七年级期中数学试卷(人教版)

合集下载

七年级期中数学人教版试卷

七年级期中数学人教版试卷

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √-1B. √3C. √16D. √02. 下列各数中,无理数是()A. √-1B. √3C. √16D. √03. 已知a、b是相反数,那么a+b的值为()A. 0B. aC. -aD. ab4. 下列各式中,正确的是()A. a²+b²=(a+b)²B. a²+b²=(a-b)²C. (a+b)²=a²+b²+2abD. (a-b)²=a²+b²-2ab5. 下列各式中,正确的是()A. (a+b)³=a³+b³B. (a+b)³=a³+3a²b+3ab²+b³C. (a-b)³=a³-3a²b+3ab²-b³D. (a-b)³=a³+3a²b-3ab²-b³6. 下列各式中,正确的是()A. (a+b)(a-b)=a²-b²B. (a+b)(a-b)=a²+b²C. (a+b)(a-b)=abD. (a+b)(a-b)=a²+2ab+b²7. 已知a=3,b=-2,那么a²+b²的值为()A. 7B. 5C. 1D. 98. 下列各式中,正确的是()A. |a|+|b|=|a+b|B. |a|+|b|=|a-b|C. |a|+|b|=|a-b|+2D. |a|+|b|=|a+b|+29. 下列各式中,正确的是()A. a²+b²≥2abB. a²+b²≤2abC. a²+b²>2abD. a²+b²<2ab10. 已知a=2,b=-3,那么|a-b|的值为()A. 5B. 1C. 2D. 0二、填空题(每题3分,共30分)11. 已知a=-2,那么-a的值为______。

人教版七年级下册数学期中考试试题(含答案)

人教版七年级下册数学期中考试试题(含答案)

人教版七年级下册数学期中考试试卷一、单选题1.下列各式中正确的是A2=±B 3=-C2=D =2.下列说法正确的是A .3是分数B .227是无理数C .π-3.14是有理数D .3是有理数3.如图,象棋盘上,若“将”位于点(3,﹣2),“车”位于点(﹣1,﹣2),则“马”位于A .(1,3)B .(5,3)C .(6,1)D .(8,2)4.如图,直线12l l //,直角三角板的直角顶点C 在直线1l 上,一锐角顶点B 在直线2l 上,若0135∠=,则2∠的度数是A .65B .55C .45D .355.如图,△ABC 沿BC 方向平移得到△DEF ,已知BC=7,EC=4,那么平移的距离为A .2B .3C .5D .76.下列说法正确的个数有()①同位角相等;②过一点有且只有一条直线与已知直线垂直;③过一点有且只有一条直线与已知直线平行;④不重合的三条直线a、b、c,若//a b,//b c,则//a c.A.1个B.2个C.3个D.4个7.点P为直线l外一点,点A,B在直线l上,若5cmPA=,7cmPB=,则点P到直线l的距离()A.等于5cm B.小于5cm C.不大于5cm D.等于6cm 8.如图,下列条件中,不能判定//AB CD的是()A.180∠+∠=︒B.BAC ACDD BAD∠=∠C.CAD ACB∠=∠∠=∠D.B DCE9.如图,这是小明学校周边环境的示意图,以学校为参照点,儿童公园,图书市场分别距离学校500m、700m,若以(南偏西30°,500)来表示儿童公园的位置,则图书市场的位置应表示为()A.(700,南偏东45︒)B.(南偏东45︒,700)C.(700,北偏东45︒)D.(北偏东45︒,700)10.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点1A,第二次移动到点2A……,第n次移动到点n A,A的坐标是()则点2021A .()1010,0B .()1010,1C .()1011,0D .()1011,1二、填空题11325-3-.(填“>”“<”或“=”)12.根据如表回答下列问题:x 23.123.223.323.423.523.623.723.823.92x 533.61538.24542.89547.56552.25556.96561.69566.44571.21满足23.623.7n <<的整数n 有________个.13.在平面直角坐标系的第四象限内有一点M ,到x 轴的距离为4,到y 轴的距离为5,则点M 的坐标为_____.14.如图,四边形ABCD 各个顶点的坐标分别为()2,8-、()11,6-、()14,0-、()0,0,则四边形ABCD 的面积是_______.15.如图所示,//AB CD ,EC CD ⊥.若28BEC ∠=︒,则ABE ∠的度数为_______.三、解答题16.(12-(2)求下列式子中x 的值:()229x -=17.根据要求,画图并回答问题:(1)如图,点P 在AOC ∠的边OA 上.①过点P 画OA 的垂线交OC 于B ;②过点P 作直线//PM OC ;(2)表示点О到直线PB 的距离的线段是__________;(3)直接写出所作图中与O ∠互余的角(可以表示出来的角).18.在平面直角坐标系xOy 中,点A 的坐标为()0,4,线段MN 的位置如图所示,其中点M 的坐标为()3,1--,点N 的坐标为()3,2-.(1)将线段MN 平移得到线段AB ,其中点M 的对应点为A ,点N 的对应点为B .点M 平移到点A 的过程可以是:先向__________平移______个单位长度,再向__________平移__________个单位长度;②点B 的坐标为___________.(2)在(1)的条件下,若点C 的坐标为()4,1,连接AC ,BC ,求ABC ∆的面积.19.如图,已知∠1=∠2,∠3=∠4,∠5=∠A ,试说明:BE ∥CF .完善下面的解答过程,并填写理由或数学式:解:∵∠3=∠4(已知)∴AE ∥()∴∠EDC=∠5()∵∠5=∠A (已知)∴∠EDC=()∴DC ∥AB ()∴∠5+∠ABC=180°()即∠5+∠2+∠3=180°∵∠1=∠2(已知)∴∠5+∠1+∠3=180°()即∠BCF+∠3=180°∴BE ∥CF ().20.如图,直线AB 、CD 相交于O 点,∠AOC 与∠AOD 的度数比为4:5,OE ⊥AB ,OF 平分∠DOB ,求∠EOF 的度数.21.(1)计算下列各式的值:=____________________;;通过计算上面各式的值,你发现:对于任意有理数a=__________.(2)利用所得结论解决问题:若有理数a、b在数轴上对应的点的位置如图所示,化简:a b-.22.如图1,AB∥CD,E是射线FD上的一点,∠ABC=140°,∠CDF=40°(1)试说明BC∥EF;(2)若∠BAE=110°,连接BD,如图2.若BD∥AE,则BD是否平分∠ABC,请说明理由.23.将一副三角板中的两个直角顶点C叠放在一起(如图1),其中30∠=︒,A∠=︒,4560B∠=∠=︒.D E(1)若112∠的度数;BCD∠=︒,求ACE(2)试猜想BCD∠的数量关系,请说明理由;∠与ACE(3)若三角板ABC保持不动,绕顶点C转动三角板DCE,在转动过程中,试探究BCD∠等于多少度时,//CD AB?请你直接写出答案.参考答案1.D 2.D 3.C 4.B 5.B 6.A 7.C 8.C 9.D 10.B 11.>【详解】解:因为-25>-27,3-,故答案为:>.12.5【详解】解:∵23.62=556.96,23.72=561.69,∴556.96561.69n <<∴满足23.623.7<<的整数n 有5个,故答案为:5.13.()5,4-【详解】解:∵点M 在第四象限,∴点M 的横坐标为正,纵坐标为负,∵点M 到x 轴的距离为4,到y 轴的距离为5,∴点M 的坐标为()5,4-,故答案为:()5,4-.14.80【详解】解:(1)如图所示:过点A 作AE ⊥x 轴于点E ,过点B 作BF ⊥x 轴于点F ,则四边形ABCD 的面积=12×(14-11)×6+12×(6+8)×(11-2)+12×2×8,=9+63+8,=80;故答案为:80.15.118︒【详解】解:过点E 作EG ∥AB ,则EG ∥CD ,由平行线的性质可得∠GEC =90°,所以∠GEB =90°-28°=62°,因为EG ∥AB ,所以∠ABE =180°-62°=118°.故答案为:118°.16.(1)63(2)1x =-或5【详解】解:(1()238127232---93232=--+63=-;(2)∵()229x -=,∴23x -=±,∴1x =-或5.【详解】解:(1)如图所示,(2)∵OP ⊥PB∴线段OP 的长为点O 到直线PB 的距离故答案为:OP .(3)∵OP ⊥PB ∴∠OPB =90゜∴∠O +∠PBO =90゜即与O ∠互余的角为PBO ∠∵PM ∥OC ∴∠BPM =∠PBO∴∠O +∠BPM =90゜即与O ∠互余的角为BPM∠∴与O ∠互余的角为PBO ∠,BPM ∠.18.(1)①右,3,上,5(或上,5,右,3均可以);②()6,3;(2)7【分析】(1)①由点M 及其对应点的A 的坐标可得平移的方向和距离,即可;②根据①可得点N 的对应点B 的坐标;(2)割补法求解可得.【详解】解:(1)①∵点A 的坐标为()0,4,点M 的坐标为()3,1--,∴点M 移到点A 的过程可以是:先向右平移3个单位长度,再向上平移5个单位长度;也可以是:先向上平移5个单位长度,再向右平移3个单位长度;②由①得:将N (3,-2)先向右平移3个单位长度,再向上平移5个单位长度所得的坐标是(6,3),∴点B 的坐标为(6,3);(2)如图,过点C 作CF y ⊥于点F ,过点B 作BE CF ⊥交FC 延长线于点E ,过点A 作AD y ⊥轴交EB 的延长线于点D ,则四边形AFED 是矩形,∴3AF =,4CF =,2CE =,2BE =,1BD =,6AD =,∴矩形AFED ABC Rt AFC Rt BCE Rt ABDS S S S S =--- 111634322617222=⨯-⨯⨯-⨯⨯-⨯⨯=.19.答案见解析.【详解】试题分析:根据平行线的判定与性质,灵活判断同位角、内错角、同旁内角,逐步可求解.试题解析:解:∵3=4∠∠(已知)∴AE ∥BC (内错角相等,两直线平行)∴5EDC ∠=∠(两直线平行,内错角相等)∵5=A ∠∠(已知)∴EDC ∠=A ∠(等量代换)∴DC ∥AB (同位角相等,两直线平行)∴05180ABC ∠+∠=(两直线平行,同旁内角互补)即0523180∠+∠+∠=∵1=2∠∠(已知)∴0513180∠+∠+∠=(等量代换)即03180BCF ∠+∠=∴BE ∥CF (同旁内角互补,两直线平行).20.50°.【详解】解:设∠AOC =4x ,则∠AOD =5x ,∵∠AOC +∠AOD =180°,∴4x +5x =180°,解得x =20°,∴∠AOC =4x =80°,∴∠BOD =∠AOC =80°,∵OE ⊥AB ,∴∠BOE =90°,∴∠DOE =∠BOE ﹣∠BOD =10°,又∵OF 平分∠DOB ,∴∠DOF =12∠BOD =40°,∴∠EOF =∠EOD +∠DOF =10°+40°=50°.21.(1)4;13;0;3;5;1;a 或()()00a a a a ⎧≥⎪⎨-<⎪⎩;(2)a b-+【详解】(1)4;13;0;3;5;1;a 或()()00a a a a ⎧≥⎪⎨-<⎪⎩(2)解:由数轴知:21a -<<-,01b <<,∴0a b +<,0a b -<,a b -()()a b a b a b =-++--a b =-+.22.(1)见解析;(2)见解析.【详解】(1)证明:∵AB ∥CD ,∴∠ABC+∠BCD =180°,∵∠ABC =140°,∴∠BCD =40°,∵∠CDF =40°,∴∠BCD =∠CDF ,∴BC ∥EF .(2)解:结论:BD 平分∠ABC .理由:∵AE ∥BD ,∴∠BAE+∠ABD =180°,∵∠BAE =110°,∴∠ABD =70°,∵∠ABC =140°,∴∠ABD =∠DBC =70°,∴BD 平分∠ABC .23.(1)68°;(2)180BCD ACE ∠+∠=︒,理由见解析;(3)当120BCD ∠=︒或60︒时,//CD AB .【详解】解:(1)∵90BCA ECD ∠=∠=︒,112BCD ∠=︒∴1129022DCA BCD BCA ∠=∠-∠=︒-︒=︒.∴902268ACE ECD DCA ∠=∠-∠=-︒=︒.(2)180BCD ACE ∠+∠=︒,理由如下:∵90BCD ACB ACD ACD ∠=∠+∠=︒+∠,90ACE DCE ACD ACD ∠=∠-∠=︒-∠,∴180BCD ACE ∠+∠=︒.(3)当120BCD ∠=︒或60︒时,//CD AB .如图2,根据同旁内角互补,两直线平行,当180B BCD ∠+∠=︒时,//CD AB ,此时180BCD ∠=︒-18060120B ∠=︒-︒=︒;如图3,根据内错角相等,两直线平行,当60B BCD ∠=∠=︒时,//CD AB .。

人教版七年级下册数学期中考试试题及答案

人教版七年级下册数学期中考试试题及答案

人教版七年级下册数学期中考试试卷一、单选题1.下列数据能确定物体具体位置的是()A .朝阳大道右侧B .好运花园2号楼C .东经103︒,北纬30°D .南偏西55︒2.在0.21)A .0.2BC .﹣1D3.下列各式计算正确的是()A 2=±B 1=-C 2=±D .3=4.下列命题中是假命题的是()A .两直线平行,同位角互补B .对顶角相等C .直角三角形两锐角互余D .平行于同一直线的两条直线平行5.在平面直角坐标系内,将M (5,2)先向下平移2个单位,再向左平移3个单位,则移动后的点的坐标是()A .(2,0)B .(3,5)C .(8,4)D .(2,3)6.如图,直线AB 和CD 相交于点O ,45AOC ∠=︒,射线OE 是BOD ∠的角平分线,则∠BOE 的度数为()A .22.5︒B .23.5︒C .45︒D .40︒7.如图,在下列条件中,能判断AB ∥CD 的是()A .∠1=∠2B .∠BAD =∠BCDC .∠BAD +∠ADC =180°D .∠3=∠48.小明在学习平行线的性质后,把含有60°角的直角三角板摆放在自己的文具上,如图,AD ∥BC ,若∠2=70°,则∠1=()A .22°B .20°C .25°D .30°9.如图,数轴上有M ,N ,P ,Q 四点,则这四点中所表示的数最接近)A .点MB .点NC .点PD .点Q10.如图,已知直线AB ,CD 被直线AC 所截,//AB CD ,E 是平面内任意一点(点E 不在直线AB ,CD ,AC 上),设∠BAE =α,∠DCE =β.下列各式:①α+β,②α﹣β,③180°﹣α﹣β,④360°﹣α﹣β,∠AEC 的度数可能是()A .①②③B .①②④C .①③④D .①②③④二、填空题11.已知点(1,3)M m m ++在x 轴上,则m 等于______.12.如果一个正数a 的两个不同平方根分别是22x -和63x -,则a =______.13.在平面直角坐标系中,第二象限内有一点M ,点M 到x 轴的距离为5,到y 轴的距离为4,则点M 的坐标是______.14.如图://AB CD ,AE CE ⊥,13EAF EAB ∠=∠,13ECF ECD ∠=∠,则AFC ∠=__.15a ,小数部分是b ,计算a ﹣2b 的值是__.16<x x 的整数有4个;③﹣3⑥对于任意实数a a .其中正确的序号是_____.三、解答题17218.求下列各式中的x :(1)24810x -=;(2)35(1)48x -+=.19.如图,已知AD BC ⊥于点D ,点E 在AB 上,EF BC ⊥于点F ,12∠=∠,试说明//DE AC .20.按要求画图及填空:在由边长为1个单位长度的小正方形组成的网格中建立如图所示平面直角坐标系,原点O 及△ABC 的顶点都在格点上.(1)点A 的坐标为;(2)将△ABC 先向下平移2个单位长度,再向右平移5个单位长度得到△A 1B 1C 1,画出△A 1B 1C 1.(3)△A 1B 1C 1的面积为.21.(1)由8个同样大小的立方体组成的魔方,体积为64,则出这个魔方的棱长是_____.(2)图1正方形EFGH 的边长等于魔方的棱长,求出阴影部分的面积及其边长.(3)把正方形ABCD 放到数轴上,如图2,使得A 与1-重合,那么D 在数轴上表示的数为______.22.在平面直角坐标系中,有A(﹣2,a +1),B(a ﹣1,4),C(b ﹣2,b )三点.(1)当点C 在y 轴上时,求点C 的坐标;(2)当AB ∥x 轴时,求A ,B 两点间的距离;(3)当CD ⊥x 轴于点D ,且CD =1时,求点C 的坐标.23.先阅读下列一段文字,再回答后面的问题:已知在平面直角坐标系内两点P 1(x 1,y 1),P 2(x 2,y 2),其两点间的距离P 1P 2轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x 2﹣x 1|或|y 2﹣y 1|.(1)已知A (1,3),B (﹣3,﹣5),试求A ,B 两点间的距离;(2)已知线段MN ∥y 轴,MN =4,若点M 的坐标为(2,﹣1),试求点N 的坐标;(3)已知一个三角形各顶点坐标为D (0,6),E (﹣3,2),F (3,2),你能判定此三角形的形状吗?说明理由.24.已知//AM CN ,点B 为平面内一点,AB BC ⊥于B .(1)如图1,直接写出A ∠和C ∠之间的数量关系________;(2)如图2,过点B 作BD AM ⊥于点D ,请说明ABD C ∠=∠的理由;(3)如图3,在(2)问的条件下,点E 、F 在DM 上,连接BE ,BP 、CF ,BF 平分DBC ∠,BE 平分ABD ∠,若180FCB NCF ∠+∠=︒,3BFC DBE ∠=∠,求EBC ∠的度数.参考答案1.C【分析】在平面中,要用两个数据才能表示一个点的位置.【详解】解:朝阳大道右侧、好运花园2号楼、南偏西55︒都不能确定物体的具体位置,东经103︒,北纬30°能确定物体的具体位置,故选:C.【点睛】此题主要考查了坐标确定位置,要明确,一个有序数对才能确定一个点的位置.2.D【分析】按照无理数的定义逐个来判定即可.【详解】解:A、0.2属于有理数,故A不符合题意;3,为有理数,故B不符合题意;BC、﹣1为有理数,故C不符合题意;D符合题意.D故选:D.【点睛】此题主要考查无理数的识别,解题的关键是熟知无理数的定义.3.B【分析】根据算术平方根、平方根和立方根的定义分别判断即可.【详解】解:A2=,故选项错误;B1=-,故选项正确;C2=,故选项错误;D、3=±,故选项错误;故选B.【点睛】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.4.A【分析】根据平行线、相交线、三角形内角和等性质,对选项逐个判断即可.【详解】解:A:两直线平行,同位角相等,同旁内角互补,选项错误,符合题意;B:对顶角相等,为真命题,故选项不符合题意;C:直角三角形两锐角相加为90︒,即互余,为真命题,故选项不符合题意;D:平行于同一直线的两条直线平行,为真命题,故选项不符合题意;故选A.【点睛】此题主要考查了真假命题,涉及到平行线、相交线、三角形内角和、平行公理等内容,熟练掌握相关几何性质是解题的关键.5.A【分析】根据平移变换与坐标变化规律:横坐标,右移加,左移减;纵坐标,上移加,下移减,可得答案.【详解】因为M点坐标为(5,2),根据平移变换的坐标变化规律可知,向下平移2个单位,再向左平移3个单位后得到的点的坐标是(5−3,2-2),即(2,0).故选:A.【点睛】此题主要考查了坐标与图形的变化,关键是掌握点的坐标的变化规律.6.A【分析】根据对顶角相等可得∠BOD=∠AOC,再根据射线OE是∠BOD的角平分线即可得解.【详解】解:由对顶角相等得,∠BOD=∠AOC=45°,∵射线OE是∠BOD的角平分线,∴∠BOE=12∠BOD=12×45°=22.5°.故选:A.【点睛】本题考查了对顶角的性质和角平分线的定义,熟记概念并求出∠BOD的度数是解题的关键.7.C【分析】利用平行线的判定方法逐一判断即可.【详解】解:A.由∠1=∠2可判断AD∥BC,不符合题意;B.∠BAD=∠BCD不能判定图中直线平行,不符合题意;C.由∠BAD+∠ADC=180°可判定AB∥DC,符合题意;D.由∠3=∠4可判定AD∥BC,不符合题意;故选择:C.【点睛】本题主要考查平行线的判定,掌握平行线的判定方法是解题的关键.8.B【分析】过F作FG∥AD,则FG∥BC,即可得到∠2=∠EFG=70°,再根据∠AFE=90°,即可得出∠AFG=90°-70°=20°,进而得到∠1=∠AFG=20°.【详解】解:如图,过F作FG∥AD,则FG∥BC,∴∠2=∠EFG=70°,又∵∠AFE=90°,∴∠AFG=90°-70°=20°,∴∠1=∠AFG=20°,故选:B.【点睛】本题考查了平行线的性质,三角板的知识,比较简单,熟记平行线的性质是解题的关键.9.B【分析】先估算.【详解】∵∴43-<-∴最接近N故答案选择B.【点睛】本题考查的是无理数,正确估算.10.D【分析】根据点E有6种可能位置,分情况进行讨论,依据平行线的性质以及三角形外角性质进行计算求解即可.【详解】解:(1)如图1,由AB//CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图2,过E2作AB平行线,则由AB//CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.当AE2平分∠BAC,CE2平分∠ACD时,∠BAE2+∠DCE2=12(∠BAC+∠ACD)=12×180°=90°,即α+β=90°,又∵∠AE2C=∠BAE2+∠DCE2,∴∠AE2C=180°﹣(α+β)=180°﹣α﹣β;(3)如图3,由AB//CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图4,由AB//CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.(5)(6)当点E 在CD 的下方时,同理可得,∠AEC =α﹣β或β﹣α.综上所述,∠AEC 的度数可能为β﹣α,α+β,α﹣β,180°﹣α﹣β,360°﹣α﹣β.故选:D .【点睛】本题主要考查了平行线的性质的运用与外角定理,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等.11.3-【分析】当点M 的纵坐标为0时,即可列式求值.【详解】解:由题意得:m+3=0,解得m=-3,故答案为:3-.【点睛】此题主要考查点的坐标;用到的知识点为:x 轴上点的纵坐标为0.12.36【分析】根据平方根的定义,两不同平方根互为相反数,列式求解即可【详解】解:由题意可得()3262x x -=--,即2263x x -=-+,解得4x =,222426x ∴-=⨯-=,36a ∴=故答案为:36【点睛】本题主要考查了平方根的定义,利用正数的平方根有两个且互为相反数列出正确的关系式是解决本题的关键.【分析】根据点到x 轴的距离为点的纵坐标的绝对值,到y 轴的距离为点的横坐标的绝对值,得到点M 的横纵坐标可能的值,进而根据所在象限可得点M 的具体坐标.【详解】解:设点M 的坐标是(x ,y ).∵点M 到x 轴的距离为5,到y 轴的距离为4,∴|y|=5,|x|=4.又∵点M 在第二象限内,∴x =−4,y =5,∴点M 的坐标为(−4,5),故答案是:(−4,5).【点睛】本题考查了点的坐标,用到的知识点为:点到x 轴的距离为点的纵坐标的绝对值,到y 轴的距离为点的横坐标的绝对值;第二象限(−,+).14.60︒【分析】利用两直线平行,同旁内角互补,垂直的定义,方程的思想求解即可.【详解】解:连接AC ,设EAF x ∠=,ECF y ∠=,3EAB x ∠=,3ECD y ∠=,//AB CD ,180BAC ACD ∴∠+∠=︒,33180CAE x ACE y ∴∠++∠+=︒,180(33)CAE ACE x y ∴∠+∠=︒-+,180(22)FAC FCA x y ∠+∠=︒-+180()AEC CAE ACE ∴∠=︒-∠+∠180[180(33)]x y =︒-︒-+33x y=+3()x y =+,180()AFC FAC FCA ∠=︒-∠+∠180[180(22)]x y =︒-︒-+2()x y =+,AE CE ⊥ ,90AEC ∴∠=︒,22906033AFC AEC ∴∠=∠=⨯︒=︒.故答案为:60︒.【点睛】本题考查了平行线的性质,垂直的定义,方程的思想,熟练应用平行线的性质,科学引入未知数是解题的关键.15.3﹣【分析】a 、b 的值,代入求出即可.【详解】解:∵12,∴a =1,b 1,∴a ﹣2b =1﹣21)=3﹣故答案为:3﹣【点睛】此题主要考查无理数的估算,解题的关键是根据无理数的大小先表示出a 、b ,代入求解.16.②③【分析】根据有理数、无理数、实数的意义逐项进行判断即可.【详解】解:①开方开不尽的数是无理数,但是有的数不开方也是无理数,如:π,3π等,因此①不正确,不符合题意;x x 的整数有﹣1,0,1,2共4个,因此②正确,符合题意;③﹣3是99,因此③正确,符合题意;④π就是无理数,不带根号的数也不一定是有理数,因此④不正确,不符合题意;⑤无限循环小数,是有理数,因此⑤不正确,不符合题意;⑥若a <0|a|=﹣a ,因此⑥不正确,不符合题意;因此正确的结论只有②③,故答案为:②③.【点睛】本题考查无理数、有理数、实数的意义,理解和掌握实数的意义是正确判断的前提.172++.【分析】先化简绝对值、化简二次根式、立方根、二次根式的乘法,再计算二次根式的加减法即可得.【详解】原式35=+,2+.【点睛】本题考查了化简绝对值、立方根、二次根式的乘法与加减法,熟记各运算法则是解题关键.18.(1)92x =±;(2)12x =-【分析】(1)移项后根据平方根的定义求解;(2)移项后根据立方根的定义求解;【详解】解:(1)∵24810x -=,∴2481x =,∴2814x =,∴92x =±;(2)∵35(1)48x -+=,∴327(1)8x -=-,∴312x -=-,∴12x =-.【点睛】本题考查了利用平方根和立方根的定义解方程,熟练掌握平方根和立方根的定义是解答本题的关键.19.见解析【分析】先由垂直于同一条直线的两条直线平行,得出∠1=∠3,再用∠1=∠2代换,最后用内错角相等得出结论.【详解】解:如图,∵AD BC ⊥于点D ,EF BC ⊥于点F ,∴//AD EF ,∴13∠=∠,∵12∠=∠,∴23∠∠=,∴//DE AC .【点睛】此题是平行线的判定,主要考查了平行线的性质和判定,用判断垂直于同一条直线的两直线平行,解本题的关键是判断出AD ∥EF .20.(1)(-4,2);(2)见解析;(3)5.5.【分析】(1)根据点A 的的位置和平面直角坐标系求解即可;(2)根据平移规律即可画出△A 1B 1C 1;(3)利用割补法求△A 1B 1C 1的面积,把△A 1B 1C 1补全成一个矩形,然后用矩形的面积减去其他三个三角形的面积,即可求出△A 1B 1C 1的面积.【详解】(1)A (-4,2);(2)如图,△A 1B 1C 1即为所求.(3)11111134231413 5.5222A B C S =⨯-⨯⨯-⨯⨯-⨯⨯= .∴△A 1B 1C 1的面积是5.5.【点睛】此题考查了平移变换以及利用割补法求三角形面积,解题的关键是熟练掌握平移变换以及利用割补法求三角形面积.21.(1)4;(2)阴影部分的面积是8,边长是(3)-1-【分析】(1)根据正方体的体积公式可求这个魔方的棱长.(2)根据魔方的棱长为4,所以小立方体的棱长为2,阴影部分由4个直角三角形组成,算出一个直角三角形的面积乘以4即可得到阴影部分的面积,开平方即可求出边长.(3)根据两点间的距离公式可得D 在数轴上表示的数.【详解】解:(1=4,答:这个魔方的棱长为4.(2)∵魔方的棱长为4,∴小立方体的棱长为2,∴阴影部分面积为:12×2×2×4=8,答:阴影部分的面积是8,边长是(3)D 在数轴上表示的数为-1-故答案为:-1-【点睛】本题考查的是立方根在实际生活中的运用,解答此题的关键是根据立方根求出魔方的棱长.22.(1)(0,2);(2)4;(3)(﹣1,1)或(﹣3,﹣1)【分析】(1)利用y 轴上点的坐标特征得到b ﹣2=0,求出b 得到C 点坐标;(2)利用与x 轴平行的直线上点的坐标特征得到a +1=4,求出a 得到A 、B 点的坐标,然后计算两点之间的距离;(3)利用垂直于x 轴的直线上点的坐标特征得到|b |=1,然后求出b 得到C 点坐标.【详解】解:(1)∵点C 在y 轴上,∴20b -=,解得2b =,∴C 点坐标为(0,2);(2)∵AB ∥x 轴,∴A 、B 点的纵坐标相同,∴a +1=4,解得a =3,∴A(﹣2,4),B(2,4),∴A ,B 两点间的距离=2﹣(﹣2)=4;(3)∵CD ⊥x 轴,CD =1,∴|b |=1,解得b =±1,∴C 点坐标为(﹣1,1)或(﹣3,﹣1).【点评】本题考查平面直角坐标系中点坐标的求解,解题的关键是掌握坐标轴上点的坐标特征.23.(1)(2)(2,3)或(2,﹣5);(3)等腰三角形,见解析【分析】(1)直接利用两点间的距离公式计算;(2)利用MN∥y轴得到M、N的横坐标相同,设N(2,t),利用两点间的距离为4得到|t+1|=4,然后求出t即可;(3)利用两点间的距离公式计算出DE、DF、EF,然后根据三角形的分类进行判断.【详解】解:(1)A,B(2)∵线段MN∥y轴,∴M、N的横坐标相同,设N(2,t),∴|t+1|=4,解得t=3或﹣5,∴N点坐标为(2,3)或(2,﹣5);(3)△DEF为等腰三角形.理由如下:∵D(0,6),E(﹣3,2),F(3,2),∴DE5,DF5,EF6,∴DE=DF,∴△DEF为等腰三角形.【点睛】本题考查了两点间的距离公式.解答该题时,先弄清两点在平面直角坐标系中的位置,然后选取合适的公式来求两点间的距离.24.(1)∠A+∠C=90°;(2)证明见解析(3)105°【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)过点B作BG∥DM,证∠DBG=90°,得出∠ABD=∠CBG,再根据平行线的性质,得出∠C=∠CBG,即可得到∠ABD=∠C;(3)过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.【详解】解:(1)如图1,AM与BC的交点记作点O,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°,故答案为:∠A+∠C=90°;(2)如图2,过点B作BG∥DM,∴∠D+∠DBG=180°,∵BD⊥AM,∴∠D=90°,∴∠DBG=90°,∴∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥AM,∴CN∥BG,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG∥DM,∵BF平分∠DBC,∴∠DBF=∠CBF,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,∵BE平分∠ABD,∴∠DBE=∠ABE,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠ABF=β,∵BG∥DM,∴∠AFB=∠GBF=β,∵∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵BG∥DM,∴∠AFC+∠NCF=180°,∵∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【点睛】本题主要考查了平行线的性质和三角形内角和,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用.。

2024年全新七年级数学上册期中试卷及答案(人教版)

2024年全新七年级数学上册期中试卷及答案(人教版)

专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 29C. 35D. 392. 下列哪个数是偶数?A. 23B. 27C. 33D. 363. 一个等差数列的首项是3,公差是2,那么第10项是多少?A. 19B. 20C. 21D. 224. 下列哪个图形是平行四边形?A. 正方形B. 长方形C. 梯形D. 圆形5. 下列哪个是无理数?A. √9B. √16C. √25D. √26二、判断题(每题1分,共5分)1. 两个质数相乘一定是合数。

()2. 0是偶数。

()3. 1是等差数列的首项。

()4. 平行四边形的对边相等。

()5. 所有的无理数都是开方开不尽的数。

()三、填空题(每题1分,共5分)1. 100的平方根是______。

2. 一个等差数列的公差是3,第5项是17,那么首项是______。

3. 下列图形中,______是轴对称图形。

4. 下列数中,______是立方数。

5. 如果a+b=12,ab=4,那么a和b的值分别是______和______。

四、简答题(每题2分,共10分)1. 请简述等差数列的定义。

2. 请简述平行四边形的性质。

3. 请简述无理数的概念。

4. 请简述勾股定理的内容。

5. 请简述一次函数的图像特点。

五、应用题(每题2分,共10分)1. 一个等差数列的前5项和是35,求这个数列的第10项。

2. 一个长方形的长是10厘米,宽是6厘米,求这个长方形的面积。

3. 如果一个数的平方是64,那么这个数的立方是多少?4. 如果a=5,b=3,求a²+b²的值。

5. 请画出一个一次函数y=2x+1的图像。

六、分析题(每题5分,共10分)七、实践操作题(每题5分,共10分)1. 请用直尺和圆规画出一个边长为5厘米的正方形。

2. 请用直尺和圆规画出一个半径为3厘米的圆。

八、专业设计题(每题2分,共10分)1. 设计一个等差数列,其首项为3,公差为2,求前10项的和。

人教版七年级数学期中测试卷【含答案】

人教版七年级数学期中测试卷【含答案】

人教版七年级数学期中测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少厘米?A. 3厘米B. 23厘米C. 17厘米D. 27厘米3. 下列哪个数是偶数?A. 101B. 102C. 103D. 1044. 下列哪个数是奇数?A. 151B. 152C. 153D. 1545. 如果一个正方形的边长是6厘米,那么它的面积是多少平方厘米?A. 36平方厘米B. 40平方厘米C. 44平方厘米D. 48平方厘米二、判断题(每题1分,共5分)1. 0是最小的自然数。

()2. 1是最大的质数。

()3. 任何一个偶数都能被2整除。

()4. 任何一个奇数都不能被2整除。

()5. 1千克的物品比1公斤的物品重。

()三、填空题(每题1分,共5分)1. 1千克等于______克。

2. 1米等于______分米。

3. 1平方米等于______平方分米。

4. 1千米等于______米。

5. 1吨等于______千克。

四、简答题(每题2分,共10分)1. 请简述偶数和奇数的定义。

2. 请简述质数和合数的定义。

3. 请简述正方形的特点。

4. 请简述长方形的特点。

5. 请简述三角形的特点。

五、应用题(每题2分,共10分)1. 小明有10个苹果,他吃掉了3个,还剩下多少个?2. 小红有15个橙子,她给了小明5个,还剩下多少个?3. 一个长方形的长是8厘米,宽是4厘米,求它的面积。

4. 一个正方形的边长是6厘米,求它的面积。

5. 一个三角形的底是10厘米,高是5厘米,求它的面积。

六、分析题(每题5分,共10分)1. 分析下列数的特点:2、3、5、7、11、13、17、19。

2. 分析下列图形的特点:正方形、长方形、三角形。

七、实践操作题(每题5分,共10分)1. 请用纸和剪刀剪出一个正方形,边长为10厘米,并求出它的面积。

人教版七年级数学期中考试试卷以及答案

人教版七年级数学期中考试试卷以及答案

期中综合检测试卷(第一章~第二章 满分:120分)一、选择题(每小题3分,共30分) 1.-8的绝对值是( A ) A .8 B .18C .-8D .-182.下列运算结果为正数的是( A ) A .(-3)2 B .-3÷2 C .0×(-2020)D .2-3 3.已知下列各式:abc,2πR ,x +3y,0,x -y2m ,其中单项式有( B )A .2个B .3个C .4个D .5个4.下列计算正确的是( D ) A .3a +2a =5a 2 B .3a -a =3 C .2a 3+3a 2=5a 5D .-a 2b +2a 2b =a 2b 5.我们的祖国地域辽阔,其中领水面积约为370 000 km 2.把370 000这个数用科学记数法表示为( B )A .37×104B .3.7×105C .0.37×106D .3.7×1066.有理数a ,b 在数轴上的对应点如图所示,则下列结论正确的是( A )A .|b |>-aB .|a |>-bC .b >aD .|a |>|b |7.下列说法中,正确的有( B )①任何数的倒数都小于1;②a 的倒数是1a ;③同号的两个数,原数大的倒数反而小;④互为倒数的两数符号相同.A .1个B .2个C .3个D .4个 8.下列各式不正确的是( A ) A .-x 2=(-x )2B .(-a )2=a 2C .(a -b )2=(b -a )2D .(a -b )3=-(b -a )39.计算6m 2-5m +3与5m 2+2m -1的差,结果正确的是( D ) A .m 2-3m +4 B .m 2-3m +2 C .m 2-7m +2D .m 2-7m +410.甲、乙、丙三家超市为了促销一种定价均为m 元的商品,甲超市连续两次降价20%,乙超市一次性降价40%,丙超市第一次降价30%,第二次降价10%,此时顾客要购买这种商品,应到的超市是( B )A .甲B .乙C .丙D .乙或丙二、填空题(每小题3分,共18分)11.如果向东走6 m 记作+6 m ,那么向西走2 m 记作__-2 m__. 12.若3a n +1b 2与12a 3b m +3的和仍是单项式,则m +n =__1__.13.单项式-35x 2yz 3的系数是__-35__,次数是__6__.14.一种零件的直径尺寸在图纸上是30+0.03-0.02(单位:mm),它表示这种零件的标准尺寸是30 mm ,合格产品的尺寸范围是__29.98~30.03__mm.15.若||a -11+(b +12)2=0,则(a +b )2020=__1__.16.如图是一个运算程序的示意图,若开始输入x 的值为625,则第2020次输出的结果为__1__.三、解答题(共72分) 17.(12分)计算下列各题: (1)-14-(-6)+2-3×⎝⎛⎭⎫-13; 解:原式=-1+6+2+1=8. (2)⎝⎛⎭⎫29-14+118÷⎝⎛⎭⎫-136;解:原式=⎝⎛⎭⎫29-14+118×(-36)=29×(-36)-14×(-36)+118×(-36)=-1. (3)3(x 2-5xy )-4(x 2+2xy -y 2)-5(y 2-3xy );解:原式=3x 2-15xy -4x 2-8xy +4y 2-5y 2+15xy =-x 2-8xy -y 2. (4)(x -x 2+1)-2(x 2-1+3x ).解:原式=x -x 2+1-2x 2+2-6x =-3x 2-5x +3.18.(6分)下面的运算是否正确,如果正确,说明每一步的依据;如果不正确,说明从哪一步开始出现了错误,错误的原因,并写出正确的解答过程.计算:-18+23+56-14.解:原式=⎝⎛⎭⎫-18+14+⎝⎛⎭⎫56-23(第①步) =18+16(第②步) =724.(第③步) 解:从第①步开始出现了错误:加数交换位置时应和前面的符号一起交换.正确的解答如下:原式=⎝⎛⎭⎫-18-14+⎝⎛⎭⎫23+56=-38+96=98. 19.(6分)先化简,再求值:3x 3-(4x 2+5x )-3(x 3-2x 2-2x ),其中x =-2.解:原式=3x 3-4x 2-5x -3x 3+6x 2+6x =2x 2+x .当x =-2时,原式=2×(-2)2-2=6. 20.(6分)随着人们生活水平的提高,家用轿车越来越多地进入家庭.小明家买了一辆小轿车,国庆节期间,他连续记录了7天中每天行驶的路程(如下表),以50 km 为标准,多于50 km 的记为“+”,不足50 km 的记为“-”,刚好50 km 的记为“0”.(2)若每行驶100 km 需用汽油6升,汽油价5.2元/升,请估计小明家一个月(按30天计)的汽油费用是多少元?解:(1)这七天中平均每天行驶50+(-8-11-14+0-16+41+8)÷7=50(千米). (2)平均每天所需汽油费用为50×6÷100×5.2=15.6(元),即估计小明家一个月的汽油费用是15.6×30=468(元).21.(6分)现定义一种新运算“⊕”:对于任意有理数x ,y ,都有x ⊕y =3x +2y ,例如:5⊕1=3×5+2×1=17.(1)求(-4)⊕(-3)的值; (2)化简:a ⊕(3-2a ).解:(1)(-4)⊕(-3)=3×(-4)+2×(-3)=-12-6=-18.(2)a ⊕(3-2a )=3×a +2×(3-2a )=3a +6-4a =-a +6.22.(6分)已知A =5x 2-mx +n ,B =3y 2-2x -1(A ,B 为关于x ,y 的多项式).如果A -B 的结果中不含一次项和常数项,求:(1)m ,n 的值; (2)m 2+n 2-2mn 的值.解:(1)因为A =5x 2-mx +n ,B =3y 2-2x -1,所以A -B =5x 2-mx +n -3y 2+2x +1=5x 2-3y 2+(2-m )x +n +1.由结果中不含一次项和常数项,得2-m =0,n +1=0,解得m =2,n =-1. (2)当m =2,n =-1时,原式=22+(-1)2-2×2×(-1)=4+1+4=9.23.(8分)有3个有理数x ,y ,z ,若x =2(-1)n -1,且x 与y 互为相反数,y 是z 的倒数.(1)当n 为奇数时,你能求出x ,y ,z 这三个数吗?当n 为偶数时,你能求出x ,y ,z 这三个数吗?若能,请计算并写出结果;若不能,请说明理由;(2)根据(1)的结果计算xy -y n -(y -z )2020的值.解:(1)当n 为奇数时,x =-1.因为x 与y 互为相反数,所以y =-x =1.因为y 是z 的倒数,所以z =1.所以x =-1,y =1,z =1;当n 为偶数时,因为分母不能为零,所以不能求出x ,y ,z 的值.(2)当x =-1,y =1,z =1时,原式=(-1)×1-1n -02020=-2.24.(10分)如图,一个用铝合金材料加工的长方形窗框,它的宽和高分别为a 厘米、b 厘米,解答下列问题(结果可用含a ,b 的代数式表示).(1)长方形窗框的面积是__ab __平分厘米;(2)铝合金窗分为上、下两栏,四周框架和中间隔栏的材料均为宽度为6厘米的铝合金材料,上栏和下栏的框内高度(不含铝合金部分)的比为1∶2(接口用料忽略不计).①求制作一个该种窗框所需铝合金材料的总长度; ②求该种(2)窗框的透光部分的面积.解:(2)①由题意,得上栏内高度为b -183厘米,下栏内高度为2(b -18)3厘米,所以所需铝合金材料的总长度为3a +b -183×2+2(b -18)3×3=⎝⎛⎭⎫3a +83b -48厘米. ②透光部分的面积为ab -6⎝⎛⎭⎫3a +83b -48=(ab -18a -16b +288)平方厘米. 25.(12分)一张桌子可坐4人,按照如图所示的方式将桌子拼在一起.(1)2张桌子拼在一起可坐几人?3张桌子拼在一起可坐几人?n 张桌子拼在一起可坐几人?(2)一家酒楼有60张这样的正方形桌子,按上图的方式每4张桌子拼成一张大桌子,则60张桌子可拼成15张大桌子,共可坐多少人?(3)若这家酒楼的60张这样的正方形桌子,每4张拼成一张大的正方形桌子,则共可坐多少人?(4)(2)、(3)中,哪种拼桌子的方式坐的人更多?解:(1)2张桌子拼在一起可坐4+2=6(人);3张桌子拼在一起可坐4+2+2=8(人);n 张桌子拼在一起可坐4+2(n -1)=(2n +2)人. (2)按图中方式拼一张大桌子可坐4+2×(4-1)=10(人),则15张大桌子共可坐15×10=150(人). (3)若每4张桌子拼成一张大正方形桌子,则一张大的正方形桌子可坐8人,15张大正方形桌子共可坐15×8=120(人). (4)由(2)、(3)可知,按(2)中拼桌子的方式坐的人更多.。

2023-2024人教版七年级数学期中试卷

2023-2024人教版七年级数学期中试卷

人教版七年级数学期中押题卷01考试时间:120分钟试卷满分:120分测试范围:第1-2章一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确)1.(2022秋•长沙期中)手机移动支付给生活带来便捷.如图是张老师某日微信账单的收支明细(正数表示收入,负数表示支出,单位:元),张老师当天微信收支的最终结果是()A.收入15元B.支出2元C.支出17元D.支出9元2.(2022秋•长沙期中)根据湖南省文化和旅游厅发布2022年国庆假日旅游数据:10月1日至10月7日,全省共纳入假日统计监测单位939家,累计接待游客9175600人次,收入9.51亿元.其中,数据9175600用科学记数法表示为()A.91.756×105B.9.1756×106C.0.91756×107D.9.1756×1073.(2022秋•东莞市校级期中)如关于x,y的多项式4x2y+7mxy﹣5y3+6xy化简后不含二次项,则m=()A.B.C.D.04.(2022秋•黄陂区期中)在数﹣2,3,0,﹣5四个数中,最大的数是()A.﹣2B.3C.0D.﹣55.(2022秋•黄陂区期中)下列说法正确的是()A.的系数是7B.32x3y的次数为6C.数字0也是单项式D.x4+x2是六次多项式6.(2022秋•长沙县期中)若实数a,b,c满足|a﹣b|=1,|a﹣c|=5,则|b﹣c|的值为()A.4B.5C.4或6D.4或57.(2022秋•东莞市校级期中)计算(﹣2)100+(﹣2)101所得的结果是()A.2100B.﹣1C.﹣2D.﹣21008.(2022秋•长沙县期中)下列各式中去括号正确的是()A.﹣(﹣a﹣b)=a﹣bB.a2+2(a﹣2b)=a2+2a﹣2bC.5x﹣(x﹣1)=5x﹣x+1D.3x2﹣(x2﹣y2)=3x2﹣x2﹣y29.(2022秋•长沙期中)按如图所示的运算程序,能使输出y值为1的是()A.m=1,n=1B.m=1,n=0C.m=1,n=2D.m=2,n=110.(2022秋•长沙期中)如图,矩形ABCD长为a,宽为b,若S1=S2=(S3+S4),则S4等于()A.ab B.ab C.ab D.ab二、填空题(本题共8小题,每小题3分,共24分)11.(2022秋•东莞市校级期中)比较大小:填“>”、“=”或“<”).12.(2022秋•天河区校级期中)单项式的系数为.13.(2022秋•长沙期中)在数轴上,与表示﹣3的点相距6个单位长度的点所表示的数是.14.(2022秋•东莞市校级期中)把多项式2ab2﹣5a2b﹣7+a3b3按字母b的降幂排列,排在第三项的是.15.(2022秋•武汉期中)已知当x=1时,多项式mx3﹣nx的值为﹣2022,则当x=﹣1时,多项式mx3﹣nx 的值为.16.(2022秋•东莞市校级期中)已知x,y互为相反数,m,n互为倒数,a的绝对值等于2,则x+y+a2﹣amn =.17.(2022秋•长沙期中)定义新运算“⊗”,规定:a⊗b=a+a b,则﹣3⊗2=.18.(2022秋•长沙县期中)观察图形,则第n个图形中三角形的个数是.三、解答题(共66分)19.(2022秋•东莞市校级期中)在数轴上表示下列各数:4,﹣1.5,﹣3,0,2.5,﹣|﹣5|,并将它们按从小到大的顺序排列.20.(2022秋•白云区校级期中)计算:(1)(+12)﹣(﹣18)+(﹣7)﹣(+15).(2).(3).(4).21.(2022秋•白云区校级期中)先化简,再求值:(1)2(5a2﹣2a+1)﹣4(3﹣a+2a2),其中a=﹣3.(2)2a2b+2ab﹣[3a2b﹣2(﹣3ab2+2ab)]+5ab2,其中ab=1,a+b=6.22.(2022秋•黄陂区期中)(1)已知(a﹣3)2+|b﹣2|=0,c和d互为倒数,m和n互为相反数,且mn<0,y为最小的正整数,求:|a﹣b|+﹣|﹣y|+2cd的值;(2)有理数a,b,c在数轴上的位置如图所示,化简:|a+c|﹣|a﹣b|+|b﹣c|.23.(2022秋•思明区校级期中)如图小亮家的菜园呈图1中长方形的阴影部分,(单位:米).小亮家住房户型呈图2中长方形,(单位:米).(1)用两种不同的代数式直接列出小亮家的菜园面积;(用含x的代数式表示)(2)小亮家准备铺设地面,三间卧室铺设木地板,其它区域铺设地砖.求铺设地面需要木地板和地砖各多少平方米(用含x的代数式表示)24.(2022秋•东莞市校级期中)阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2=;(2)已知x2﹣2y=4,求3x2﹣6y﹣21的值;拓广探索:(3)已知a﹣5b=3,5b﹣3c=﹣5,3c﹣d=10,求(a﹣3c)+(5b﹣d)﹣(5b﹣3c)的值.25.(2022秋•黄陂区期中)已知式子M=(a+4)x3+6x2﹣2x+5是关于x的二次多项式,且二次项系数为b,数轴上A,B两点所对应的数分别是a和b.(1)则a=,b=;A,B两点之间的距离为;(2)有一动点P从点A出发第一次向左运动1个单位长度,然后在新的位置第二次向右运动2个单位长度,再在此位置第三次向左运动3个单位长度….按照如此规律不断地左右运动,当运动到第2022次时,求点P所对应的有理数.(3)若点A以每秒2个单位长度的速度向左运动,同时点B以每秒3个单位长度的速度向右运动,动点D从原点开始以每秒m(m>0)个单位长度在A,B之间运动(到达A或B即停止运动),运动时间为t秒,在运动过程中,BD﹣2AD的值始终保持不变,求D点运动的方向及m的值.26.(2022秋•武汉期中)在七年级数学学习中,常用到分类讨论的数学方法,以化简|x|为例.当x>0时,|x|=x;当x=0时,|x|=0;当x<0时,|x|=﹣x.求解下列问题:(1)当x=3时,值为,当x=﹣3时,的值为,当x为不等于0的有理数时,的值为;(2)已知x+y+z=0,xyz>0,求的值;(3)已知:x1,x2,…,x2021,x2022,这2022个数都是不等于0的有理数,若这2022个数中有n个正数,,则m的值为(请用含n的式子表示).。

数学人教版七年级期中试卷

数学人教版七年级期中试卷

一、选择题(每题3分,共30分)1. 下列数中,不是有理数的是()A. 0.5B. √4C. -3D. √-12. 下列各数中,能被3整除的是()A. 18B. 20C. 21D. 223. 在下列各数中,是负数的是()A. -2.5B. 0C. 2.5D. -5.24. 下列各数中,是正整数的是()A. 0B. 1C. -1D. 0.15. 若一个数的绝对值是5,那么这个数是()A. ±5B. 5C. -5D. ±106. 下列各数中,是偶数的是()A. 3B. 4C. 5D. 67. 下列各数中,是奇数的是()A. 2B. 3C. 4D. 58. 下列各数中,是整数的是()A. 3.5B. 4C. -5D. 0.19. 若一个数的倒数是0.5,那么这个数是()A. 2B. -2C. 1/2D. -1/210. 下列各数中,是正有理数的是()A. 0B. 1C. -1D. -2二、填空题(每题3分,共30分)11. 2的平方根是______,3的立方根是______。

12. 下列数中,是正数的是______,是负数的是______。

13. 下列数中,是整数的是______,是有理数的是______。

14. 下列数中,是正有理数的是______,是负有理数的是______。

15. 下列数中,是正数的是______,是负数的是______。

16. 下列数中,是正整数的是______,是负整数的是______。

17. 下列数中,是正数的是______,是负数的是______。

18. 下列数中,是正数的是______,是负数的是______。

三、解答题(每题10分,共30分)19. (1)求下列各数的倒数:5,-2,1/3。

(2)比较下列数的大小:-3,-2,-1,0,1,2,3。

20. (1)计算下列各式的值:2^2 + 3^2 - 4^2。

(2)计算下列各式的值:-5 × 2 + 3 ÷ 4 - 1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a
10沫阳中学-第一学期 七年级期中数学试卷
班级: 姓名: 得分: 一、耐心填一填,你一定很棒。

(每小题2分,共24分) 1、计算:(1) 8+(+2)= (2) (—2)+5= 2、—8的相反数是 ,倒数是 ,绝对值是 。

3、2006年9月20日,龙滩电站正式下闸蓄水,首批4台机组率先发电,预计年内发电6500 000 000度,这个数用科学记数法表示为 度。

4、近似数31060.7⨯精确到 位,有 个有效数字。

5、下列整式:,75
,,107,21,,53,
222y x R b a a n m x -+--+π其中是单项式的是 。

6、已知︱x +3︱+2
)5(y -=0,则xy = 。

7、如果+10米表示某人向东走10米,那么—10米表示 。

8、数轴上和原点的距离等于6
3
1
的点表示的有理数是 。

9、单项式744
3n m -的系数是 ,次数是 。

10、已知1
347
3-6+n m b a b a 与是同类项,则m= n= 。

11、化简3x -2(x -3y )的结果是 。

12、平方得81的有理数是 。

二、精心选一选,你一定能行(每小题3分,共30分)(每小题只有一个正确答案,请把正确答案序号填在下表内)
13、已知a 与b 互为相反数,c 与d 互为倒数,︱m ︱=1,2(a +b )-2m
cd
的值是( )。

A 、-1
B 、2
C 、1
D 、-2
14、今年10月21日沫阳镇最低气温是12℃,温差是10℃,那么这一天的最高气温是( ) A 、24℃ B 、22 ℃ C 、2 ℃ D 、20℃ 15、-︱—6︱的相反数是( )
A 、6
B 、-6
C 、±6
D 、6
1
16、下列各式中,结果正确的是( ) A 、6)2(3
=- B 、3
4)32(2=
- C 、21.0=0.02 D 、3
)3(-=-27 17、如果)(a --为正数,则a 为( )
A 、正数
B 、负数
C 、0
D 、任意有理数 18、下列各式正确的是( ) A 、z y x yz x 3
1
3222=-
B 、322332352q p p q q p -=-
C 、05522=-ab b a
D 、n m n m 2233=+ 19、下列各组中的两项是同类项的是( ) A 、x y xy 2
22
18-
和 B 、22mn n m --和 C 、m m 32和- D 、b a 5.05.0和 20、去括号正确的是( )
A 、c b a a c b a a +--=+--2
2
)( B 、1065)53(25+-+=--+a a a a C 、a a a a a a 3
2
3)23(31322--=--
D 、b a a b a a +-=---2323)]([ 21、有理数a 、b 在数轴上的位置如图1-1所示,那么
下列式子中成立的是( )
A.a>b
B.a<b
C.ab>0
D.0a
b
>
22、已知a 为有理数,下列式子一定正确的是( )
A 、︱a ︱=a
B 、︱a ︱≥a
C 、︱a ︱=-a
D 、2
a >0 三、解答题(共46分)
23、细心算一算,一定算对哟!(每小题4分,共12分) (1)、 (+45)+(-92)+5+(-8) (2)、 )24(127832111-⨯⎪⎭⎫ ⎝

+--
(3)、42-+︱6-10︱-2006
)1(3-⨯
24、化简(每小题4分,共8分)
(1)、 (8a -6b )-(4a -5b )+(3a -2b ) (2)、 ⎥⎦

⎢⎣⎡----22222
2)41(2123x x y x y x y x
25、先化简再求值(6分)
ab ab a ab a 2
1
8)4(21222-⎥⎦⎤⎢⎣⎡+--,其中a =-21,b =32 。

26、(6分) 用火柴棒按下列方式搭建三角形:
(1)填表:
(2) 当三角形的个数为n 时,火柴棒的根数多少? (3) 求当n=1000时,火柴棒的根数是多少?
27、(本题6分)为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师。

如果规定向东为正,向西为负,出租车的行程如下(单位:千米):+5,-4,+3,-10,+3,-9
(1) 最后一名老师送到目的地时,小王距出租车地点的距离是多少? (2) 若汽车耗油量为0.4升/千米,这天下午汽车共耗油多少升?
28、(本题8分)我国股市交易中每买、卖一次需交0.75﹪的各种费用,某投资者以每股10元的价格买入某股票a 股,当该股票涨到12元时全部卖出。

(1)用式子表示投资者实际盈利多少?
(2)若该投资者买入1000股,则他盈利了多少元?。

相关文档
最新文档