4C.如图3,测得∠1=∠2D.在图④中,展开后测得∠1+∠2=180°8.(2分)一副三角板按如图方式摆放,且∠1的度数比∠2的度数大30°,若设∠1=x°,∠2=y°,则可得到方程组为()A.B.C.D.9.(2分)用加减消元法解方程组时,下列四种变形:①②③④其中正确的是()A.②④B.①③C.①②D.③④10.(2分)如图,有三条公路,其中AC与AB垂直,小明和小亮分别沿AC,BC同时出发骑车到C城,若他们同时到达,则下列判断中正确的是()A.小亮骑车的速度快B.小明骑车的速度快C.两人一样快D.因为不知道公路的长度,所以无法判断他们速度的快慢11.(2分)如图,AB∥DC,ED∥BC,AE∥BD,那么图中和△ABD面积相等的三角形(不包括△ABD)有()A.1个B.2个C.3个D.4个12.(2分)如图所示的是用4个全等的小长方形与1个小正方形密铺而成的正方形图案,已知该图案的面积为49,小正方形的面积为4,若分别用x,y(x>y)表示小长方形的长和宽,则下列关系式中不正确的是()A.x+y=7B.x﹣y=2C.x2+y2=25D.4xy+4=49二、填空题(每小题3分,共24分,将答案写在题中的横线上)13.(3分)计算:20190=.14.(3分)用剪刀剪东西时,剪刀张开的角度如图所示,若∠1=25°,则∠2=度.15.(3分)若是关于x、y的方程x+ay=0的解,则a=.16.(3分)为认真贯彻落实“厉行节约、反对铺张浪费”的精神,某市严格控制“三公”经费支出,共节约“三公”经费5.05亿元.5.05亿用科学记数法表示为.17.(3分)如图,要把池中的水引到D处,可过D点引DC⊥AB于C,然后沿DC开渠,可使所开渠道最短,试说明设计的依据:.18.(3分)在多项式x2+6x中添加一个单项式,使其成为一个完全平方式,则添加的单项式.19.(3分)如图,直线a∥b,将三角尺的直角顶点放在直线b上,∠1=35°,则∠2=.20.(3分)如图,长方形ABCD中,AB=3,BC=4,则图中四个小长方形的周长之和为.三、解答题(共6个小题,共计46分,请写出必要的解题过程)21.(6分)利用平方差公式进行计算:102×98.22.(6分)如图,已知直线AB,CD被直线EF所截,若∠A=75°,∠C=105°,∠AEF=60°,求∠EFD的度数.23.(7分)如图,四边形ABCD所在的网格图中,每个小正方形的边长均为1个单位长度.(1)求出四边形ABCD的面积;(2)请画出将四边形ABCD向上平移5个单位长度,再向左平移2个单位长度后所得的四边形A′B′C′D′.24.(7分)已知,一个大正方形和四个能完全重合的小正方形按图①、②两种方式摆放,求图②的大正方形中未被小正方形覆盖部分的面积是多少(用a、b的代数式表示).25.(8分)对于任何实数a,b,c,d,我们规定:=ad﹣bc(1)按照这个规定请你计算的值;(2)按照这个规定请你计算:当x=3时,的值.26.(12分)已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.2018-2019学年河北省唐山市玉田县七年级(下)期中数学试卷参考答案与试题解析一、选择题(1-6小题每小题3分,7-12小题每小题3分,共30分,其中每小题给出的四个选项中,只有一个选项符合题意)1.【解答】解:观察图形可得:将图形A向下平移1个单位,再向右平移4个单位或先向右平移4个单位,再向下平移1个单位得到图形B.只有B符合.故选:B.2.【解答】解:原式=6a6.故选:C.3.【解答】解:,故选:A.4.【解答】解:A、(a3)2=a3×2=a6,本选项错误;B、(2a2)2=4a4,本选项正确;C、(a+3)2=a2+6a+9,本选项错误;D、a2•a3=a2+3=a5,本选项错误;故选:B.5.【解答】解:∠3=∠5是同旁内角相等,但不一定互补,所以不能判定AB∥CD.故选:D.6.【解答】解:A、两条平行直线被第三条直线所截,同旁内角才互补,故正确,是真命题,不符合题意;B、相等的角不一定是对顶角,故错误,是假命题,符合题意;C、两点确定一条直线,正确,是真命题,不符合题意;D、平行于同一条直线的两条直线平行,正确,是真命题,不符合题意,故选:B.7.【解答】解:A、当∠1=∠2时,a∥b;B、由∠1=∠2且∠3=∠4可得∠1=∠2=∠3=∠4=90°,∴a∥b;C、∠1=∠2不能判定a,b互相平行;D、由∠1+∠2=180°可知a∥b;故选:C.8.【解答】解:设∠1=x°,∠2=y°,由题意得:,故选:B.9.【解答】解:用加减消元法解方程组时,要消去y,可以将①+②×3;要消去x,可以将①×9﹣②,故选:A.10.【解答】解:∵AC与AB垂直,∴BC>AC,若他们同时到达,根据速度公式可得,小亮骑车的速度快,小明骑车的速度慢.故选:A.11.【解答】解:∵AB∥DC,∴△ABC与△ABD的面积相等,∵AE∥BD,∴△BED与△ABD的面积相等,∵ED∥BC找不到与△ABD等底等高的三角形,∴和△ABD的面积相等的三角形有△ABC、△BDE,共2个.故选:B.12.【解答】解:A、因为正方形图案的边长7,同时还可用(x+y)来表示,故x+y=7正确;B、因为正方形图案面积从整体看是49,从组合来看,可以是(x+y)2,还可以是(4xy+4),所以有(x+y)2=49,4xy+4=49即xy=,所以(x﹣y)2=(x+y)2﹣4xy=49﹣45=4,即x﹣y=2正确;C、x2+y2=(x+y)2﹣2xy=49﹣2×=,故x2+y2=25是错误的;D、由B可知4xy+4=49,故正确.故选:C.二、填空题(每小题3分,共24分,将答案写在题中的横线上)13.【解答】解:20190=1.故答案为:1.14.【解答】解:∵∠1与∠2是对顶角,∴∠2=∠1=25°.故答案为:25.15.【解答】解:把代入方程得:2+a=0,解得:a=﹣2,故答案为:﹣216.【解答】解:5.05亿=5.05×108.故答案为:5.05×108.17.【解答】解:要把池中的水引到D处,可过D点引DC⊥AB于C,然后沿DC开渠,可使所开渠道最短,试说明设计的依据:垂线段最短.故答案为:垂线段最短.18.【解答】解:x2+6x+9=(x+3)2,故答案为:919.【解答】解:如图,∵∠1=35°,∴∠3=180°﹣35°﹣90°=55°,∵a∥b,∴∠2=∠3=55°.故答案为:55°.20.【解答】解:图中四个小长方形的周长之和=AB+BC+CD+AD=3+4+3+4=14.故答案为14.三、解答题(共6个小题,共计46分,请写出必要的解题过程)21.【解答】解:原式=(100+2)×(100﹣2)=10000﹣4=9996.22.【解答】解:∵∠A=75°,∠C=105°,∴∠A+∠C=180°,∴AB∥CD,∵∠AEF=60°,∴∠EFD=∠AEF=60°.23.【解答】解:(1)四边形ABCD的面积:×3×4+×3×2=6+3=9;(2)如图所示.24.【解答】解:设大正方形的边长为x,小正方形的边长为y,依题意,得:,解得:,∴②的大正方形中未被小正方形覆盖部分的面积=x2﹣4y2=()2﹣4×()2=ab.25.【解答】解:(1)根据题中的新定义得:原式=6×9﹣7×8=﹣2;(2)根据题中的新定义得:原式=(x+1)(x﹣1)﹣x(x﹣2)=x2﹣1﹣x2+2x=2x﹣1,当x=3时,原式=2x﹣1=2×3﹣1=5.26.【解答】解:(1)设每辆A型车、B型车都装满货物一次可以分别运货x吨、y吨,依题意列方程组得:,解方程组,得:,答:1辆A型车装满货物一次可运3吨,1辆B型车装满货物一次可运4吨.(2)结合题意和(1)得:3a+4b=31,∴a=∵a、b都是正整数∴或或答:有3种租车方案:方案一:A型车9辆,B型车1辆;方案二:A型车5辆,B型车4辆;方案三:A型车1辆,B型车7辆.(3)∵A型车每辆需租金100元/次,B型车每辆需租金120元/次,∴方案一需租金:9×100+1×120=1020(元)方案二需租金:5×100+4×120=980(元)方案三需租金:1×100+7×120=940(元)∵1020>980>940∴最省钱的租车方案是方案三:A型车1辆,B型车7辆,最少租车费为940元.第11页(共11页)。