材料科学基础重要概念

合集下载

材料科学基础之材料的凝固

材料科学基础之材料的凝固

材料科学基础之材料的凝固引言材料的凝固过程是材料科学中的重要基础知识之一。

凝固是将液态物质转变为固态物质的过程,在材料制备和性能控制中起着至关重要的作用。

本文将介绍材料的凝固过程及其在实际应用中的影响。

1. 凝固的概念凝固是物质从液态向固态转变的过程。

在凝固过程中,原子、分子或离子进入有序排列的结构,形成固态晶体。

凝固过程通常伴随着能量的释放,因为凝固过程降低了分子之间的自由度。

2. 凝固的类型材料的凝固可以分为两类:晶体凝固和非晶体凝固。

2.1 晶体凝固晶体凝固是指原子、分子或离子按照一定的方式排列,形成有序的凝固体。

晶体凝固过程中,物质的结构和性质与晶体的结构密切相关。

晶体凝固常见的类型包括共晶凝固、细小晶粒凝固和晶体生长等。

2.2 非晶体凝固非晶体凝固是指物质形成无序而没有周期性的凝固体。

非晶体凝固的材料通常具有高度的无定形性和非晶性。

非晶体凝固过程中,由于缺乏有序结构,凝固速率较高。

3. 凝固过程的影响因素凝固过程受许多因素的影响,包括温度、压力、成分和凝固速率等。

3.1 温度温度是影响材料凝固的重要因素之一。

温度的改变会导致凝固过程的快慢和凝固体的结构特征的变化。

通常情况下,较高的温度会加快凝固过程,而较低的温度则会延缓凝固。

3.2 压力在一定温度下,增加压力可以使凝固过程的速率加快。

这是因为增加压力可以提高原子、分子或离子之间的相互作用力,促进有序凝固结构的形成。

3.3 成分凝固过程的成分也对凝固行为产生重要影响。

不同成分的物质由于其分子结构和相互作用的差异,会表现出不同的凝固特点。

例如,共晶物质的凝固温度会比单一组分物质的凝固温度低一些。

3.4 凝固速率凝固速率是指物质由液态向固态转变的速度。

凝固速率受到温度、成分和凝固体的结构特征等因素的影响。

通常情况下,快速冷却会增加凝固速率,而慢速冷却则会降低凝固速率。

4. 凝固在实际应用中的重要性材料的凝固在实际应用中具有重要作用。

凝固过程直接影响材料的结构和性能。

800材料科学基础参考书目

800材料科学基础参考书目

800材料科学基础参考书目【原创实用版】目录1.引言2.材料科学的基本概念3.材料科学的研究方法4.材料科学的应用领域5.参考书目正文1.引言材料科学是研究材料的性质、结构和制备的学科,是现代科技领域中的重要组成部分。

材料科学的研究对象包括金属、陶瓷、聚合物和复合材料等各种材料,其研究目标是为了提高材料的性能,开发新的材料和优化材料的制备工艺。

为了更好地了解材料科学,学习者需要掌握材料科学的基础知识。

本文将介绍一些关于材料科学基础的参考书目,以帮助学习者深入学习这一领域。

2.材料科学的基本概念材料科学的基本概念包括材料的结构、性能、制备和表征等方面。

学习者需要了解材料的晶体结构、缺陷、相图等基本概念,同时还要掌握材料的力学性能、热学性能、电学性能等性能指标。

3.材料科学的研究方法材料科学的研究方法包括实验、理论和计算模拟等。

实验是材料科学研究的基础,学习者需要掌握各种实验技术,如 X 射线衍射、电子显微镜等。

理论研究是理解材料性质的重要手段,学习者需要掌握固体物理、量子力学等理论知识。

计算模拟是近年来发展迅速的研究方法,学习者需要掌握相关软件和编程技能。

4.材料科学的应用领域材料科学在许多领域都有广泛的应用,如航空航天、电子信息、能源环保等。

学习者需要了解材料在不同领域的应用需求,以便为实际问题提供解决方案。

5.参考书目以下是一些建议的关于材料科学基础的参考书目:1) 《材料科学基础》(第 2 版),作者:胡赓祥、蔡伟,出版社:化学工业出版社。

2) 《材料科学导论》(第 3 版),作者:周玉,出版社:科学出版社。

3) 《材料科学实验教程》,作者:李晓光,出版社:化学工业出版社。

4) 《现代材料科学实验技术》,作者:赵明辉,出版社:科学出版社。

5) 《固体物理学》(第 2 版),作者:黄昆,出版社:高等教育出版社。

6) 《量子力学》(第 4 版),作者:周世勋,出版社:高等教育出版社。

材料科学基础基本概念和名词解释

材料科学基础基本概念和名词解释

晶体缺陷单晶体:是指在整个晶体内部原子都按照周期性的规则排列。

多晶体:是指在晶体内每个局部区域里原子按周期性的规则排列,但不同局部区域之间原子的排列方向并不相同,因此多晶体也可看成由许多取向不同的小单晶体(晶粒)组成点缺陷(Point defects):最简单的晶体缺陷,在结点上或邻近的微观区域内偏离晶体结构的正常排列。

在空间三维方向上的尺寸都很小,约为一个、几个原子间距,又称零维缺陷。

包括空位vacancies、间隙原子interstitial atoms、杂质impurities、溶质原子solutes 等。

线缺陷(Linear defects):在一个方向上的缺陷扩展很大,其它两个方向上尺寸很小,也称为一维缺陷。

主要为位错dislocations。

面缺陷(Planar defects):在两个方向上的缺陷扩展很大,其它一个方向上尺寸很小,也称为二维缺陷。

包括晶界grain boundaries、相界phase boundaries、孪晶界twin boundaries、堆垛层错stacking faults等。

晶体中点阵结点上的原子以其平衡位置为中心作热振动,当振动能足够大时,将克服周围原子的制约,跳离原来的位置,使得点阵中形成空结点,称为空位vacancies肖脱基(Schottky)空位:迁移到晶体表面或内表面的正常结点位置,使晶体内部留下空位。

弗兰克尔(Frenkel)缺陷:挤入间隙位置,在晶体中形成数目相等的空位和间隙原子。

晶格畸变:点缺陷破坏了原子的平衡状态,使晶格发生扭曲,称晶格畸变。

从而使强度、硬度提高,塑性、韧性下降;电阻升高,密度减小等。

热平衡缺陷:由于热起伏促使原子脱离点阵位置而形成的点缺陷称为热平衡缺陷(thermal equilibrium defects),这是晶体内原子的热运动的内部条件决定的。

过饱和的点缺陷:通过改变外部条件形成点缺陷,包括高温淬火、冷变形加工、高能粒子辐照等,这时的点缺陷浓度超过了平衡浓度,称为过饱和的点缺陷(supersaturated point defects) 。

材料科学基础_概念中英文

材料科学基础_概念中英文

材料科学基础重要概念(中英文)晶体学基础晶体学(crystallography)布喇菲点阵(Bravais lattice)晶体生成学(crystallogeny)体心化(body centering)晶体结构学(crytallogy)底心化(base centering)晶体化学(crystallochemistry)特殊心化(special centering)晶体结构(crystal structure)晶面(crystal plane)点阵平移矢量(lattice translation vector)晶(平)面指数(crystal – plane indice)初级单胞(primitive cell)晶带(zone)点阵常数(lattice parameter)倒易空间(reciprocal space)对称变换(symmetry translation)参考球(reference sphere)主动操作(active operation)经线(longitude)国际符号(international notation)赤道平面(equator plane)点对称操作(point symmetry operation)极网(pole net)旋转操作(rotation operation)结构基元(motif)二次旋转轴(two - fold axe, diad)晶体几何学(geometrical crystallography)四次旋转轴(four – fold axe, tetrad)晶体物理学(crystallographysics)镜像(mirror image)等同点(equivalent point)对形关系(enantiomorphic relation)点阵(lattice)反演(inversion)初基矢量(primitive translation vector)晶系(crystal system)复式初基单胞(multiple – primitive cell)单斜晶系(monoclinic system)对称元素(symmetry element)四方晶系(正方晶系)(tetragonal system)对称群(symmetry group)六方晶系(hexagonal system)被动操作(passive operation)熊夫利斯符号(Schoenflies notation)点阵有心化(centering of lattice)恒等操作(单位操作)(identity)面心化(face centering)旋转轴(rotation axe)单面心化(one – face centering)三次旋转轴(three – fold axe, triad)晶向(crystal direction)六次旋转轴(six – fold axe, hexad)晶向(方向)指数(crystal – direction indice)镜面(mirror plane)晶面族(form of crystal - plane)同宇(congruent)倒易点阵(reciprocal lattice)旋转反演(rotation - inversion)极射赤面投影(stereographic projection)三斜晶系(triclinic system)参考网络(reference grid)正交晶系(斜方晶系)(orthogonal system)纬线(latitude)立方晶系(cubic system)吴氏网(Wulff net)菱方晶系(rhombohedral system)标准投影网(standard projection)晶体结构晶体结构(crystal structure)鲍林规则(Pauling’s rule)结构符号(structure symbol)氧化物结构(oxide structure)致密度(空间填充效率)(efficiency of space 岩盐结构(rock structure)filling)纤维锌矿结构(wurtzite structure)配位数(coordination number)闪锌矿结构(zinc blende structure)配位多面体(coordination polyhedra)尖晶石结构(spinel structure)拓扑密堆相(topologically close – packed α-Al2O3型结构(corundum structure)phase)金红石结构(rutile structure)金属晶体(metal crystal)萤石结构(fluorite structure)离子晶体(ionic crystal)钙钛矿结构(perovskite structure)共价晶体(covalent crystal)钛铁矿结构(ilmenite structure)分子晶体(molecular crystal)氯化铯结构(cesium chloride structure)原子半径和离子半径(atomic radius and ionic 硅酸盐(silicate)radius)链状硅酸盐(chain silicate)原子结构体积(volume of structure per atom)层状硅酸盐(phyllo silicate)体密度(volumetric density,ρV)岛状硅酸盐(island silicate)面密度(planar density, ρP)骨架结构(framework structure)线密度(linear density, ρL)镁橄榄石结构(forsterite structure)金刚石结构(diamond structure)辉石(picrite)纳米碳管(carbon nano tube)粘土矿(clay mineral)置换固溶体(substitutional solid solution)高岭石(kaolinite)填隙固溶体(interstitial solid solution)云母(mica)尺寸因素(size factor)石英(quartz)价电子浓度(valance electron concentration)鳞石英(tridymite)电子化合物(electron compound)方石英(cristobalite)间隙化合物(interstitial compound)钙长石(anorthite)尺寸因素化合物(size–factor compound)分子筛(molecule sift)Laves相(Laves phase) 同素异构性(allotropy)σ相(σphase)多形性(polymorphism)有序固溶体(超结构)[ordered solid solution 准晶(quasicrystal)(super lattice) ] 彭罗斯拼砌(Penrose tiling)长程有序参数(long-range order parameter)短程有序参数(shot-range order parameter)晶体缺陷不完整性(imperfection)向错(disclination)点缺陷(point imperfection)沃特拉过程(V olterra’s process)空位(vacancy)刃型位错(edge dislocation)自间隙原子(self-interstitial)螺型位错(screw dislocation)构型熵(configuration entropy)混合型位错(mixed dislocation)肖脱基缺陷(Schottky defect)柏氏回路(Burgers circuit)弗兰克缺陷(Frenkel defect)柏氏矢量(Burgers vector)内禀点缺陷(intrinsic point defect)位错环(dislocation loop)非禀点缺陷(extrinsic point defect)位错密度(dislocation density)线缺陷(line imperfection)位错的弹性能(elastic energy of dislocation)位错(dislocation)位错线张力(tension of dislocation)位错宽度(width of dislocation)层错矢量(fault vector)保守运动(conservative motion)外延层错(extrinsic fault)非保守运动(nonconservative motion)层错能(stacking fault energy)滑移(slip)肖克莱部分为错(Shockley partial dislocation)滑动(glissile)铃木气团(Suzuki atmosphere)攀移(climb)弗兰克位错(Frank partial dislocation)自力(self-force)扩展位错(extended dislocation)渗透力(osmotic force)压杆位错(stair-rod partial dislocation)映像力(image force)Lomer-Cottrell 位错(Lomer-Cottrell弯结(kink)dislocation)割阶(jog)L-C阻塞(L-C Lock)柯垂尔气体(Cottrell atmosphere)赫斯阻塞(Hirth lock)史诺克气体(Snoek atmosphere)分位错(fractional dislocation)弗兰克-瑞德位错源(Frank-Read source)超点阵(superlattice)B-H位错源(Bardeen-Herring source)反相畴(Antiphase domain)位错塞积群(dislocation pile-up group)反相畴界(Antiphase boundary, APB)全位错(perfect dislocation)超位错(super-dislocation)堆垛层错(stacking fault)弗兰克-纳巴罗回路(Frank-Nabarro circuit)部分为错或不全位错(partial dislocation)向错强度(disclination strength)内禀层错(intrinsic fault)条纹织构(schlieren texture)表面能(surface energy) 适配(matching)晶界(grain boundary) 共格晶界(coherent boundary)小角度晶界(low angle grain boundary)非共格晶界(incoherent boundary)大角度晶界(high angle grain boundary 晶界迁移率(grain boundary mobility)倾转晶界(tilt boundary)取向关系(orientation relationship)扭转晶界(twist boundary)气泡(gas babble)相界(phase boundary) 空洞(void)扩散不可逆过程(irreversible process)传质过程(mass transport)扩散(diffusion)扩散距离(diffusion distance)唯象系数(phenomenological coefficient)间隙机制(interstitial mechanism)挤列结构(crowdion configuration)哑铃结构(dumbbell split configuration)空位机制(vacancy mechanism)换位机制(exchange mechanism)扩散流量(flux)参考系(reference frame)实验参考系(laboratory reference frame)点阵参考系(lattice reference frame)菲克第一定律(Fick’s first law)菲克第二定律(Fick’s second law)扩散系数(diffusion coefficient)禀性扩散系数(intrinsic diffusion coefficient)互扩散系数(mutual diffusion coefficient)自扩散系数(self-diffusion coefficient)稳态扩散(steady state diffusion)Kirkendall 效应(Kirkendall effect)Matano 平面(Matano interface)热力学因子(thermodynamic factor)同位素(isotope)示踪物(tracer)扩散偶(diffusion couple)误差函数(error function)哑变量(dummy)数值方法(numerical method)有限差分(finite-difference)收敛性(convergence)截断误差(truncation error)舍入误差(round-off error)相关系数(correlation factor)高扩散率通道(high-diffusivity path)体扩散(volume diffusion)晶界扩散(grain boundary diffusion)位错扩散(dislocation diffusion)表面扩散(surface diffusion)迁移率(mobility)渗透率(permeability)凝固分配系数(partition coefficient)枝晶偏析(dendrite segregation)区域提纯(zone-refining)亚共晶合金(hypoeutectic alloy)胞晶的形成(cell formation)过共晶合金(hypereutectic alloy)胞状树枝晶(cellular dendrite)片状(lamellar)柱状树枝晶(columnar dendrite)棒状(rod-like)共晶凝固(eutectic solidification)共晶领域(eutectic colony)包晶凝固(peritectic solidification)伪共晶(pseudo-eutectic)偏析(segregation)离异共晶(divorced eutectic)熔焊(fusion welding)激冷区(chill zone)快速凝固(rapid solidification process)柱状晶区(columnar zone)连续铸造(continuous casting)等轴晶区(equiaxed zone)树枝状显微偏析(dendritic microsegregation)收缩晶区(shrinkage cavity)非平衡杠杆定律(non-equilibrium lever rule)疏松(porosity)组分过冷(constitutional supercooling)非金属夹杂物(non-metallic inclusion)胞状组织(cellular structure)熔池(weld pool)二次枝晶(secondary dendrite)混合区(composite region)一次支晶(primary dendrite)热影响区(heat-affected zone)。

800材料科学基础参考书目

800材料科学基础参考书目

800材料科学基础参考书目摘要:一、引言二、材料科学基础的重要性三、推荐的参考书目概述1.《材料科学基础》2.《材料科学基础与应用》3.《材料科学导论》4.《材料科学》5.《材料科学及工程基础》6.《材料科学与工程》四、结论正文:【引言】材料科学是研究材料的设计、制备、性能和应用的一门学科,它在现代科技和工程领域中具有重要的地位。

随着科技的发展,材料科学也在不断拓展和深化,为人们提供了丰富的知识资源。

本文将向您推荐一些在材料科学领域颇具影响力的参考书目,以帮助您更好地学习和理解这门学科。

【材料科学基础的重要性】材料科学基础是材料科学领域中的基石,它涵盖了材料的基本概念、性质、结构和制备方法等方面。

掌握材料科学基础对于学习材料科学的其他分支和实际应用具有重要意义。

【推荐的参考书目概述】以下是一些关于材料科学基础的推荐参考书目:1.《材料科学基础》该书系统地介绍了材料科学的基本概念、性质、结构和制备方法,内容全面,适合初学者入门。

2.《材料科学基础与应用》该书在材料科学基础知识的介绍上,更加注重实际应用,提供了丰富的实例分析,有助于读者将理论知识与实际应用相结合。

3.《材料科学导论》该书以材料科学的发展历程为线索,介绍了材料科学的基本概念、原理和方法,以及各种材料的性能与应用,适合具有一定基础的读者深入学习。

4.《材料科学》该书详细阐述了材料科学的基本原理,包括材料的结构、性能、制备和应用等方面,内容丰富,适合作为教材或参考书。

5.《材料科学及工程基础》该书以材料科学为基础,介绍了材料工程的基本原理和方法,以及各种材料的应用技术,具有很强的实用性。

6.《材料科学与工程》该书全面阐述了材料科学与工程的理论和实践,包括材料设计、制备、性能和应用等方面,适合作为研究生教材或参考书。

【结论】总之,材料科学基础是学习材料科学领域其他知识的重要基石。

以上推荐的书目涵盖了材料科学基础的各个方面,相信对您的学习和研究会有所帮助。

《材料科学基础》总复习(完整版)

《材料科学基础》总复习(完整版)

《材料科学基础》上半学期内容重点第一章固体材料的结构基础知识键合类型(离子健、共价健、金属健、分子健力、混合健)及其特点;键合的本质及其与材料性能的关系,重点说明离子晶体的结合能的概念;晶体的特性(5个);晶体的结构特征(空间格子构造)、晶体的分类;晶体的晶向和晶面指数(米勒指数)的确定和表示、十四种布拉维格子;第二章晶体结构与缺陷晶体化学基本原理:离子半径、球体最紧密堆积原理、配位数及配位多面体;典型金属晶体结构;离子晶体结构,鲍林规则(第一、第二);书上表2-3下的一段话;共价健晶体结构的特点;三个键的异同点(举例);晶体结构缺陷的定义及其分类,晶体结构缺陷与材料性能之间的关系(举例);第三章材料的相结构及相图相的定义相结构合金的概念:固溶体置换固溶体(1)晶体结构无限互溶的必要条件—晶体结构相同比较铁(体心立方,面心立方)与其它合金元素互溶情况(表3-1的说明)(2)原子尺寸:原子半径差及晶格畸变;(3)电负性定义:电负性与溶解度关系、元素的电负性及其规律;(4)原子价:电子浓度与溶解度关系、电子浓度与原子价关系;间隙固溶体(一)间隙固溶体定义(二)形成间隙固溶体的原子尺寸因素(三)间隙固溶体的点阵畸变性中间相中间相的定义中间相的基本类型:正常价化合物:正常价化合物、正常价化合物表示方法电子化合物:电子化合物、电子化合物种类原子尺寸因素有关的化合物:间隙相、间隙化合物二元系相图:杠杆规则的作用和应用;匀晶型二元系、共晶(析)型二元系的共晶(析)反应、包晶(析)型二元系的包晶(析)反应、有晶型转变的二元系相图的特征、异同点;三元相图:三元相图成分表示方法;了解三元相图中的直线法则、杠杆定律、重心定律的定义;第四章材料的相变相变的基本概念:相变定义、相变的分类(按结构和热力学以及相变方式分类);按结构分类:重构型相变和位移型相变的异同点;马氏体型相变:马氏体相变定义和类型、马氏体相变的晶体学特点,金属、陶瓷中常见的马氏体相变(举例)(可以用许教授提的一个非常好的问题――金属、陶瓷马氏体相变性能的不同――作为题目)有序-无序相变的定义玻璃态转变:玻璃态转变、玻璃态转变温度、玻璃态转变点及其黏度按热力学分类:一级相变定义、特点,属于一级相变的相变;二级相变定义、特点,属于二级相变的相变;按相变方式分类:形核长大型相变、连续型相变(spinodal相变)按原子迁动特征分类:扩散型相变、无扩散型相变第5章 金属材料的显微结构特征一、纯金属的凝固及结晶1、结晶的热力学条件结晶后系统自由能下降。

材料科学基础教案

材料科学基础教案

材料科学基础(Foundations of Materials Science)材料工程系材料成型与控制工程专业任课教师-张敬尧绪论(Introduction)一.什么是《材料科学基础》二. 材料科学的重要地位三.学习《材料科学基础》的必要性四.《材料科学基础》涵盖的主要内容五.怎样学好《材料科学基础》一.什么是《材料科学基础》什么是材料科学?什么是材料科学基础?材料科学是研究材料的成分、组织结构、制备工艺、材料的性能与应用之间的相互关系的科学。

其核心为研究材料组织结构与性能的关系。

它是当代科技发展的基础、工业生产的支柱,是当今世界的带头学科之一。

作为分支之一的新兴的纳米材料科学与技术是20世纪80年代发展起来的新兴学科,成为21世纪新技术的主导中心。

材料科学基础是进行材料科学研究的基础理论,它将各种材料(包括金属、陶瓷、高分子材料)的微观特性和宏观规律建立在共同的理论基础上,用于指导材料的研究、生产、应用和发展。

它涵盖了材料科学和材料工程的基础理论。

二、材料科学的重要地位●人类社会发展的历史阶段常常根据当时使用的主要材料来划分。

从古代到现在人类使用材料的历史共经历了6个时代:石器时代→青铜器时代→铁器时代→钢时代→半导体时代→新材料时代●20世纪70年代,人们把信息、材料和能源称为当代文明的三大支柱;80年代,又把新材料、信息技术和生物技术并列为新技术革命的重要标志;90年代以来,把材料、信息、能源和生物技术作为国民经济发展的四大支柱产业。

●1986年《科学的美国人》杂志指出“先进材料对未来的宇航、电子设备、汽车以及其他工业的发展是必要的,材料科学的进步决定了经济关键部门增长速率的极限范围。

” 1990年美国总统的科学顾问Allany.Bromley明确指出“材料科学在美国是最重要的学科”。

1991年日本为未来工业规划技术列举的11项主要项目中有7项是基于先进材料基础之上。

故材料科学是科技发展的基础、技术进步和工业化生产的支柱。

965 材料科学基础-概述说明以及解释

965 材料科学基础-概述说明以及解释

965 材料科学基础-概述说明以及解释1.引言1.1 概述概述部分是对文章的前言进行简要介绍,主要包括对材料科学基础的重要性和研究意义进行说明。

下面是一种可能的写作方式:在当今科技高速发展的时代,材料科学作为一门跨学科的研究领域,正扮演着越来越重要的角色。

随着技术的进步和社会的发展,对于材料的需求越来越多样化和复杂化,材料的性能与特性更成为技术创新和产业发展的关键。

因此,深入了解和掌握材料科学基础,对于培养人才、提高科技创新能力以及推动产业升级具有重要意义。

材料科学基础作为材料科学领域的基石,研究着材料的结构、性质和组织等方面的特征,旨在揭示材料的内在规律和微观机理。

在这个领域中,人们通过对材料的研究和分析,逐渐发展建立了一套系统的理论体系和分析方法,为我们认识材料的本质、改善材料的质量和性能,提供了基本的思路和方法。

本文将从材料科学基础的重要性和研究意义出发,介绍材料科学基础的相关理论和方法,探讨其在实际应用中的价值和应用前景。

通过对材料的结构、性能和应用等方面的深入研究,我们能够更好地满足人们对材料的需求,推动科技和产业的发展。

总之,材料科学基础是一门重要的学科,它不仅为我们认识和改善材料提供了理论和方法,也为推动科技和产业发展提供了坚实的基础。

通过深入了解和研究材料科学基础,我们将迎来更多材料领域的创新和突破,为推动社会进步和经济发展做出更大的贡献。

1.2 文章结构文章结构部分的内容应包括对整篇文章的组织和安排进行说明。

可以简要介绍各个章节的主题和内容,并解释它们之间的逻辑关系和相互联系。

文章结构如下:文章结构部分应该对整篇文章的组织和安排进行说明。

本文分为引言、正文和结论三个部分。

引言部分将首先概述本文的主题和背景,并介绍材料科学基础的重要性。

接着介绍本文的结构,包括引言、正文和结论三个部分的主要内容以及它们之间的逻辑顺序和关系。

正文部分将分为第一个要点和第二个要点两个部分来讨论材料科学基础的相关内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

晶体,非晶体;晶体结构,空间点阵,晶胞,7 个晶系,14 种布拉菲点阵;
晶向指数,晶面指数,晶向族,晶面族,晶带轴,晶面间距;多晶型性,同素异构体;
点阵常数,晶胞原子数,配位数,致密度,四面体间隙,八面体间隙;
合金,相,固溶体,中间相,短程有序参数a ,长程有序参数S ;
置换固溶体,间隙固溶体,有限固溶体,无限固溶体,无序固溶体,有序固溶体;
正常价化合物,电子化合物,电子浓度,间隙相,间隙化合物,拓扑密堆相;
离子晶体,NaCl 型结构,闪锌矿型结构,纤锌矿型结构
共价晶体,金刚石结构;
玻璃,玻璃化转变温度
点缺陷,线缺陷,面缺陷;
空位,间隙原子,肖脱基空位,弗兰克尔空位;
点缺陷的平衡浓度;
刃型位错,螺型位错,混合位错,全位错,不全位错;
柏氏回路,柏氏矢量,柏氏矢量的物理意义(3种),柏氏矢量的守恒性;
位错的滑移,位错的交滑移,位错的攀移,位错的交割,割阶,扭折;
位错的应力场(滑移面上),位错的应变能,线张力,滑移力,攀移力;
位错密度,位错增殖,弗兰克—瑞德位错源,L-C位错,位错塞积;
堆垛层错,肖克莱不全位错,弗兰克不全位错;
位错反应,几何条件,能量条件;
可动位错,固定位错,汤普森四面体;
扩展位错,层错能,扩展位错束集,扩展位错交滑移;
Cottrell气团, Snock 气团
晶界,亚晶界,小角度晶界,对称倾斜晶界,不对称倾斜晶界,扭转晶界;
大角度晶界,“重合位置点阵”模型;
晶界能,孪晶界,相界,共格相界,半共格相界,错配度,非共格相界。

质量浓度,密度,扩散,自扩散,互扩散,间隙扩散,空位扩散,下坡扩散,上坡扩散,稳态扩散,非稳态扩散,扩散系数,互扩散系数,扩散通量,柯肯达尔效应,体扩散,表面扩散,晶界扩散
凝固,结晶,近程有序,结构起伏,能量起伏,过冷度,均匀形核,非均匀形核,晶胚,晶核,亚稳相,临界晶粒,临界形核功,光滑界面,粗糙界面,温度梯度,平面状,树枝状。

相关文档
最新文档