化工原理 第1章 流体流动 典型例题题解
化工原理流体流动案例解析

油滴 混合液 水滴
2m R
17m
解: ①
水的流量,以m3/h表示
流量可以用孔板流量计关系式计算。
A0=0.785×0.0552=0.00237 m2
Vs u0 A0 c0 A0 2( pa pb )
c0 A0
2 gR( ' )
2 9.81 0.163 (13600 1000) 0.63 0.00237 1000 0.00948 m 3 /s 34.1 m 3 /h
② 泵的有效压头
u=Vs/A=0.00948/(0.785×0.1062)=1.075 m/s
Re
du
0.106 1.075 1000 1.14 105 110 3
R 17m
2 2
ε/d=0.21/106=0.00198
可以查得:λ=0.0252 在图示1-1、2-2截面
案例解析:
油水分离器流程设计
油层 水层
自动 处理
油层 水层
油水分离器尺寸设计 A-油水出口高度 设油出口高度H为1m,油水分离高度为0.5m,则:
1120 0.5 900 0.5 1120h 1120 0.5 900 0.5 解出:h 0.9017m 1120 B-分离器底面积 设分离器长、宽分别为L、B,沉降速度为ut,则:
如图所示,一输水管路,试分析: ① 当阀F关小时,压力表A、B的指示数如何变化? ② 当阀E关小时,压力表A、B的指示数如何变化?
化工原理第一章习题及答案

第一章流体流动问题1. 什么是连续性假定? 质点的含义是什么? 有什么条件?答1.假定流体是由大量质点组成的、彼此间没有间隙、完全充满所占空间的连续介质。
质点是含有大量分子的流体微团,其尺寸远小于设备尺寸,但比起分子自由程却要大得多。
问题2. 描述流体运动的拉格朗日法和欧拉法有什么不同点?答2.前者描述同一质点在不同时刻的状态;后者描述空间任意定点的状态。
问题3. 粘性的物理本质是什么? 为什么温度上升, 气体粘度上升, 而液体粘度下降?答3.分子间的引力和分子的热运动。
通常气体的粘度随温度上升而增大,因为气体分子间距离较大,以分子的热运动为主;温度上升,热运动加剧,粘度上升。
液体的粘度随温度增加而减小,因为液体分子间距离较小,以分子间的引力为主,温度上升,分子间的引力下降,粘度下降。
问题4. 静压强有什么特性?答4.静压强的特性:①静止流体中任意界面上只受到大小相等、方向相反、垂直于作用面的压力;②作用于任意点所有不同方位的静压强在数值上相等;③压强各向传递。
问题5. 图示一玻璃容器内装有水,容器底面积为8×10-3m2,水和容器总重10N。
(1)试画出容器内部受力示意图(用箭头的长短和方向表示受力大小和方向);(2)试估计容器底部内侧、外侧所受的压力分别为多少?哪一侧的压力大?为什么?题5附图题6附图答5.1)图略,受力箭头垂直于壁面、上小下大。
2)内部压强p=ρgh=1000××;外部压强p=F/A=10/0.008=1.25kPa<内部压强。
因为容器内壁给了流体向下的力,使内部压强大于外部压强。
问题6.图示两密闭容器内盛有同种液体,各接一U形压差计,读数分别为R1、R2,两压差计间用一橡皮管相连接,现将容器A连同U形压差计一起向下移动一段距离,试问读数R1与R2有何变化?(说明理由)答6.容器A的液体势能下降,使它与容器B的液体势能差减小,从而R2减小。
化工原理第1章流体流动习题及答案

一、单选题1.单位体积流体所具有的()称为流体的密度。
AA 质量;B 粘度;C 位能;D 动能。
2.单位体积流体所具有的质量称为流体的()。
AA 密度;B 粘度;C 位能;D 动能。
3.层流与湍流的本质区别是()。
DA 湍流流速>层流流速;B 流道截面大的为湍流,截面小的为层流;C 层流的雷诺数<湍流的雷诺数;D 层流无径向脉动,而湍流有径向脉动。
4.气体是()的流体。
BA 可移动;B 可压缩;C 可流动;D 可测量。
5.在静止的流体内,单位面积上所受的压力称为流体的()。
CA 绝对压力;B 表压力;C 静压力;D 真空度。
6.以绝对零压作起点计算的压力,称为()。
AA 绝对压力;B 表压力;C 静压力;D 真空度。
7.当被测流体的()大于外界大气压力时,所用的测压仪表称为压力表。
DA 真空度;B 表压力;C 相对压力;D 绝对压力。
8.当被测流体的绝对压力()外界大气压力时,所用的测压仪表称为压力表。
AA 大于;B 小于;C 等于;D 近似于。
9.()上的读数表示被测流体的绝对压力比大气压力高出的数值,称为表压力。
AA 压力表;B 真空表;C 高度表;D 速度表。
10.被测流体的()小于外界大气压力时,所用测压仪表称为真空表。
DA 大气压;B 表压力;C 相对压力;D 绝对压力。
11. 流体在园管内流动时,管中心流速最大,若为湍流时,平均流速与管中心的最大流速的关系为()。
BA. Um=1/2Umax;B. Um=;C. Um=3/2Umax。
12. 从流体静力学基本方程了解到U型管压力计测量其压强差是( )。
AA. 与指示液密度、液面高度有关,与U形管粗细无关;B. 与指示液密度、液面高度无关,与U形管粗细有关;C. 与指示液密度、液面高度无关,与U形管粗细无关。
13.层流底层越薄( )。
CA. 近壁面速度梯度越小;B. 流动阻力越小;C. 流动阻力越大;D. 流体湍动程度越小。
化工原理第1章流体流动习题与答案

一、单选题1.单位体积流体所具有的()称为流体的密度。
AA 质量;B 粘度;C 位能;D 动能。
2.单位体积流体所具有的质量称为流体的()。
AA 密度;B 粘度;C 位能;D 动能。
3.层流与湍流的本质区别是()。
DA 湍流流速>层流流速;B 流道截面大的为湍流,截面小的为层流;C 层流的雷诺数<湍流的雷诺数;D 层流无径向脉动,而湍流有径向脉动。
4.气体是()的流体。
BA 可移动;B 可压缩;C 可流动;D 可测量。
5.在静止的流体内,单位面积上所受的压力称为流体的()。
CA 绝对压力;B 表压力;C 静压力;D 真空度。
6.以绝对零压作起点计算的压力,称为()。
AA 绝对压力;B 表压力;C 静压力;D 真空度。
7.当被测流体的()大于外界大气压力时,所用的测压仪表称为压力表。
DA 真空度;B 表压力;C 相对压力;D 绝对压力。
8.当被测流体的绝对压力()外界大气压力时,所用的测压仪表称为压力表。
AA 大于;B 小于;C 等于;D 近似于。
9.()上的读数表示被测流体的绝对压力比大气压力高出的数值,称为表压力。
AA 压力表;B 真空表;C 高度表;D 速度表。
10.被测流体的()小于外界大气压力时,所用测压仪表称为真空表。
DA 大气压;B 表压力;C 相对压力;D 绝对压力。
11. 流体在园管内流动时,管中心流速最大,若为湍流时,平均流速与管中心的最大流速的关系为()。
BA. Um=1/2Umax;B. Um=0.8Umax;C. Um=3/2Umax。
12. 从流体静力学基本方程了解到U型管压力计测量其压强差是( )。
AA. 与指示液密度、液面高度有关,与U形管粗细无关;B. 与指示液密度、液面高度无关,与U形管粗细有关;C. 与指示液密度、液面高度无关,与U形管粗细无关。
13.层流底层越薄( )。
CA. 近壁面速度梯度越小;B. 流动阻力越小;C. 流动阻力越大;D. 流体湍动程度越小。
化工原理第1章__流体流动_习题及答案解析

一、单选题1.单位体积流体所具有的()称为流体的密度。
AA 质量;B 粘度;C 位能;D 动能。
2.单位体积流体所具有的质量称为流体的()。
AA 密度;B 粘度;C 位能;D 动能。
3.层流与湍流的本质区别是()。
DA 湍流流速>层流流速;B 流道截面大的为湍流,截面小的为层流;C 层流的雷诺数<湍流的雷诺数;D 层流无径向脉动,而湍流有径向脉动。
4.气体是()的流体。
BA 可移动;B 可压缩;C 可流动;D 可测量。
5.在静止的流体内,单位面积上所受的压力称为流体的()。
CA 绝对压力;B 表压力;C 静压力;D 真空度。
6.以绝对零压作起点计算的压力,称为()。
AA 绝对压力;B 表压力;C 静压力;D 真空度。
7.当被测流体的()大于外界大气压力时,所用的测压仪表称为压力表。
DA 真空度;B 表压力;C 相对压力;D 绝对压力。
8.当被测流体的绝对压力()外界大气压力时,所用的测压仪表称为压力表。
AA 大于;B 小于;C 等于;D 近似于。
9.()上的读数表示被测流体的绝对压力比大气压力高出的数值,称为表压力。
AA 压力表;B 真空表;C 高度表;D 速度表。
10.被测流体的()小于外界大气压力时,所用测压仪表称为真空表。
DA 大气压;B 表压力;C 相对压力;D 绝对压力。
11. 流体在园管内流动时,管中心流速最大,若为湍流时,平均流速与管中心的最大流速的关系为()。
BA. Um=1/2Umax;B. Um=0.8Umax;C. Um=3/2Umax。
12. 从流体静力学基本方程了解到U型管压力计测量其压强差是( )。
AA. 与指示液密度、液面高度有关,与U形管粗细无关;B. 与指示液密度、液面高度无关,与U形管粗细有关;C. 与指示液密度、液面高度无关,与U形管粗细无关。
13.层流底层越薄( )。
CA. 近壁面速度梯度越小;B. 流动阻力越小;C. 流动阻力越大;D. 流体湍动程度越小。
化工原理第一章第四节流体流动现象

任意截面的总机械能是相等的,即:
3000
6 6'
E1 E2 E3 E4 E5 E6 E
2 2'
2 2 u12 p1 u2 p2 u3 p3 E gz1 gz2 gz3 2 2 2 2 2 2 u4 p4 u5 p5 u6 p6 gz4 gz5 gz6 2 2 2
式中:
2 1
2
1 h 2
1
u2 2 m
s
2 2
2
d2 184 而u1 u2 2 6.7712m s 100 d1
hf1-2=11.38J/kg
Hale Waihona Puke u u p1 z1g p2 z2 g h f 12 2 2
2 2
2 2' 24m
2m 1 1'
u1 p1 u2 p2 gz1 we gz2 h f 12 2 2
由已知: Z1=0,
Z2=24+2=26m,
P1=0(表) u10
P2= 6.15×104Pa(表压)
hf1-2= 160J/kg
Vs 34.5 u2 2.49 m s 2 2 d 0.07 3600 4 4
1000 500
【例4】水在本题附图所示的虹吸管内作定态流动,管路直 径没有变化,水流经管路的能量损失可以忽略不计,试计 算管内截面2-2 、3-3、4-4 、5-5 处的压强。大气压强为 1.0133×105Pa。图中所标注的尺寸均以mm计。 4 解: 选择2-2 截面做基准水平面 4' 3 3' 理想流体,没有外部能量加入, 1 1' 5 5' 因此,根据理想流体柏努利方程,
化工原理王志魁第五版习题解答:第一章 流体流动

第一章流体流动流体静力学【1-6】如习题1-6附图所示,有一端封闭的管子,装入若干水后,倒插入常温水槽中,管中水柱较水槽液面高出2m ,当地大气压力为101.2kPa 。
试求:(1)管子上端空间的绝对压力;(2)管子上端空间的表压;(3)管子上端空间的真空度;(4)若将水换成四氯化碳,管中四氯化碳液柱较槽的液面高出多少米?解管中水柱高出槽液面2m ,h=2m 水柱。
(1)管子上端空间的绝对压力绝p 在水平面11'-处的压力平衡,有.绝绝大气压力1012001000981281580 (绝对压力)ρ+==-⨯⨯=p gh p Pa (2)管子上端空间的表压表p 表绝 -大气压力=8158010120019620 =-=-p p Pa(3)管子上端空间的真空度真p ()真表=-=-1962019620 p p Pa-=(4)槽内为四氯化碳,管中液柱高度'h 'cclhh ρρ=4水常温下四氯化碳的密度,从附录四查得为/ccl kg m ρ=431594 '.h m ⨯==10002125 1594【1-7】在20℃条件下,在试管内先装入12cm 高的水银,再在其上面装入5cm 高的水。
水银的密度为/313550kg m ,当地大气压力为101kPa 。
试求试管底部的绝对压力为多少Pa 。
解水的密度/3水=998ρkg m ()....331011001213550005998981117410=⨯+⨯+⨯⨯=⨯p Pa【1-8】如习题1-8附图所示,容器内贮有密度为/31250kg m 的液体,液面高度为3.2m 。
容器侧壁上有两根测压管线,距容器底的高度分别为2m 及1m ,容器上部习题1-6附图空间的压力(表压)为29.4kPa 。
试求:(1)压差计读数(指示液密度为/31400kg m );(2)A 、B 两个弹簧压力表的读数。
解容器上部空间的压力.29 4(表压)=p kPa 液体密度/31250ρ=kg m ,指示液密度/301400ρ=kg m (1)压差计读数R=?在等压面''1111上-=p p ()()()()().'...p p h R g p p h g R g p h R g p h g R g Rg ρρρρρρρρ=+-++=+-++++++=+++-=11000 321 32212222 0()0因g 0,故0ρρ-≠=R (2)().....A p p g Paρ=+-=⨯+⨯⨯=⨯333212941022125098156410().....333222941012125098144110ρ=+-=⨯+⨯⨯=⨯B p p g Pa【1-9】如习题1-9附图所示的测压差装置,其U 形压差计的指示液为水银,其他管中皆为水。
化工原理(钟理)02551习题解答第一章流体流动习题及解答(上册)

流体流动习题解答1-1 已知甲城市的大气压为760mmHg ,乙城市的大气压为750mmHg 。
某反应器在甲地操作时要求其真空表读数为600mmHg ,若把该反应器放在乙地操作时,要维持与甲地操作相同的绝对压,真空表的读数应为多少,分别用mmHg 和Pa 表示。
[590mmHg, 7.86×104Pa]解:P (甲绝对)=760-600=160mmHg 750-160=590mmHg=7.86×104Pa1-2用水银压强计如图测量容器内水面上方压力P 0,测压点位于水面以下0.2m 处,测压点与U 形管内水银界面的垂直距离为0.3m ,水银压强计的读数R =300mm ,试求 (1)容器内压强P 0为多少?(2)若容器内表压增加一倍,压差计的读数R 为多少?习题1-2 附图[(1) 3.51×104N ⋅m -2 (表压); (2)0.554m] 解:1. 根据静压强分布规律 P A =P 0+g ρHP B =ρ,gR因等高面就是等压面,故P A = P BP 0=ρ,gR -ρgH =13600×9.81×0.3-1000×9.81(0.2+0.3)=3.51×104N/㎡ (表压)2. 设P 0加倍后,压差计的读数增为R ,=R +△R ,容器内水面与水银分界面的垂直距离相应增为H ,=H +2R∆。
同理, ''''''02R p gR gH gR g R gH gρρρρρρ∆=-=+∆--000p g g p p 0.254m g g 10009.81g g 136009.812R H R ρρρρρρ⨯∆⨯⨯,,,4,,-(-)- 3.5110====---220.30.2540.554m R R R ∆,=+=+=1-3单杯式水银压强计如图的液杯直径D =100mm ,细管直径d =8mm 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化工原理典型例题题解第1章 流体流动例1 沿程阻力损失水在一段圆形直管内作层流流动,若其它条件不变,现流量及管径均减小为原来的二分之一,则此时因流动阻力产生的压力损失为原来的( )。
A 2倍 B .4倍 C .8 倍 D. 16 倍解:因管内流体流动处于层流状态,根据哈根(Hahen )-泊谡叶(poiseuille )公式 232dlu P f μ=∆(1) 将式中的流速u 用流量v q 和管径d 表示出来, 24dq u vπ=(2)将(2)式代入(1)式得 4128dlq P vf πμ=∆ (3) 现流量125.0v v q q =; 管径d 2=0.5d 1 , 根据(3)式,压力损失ΔP f2满足下式85.01/)5.0/(5.0//341141141142212====∆∆d q d q d q d q P P v v v v f f 故答案C 正确。
例2 流体在管内流动时剪应力的分布流体在管内流动的摩擦阻力,仅由流体与壁面之间的摩擦引起吗? 解:圆管中沿管截面上的剪应力分布式为 r lg Z P g Z P 2)()(2211ρρτ+-+=由该式推导条件可知,剪应力分布与流动截面的几何形状有关,而与流体种类,层流或湍流无关。
对于定常态流动体系,可见剪应力随圆管内流体半径的增大而增大,在壁面处,此剪应力达到最大。
故剪应力(磨擦阻力)并非仅产生于壁面处,而是在流体体内亦存在。
例3 并联管路中的阻力损失首尾相同的并联管路中,流体流经管径较小的支路时,总压头损失较大吗?例 4 附图解:A 为分支点,B 为汇合点。
并联管路Ⅰ、 Ⅱ、 Ⅲ具有相同的起始点A 和终点B ,分别利用柏努利方程式进行描述,得H f Ⅰ=H f Ⅱ=H f ⅢIIIIIIIII III IIIIII II III I gd u l gd u l gd u l 222222λλλ==因此,首尾相同的并联管路,各支路上总压头损失相等,并非仅取决于管径的大小,与各支路上的流速、管长均有关系。
例4 高度湍流时管内阻力损失定常态流动体系,水从大管流入小管,管材相同,d 大=2d 小 ,管内流动状态均处于阻力平方区,每米直管中因流动阻力产生的压降之比ΔP f 小/ΔP f 大为( )。
A 8B 16C 32D >32解: 根据范宁公式 25222162v f q d l u d l P πρλρλ==∆ 因流动状态均处于阻力平方区,摩擦因数λ与管内的流速无关了。
可以认为λ大=λ小 ,则直管中每米长度上流动阻力压降符合以下关系:ΔPf 小/ΔPf 大=d 5大/d 5小=25=32故答案C 正确。
例5 管路并联与流量的关系如图所示,在两水槽间连接一直管,管内径为d ,管长为l ,当两液面高度差为H 时,管内流量为1v q ,若在直管的中点B (2l 处)分为两根直径为d ,长度2l的管子,液面差仍为H ,设改装前后均为完全湍流流动状态,局部阻力可以忽略不计。
试求改装后流量与改装前流量之比。
解:改装前的管路由高位槽液面(1-1面)至低位槽液面(2-2面)列出柏努利方程式2152282s V gdl g u d l H πλλ== (1)改装前后因管内流动状态均为完全湍流,所以摩擦因数λ可视为不变。
两根并联的支管管径,管长及布局完全相同,所以其阻力损失相同。
改装后的管路由1-1面至2-2面列出柏努利方程式,并忽略流体在分支点处的阻力损失。
22522252)2(2828s s V gd lV gd l H πλπλ+=(2)由(1),(2)式可得:2222222185)2(2121s s s s V V V V =+=26.1)58(5.012==s s V V (倍) 结论:对于已经布局好的管路,为了增加输送量,可以采取再并联上一段或者整段管路的措施。
例6理想流体粘度的定义 理想流体的粘度( )。
A 与理想气体的粘度相同;B 与理想溶液的粘度相同;C 等于0;D 等于1 。
解:在定义理论气体和理想溶液时,均未提及粘度值的问题。
在定义理想流体时,明确说明其流动过程中无阻力损失,即流体层内无摩擦力(剪应力),但流体内可以存在着速度梯度。
根据牛顿粘性定律,这样定义等价于指定理想流体的粘度等于零。
因此答案C 正确。
例 7例 7 附图图示两容器内盛同一种密度ρ=800kg/m 3的液体,两个U 形管内的指示液均为水银。
第1个U 形管的一端接于容器的A 点,另一端连通大气。
第2个U 形管的两端分别接于A ,B 两点,其读数分别为R 1和R 2 。
若将第1个U 形管向下移动h=0.5m ,即接管点A 向下移动h=0.5m ,问两个U 形管的读数R 1和R 2分别如何变化?解:第2个U 形管为压差计,所测量的是两个容器中压强的差。
故接管点下移,读数R 2不变。
第1个U 形管为压强计,所测量的是第1个容器中的压强,尽管第1个容器中的压强P 1没有发生变化,但是U 形管向下移动,对于U 形管下部的液体来说,意味着液位深度的变化,故压强发生变化,即增加。
分别将U 形管移动前、移动后容器中的压强表示出来。
移动前 g H g R Pa P i A ρρ-=-1 (1)移动后,根据等压面1-1和2-2 ,有 g R R H g h P g R Pa A i ρρρ⎥⎦⎤⎢⎣⎡-+++=+21'1'1整理得: g h g R R H g R Pa P i A ρρρ-⎥⎦⎤⎢⎣⎡-+-=-21'1'1(2)由(1)式和(2)式得:g h g R R g R R i ρρρ+-=-2)(2'11'1g h g R R i ρρρ=--)2)((1'1m h R R i 03.02800136008005.021'1=-⨯=-=-ρρρ例8影响阻力损失的因素例 8 附图在本题的附图中,管径d 1相同,d 2等于20。
5d 1,A ,B 两点距离l 相同,管内流体的流量相同,试问:1、 压差计读数R a 和R b , R c 的相对大小如何? 2 、若流动方向改变,读数R a ,R b ,R c 有何变化?解:首先应明确U 形管R 读数反映的是什么。
分别对于该三种管路,自管截面A 至管截面B 的管段,利用机械能衡算方程式进行描述。
(a ) 管内流体 P A -P B =ΣΔP f(A-B)管外流体 P A -P B =R a (ρi -ρ)g 所以 gPR i B A f a )()(ρρ-∆=∑-即R a 反映的是管段A 到B 内的流体阻力损失。
(b ) 管内流体 (P A +Z A ρg-(P B +Z B ρg)=ΣΔP f2(A-B)管外流体 P A -[P B +(Z B -Z A )ρg]=R b (ρi -ρ)g 所以 gPR i B A f b )()(ρρ-∆=∑-可见,R b同样反映的是管段A 至B 内流体的阻力损失,流体的阻力损失与管路在垂直方向上有无变化没有关系。
因为管路A 和B 的管径相同,阀门阻力系数相同,根据阻力的计算式ΣΔPf=ρζλ∑+2)(2u d l1d AB 1d 2d c A B所以管路a 和管路b 的A 至B 管段的流体阻力损失相同,因此,Rb=Ra当流体流动方向变为自B 流向A ,在上述条件不变的情况下,流体阻力损失仍然不变,R a R b 读数数值不变,但是U 型管中指示剂恰好偏向另一侧,因为此时 Rb=Ra=ΣΔPf(B-A)/(ρi-ρ)g(c)管内流体 (PA+u 2ρ/2+ZAρg)-(PB+u 12ρ/2+ZBρg)=ΣΔPf f(A-B)) 整理PA-[PB+(ZB-ZA)ρg]=ΣΔPf f(A-B)+u 12ρ/2-u 22ρ/22)2()(1215.01122112u d d u d d u u === 所以PA-[PB+(ZB-ZA)ρg]=ΣΔPf(A-B )+ρ2183u 管外流体静力学描述PA-[PB+(ZB-ZA)ρg]=RC(ρi-ρ)g所以 Rc=gu P i B A f )(8321)(ρρρ-+∆∑- 在截面A 至B 的流体阻力损失中,除了与(a) (b)相同的部分之外,又增加了突然缩小的局部阻力损失ζcu 12ρ/2。
显然 Rc>Ra=Rb若管路c 中的流体改为反向流动,则需要具体分析R 的变化。
自截面B 至A 列出机械能衡算式∑-∆+++=++)(222122A B f A A B B P ug Z P u g Z P ρρρρ整理ρρρ22)(2122)(u u P P g Z Z P A B f A A B B -+∆=--+∑- ρ21)(83u P A B f -∆=∑- (1) 在ΣΔΡf(B-A)中,除了与(a ),(b)相同的部分之外,还包括流体突然扩大时的局部阻力损失,即ζe u 12ρ/2 。
阻力系数ζc ,ζe 均与(d 1/d 2)2有关系。
当(d 1/d 2)2值较小时(<0.4),ζe >ζc ;当(d 1/d 2)2值较大时(=0.4),ζe 与ζc 基本相等。
一般动能项小,即ΣΔP f(B-A)>ρ2183u ,所以,U 形管指示剂将偏向另一侧,读数为R c ‘列出静力学关系式g R P g Z Z P i c A A B B )()('ρρρ-=--+ (2)由(1) ,(2)两式得 gu P R i A B f c)(8321)('ρρρ--∆=∑-因此 R c '<R c例 9如图所示的水桶,截面为A 。
桶底有一小孔,面积为A 0 。
(1)若自孔排水时,不断有水补充入桶内,使水面高度维持恒定为Z ,求水的体积流量。
(2)如果排水时不补充水,求水面高度自Z 1降至Z 2所需的时间。
例9 附图实际液体由孔流出时其流动截面有所减小(参看附图),且有阻力损失。
计算时可先忽略阻力,求未收缩时的理论流量,再根据经验取实际流量为理论值的0。
62倍(孔流系数)。
解:(1)求液面恒定时的体积流量取水面为截面1,孔所在的桶底平面为截面2,并取桶底为基准水平面。
Z 1=Z ,Z 2=0 P 1=P 2=0(表压) H e =0,h f =0 U 1=0,u 2为所求代入总机械能衡算式得:gZ=u 22/2u 2=(2gZ)0.5理论体积流量 V s =u 2A 0=A 0(2gZ)0.5实际体积流量 V s '=0.62A 0(2gZ)0.5(2)求液面自高度为Z 1降至Z 2所需时间。
由于桶内液面不断下降,排水速率也不断减小,故为不稳定过程,应按下列关系式进行物料衡算: 输入速率-输出速率=积累速率设在某一瞬间,液面高度为Z ,经历d θ时间后,液面高度改变dZ ,在此时间内,对于桶内液面以下的空间(划定体积)水的输入速率=0水的输出速率=0.62A 0(2gZ)0.5水的积累速率=AdZ/d θ 故物料衡算式遂为0-0.62A 0(2gZ)0.5=AdZ/d θgZA AdZ d 262.00-=θ2100(262.02262.021Z Z gA A gZAAdZZ Z -=-=⎰θ)))(/(728.0210Z Z A A -=例10低压气体在水平的等径管中作稳定流动,沿水平方向其平均速度( );雷诺数( )。