七年级上册数学应用题

合集下载

七年级上册数学绝对值应用题

七年级上册数学绝对值应用题

七年级上册数学绝对值应用题一、绝对值应用题。

1. 某工厂生产一批零件,根据零件的质量要求,其长度与标准长度的差值的绝对值不能超过0.05毫米。

已知某零件的实际长度是9.97毫米,标准长度为10毫米,该零件是否合格?- 解析:先求该零件长度与标准长度的差值,10 - 9.97=0.03毫米,然后求这个差值的绝对值|10 - 9.97|=|0.03| = 0.03毫米。

因为0.03<0.05,所以该零件合格。

2. 已知数轴上点A表示的数为a,点B表示的数为b,且a = - 3,b = 5,求A、B两点间的距离。

- 解析:在数轴上两点间的距离等于这两点所表示的数的差的绝对值。

所以AB=| a - b|=| - 3-5|=| - 8| = 8。

3. 某股票第一天上涨了2元,第二天又下跌了3元,若将上涨记为正,下跌记为负,求这两天股价变化的绝对值之和。

- 解析:第一天上涨2元,记为+2,第二天下跌3元,记为-3。

第一天变化的绝对值为|+2| = 2,第二天变化的绝对值为| - 3|=3,它们的绝对值之和为2 + 3=5元。

4. 一个数的绝对值是4,求这个数。

- 解析:设这个数为x,根据绝对值的定义| x| = 4,则x=±4。

5. 若| x - 3|=5,求x的值。

- 解析:根据绝对值的定义,x - 3 = 5或者x - 3=-5。

当x - 3 = 5时,x = 5+3 = 8;当x - 3=-5时,x=-5 + 3=-2,所以x = 8或x=-2。

6. 已知| a| = 3,| b| = 5,且a< b,求a、b的值。

a = 3时,b = 5;当a=-3时,b = 5。

7. 某物体在数轴上的位置向左移动3个单位后对应的数是- 2,求该物体原来对应的数,并用绝对值表示这个移动过程中的距离。

- 解析:设该物体原来对应的数为x,则x-3=-2,解得x = - 2+3 = 1。

移动的距离为|1-(-2)|=|1 + 2|=|3| = 3。

初一上册应用题及答案

初一上册应用题及答案

初一上册应用题及答案做初一数学上学期的应用题可以使人的大脑拥有更多的知识;以下是店铺为大家整理的初一数学上册应用题带标准答案,希望你们喜欢。

以下是店铺整理的初一上册应用题及答案,仅供参考,希望能够帮助到大家。

初一上册应用题及答案篇11.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?解: 1/20+1/16=9/80表示甲乙的工作效率9/80×5=45/80表示5小时后进水量1-45/80=35/80表示还要的进水量35/80÷(9/80-1/10)=35表示还要35小时注满答:5小时后还要35小时就能将水池注满。

2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。

如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。

现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。

又因为,要求"两队合作的天数尽可能少",所以应该让做的快的'甲多做,16天内实在来不及的才应该让甲乙合作完成。

只有这样才能"两队合作的天数尽可能少"。

设合作时间为x天,则甲独做时间为(16-x)天1/20*(16-x)+7/100*x=1 ,x=10答:甲乙最短合作10天3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。

现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。

乙单独做完这件工作要多少小时?解:由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量,(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。

七年级数学课本应用题-难

七年级数学课本应用题-难

七年级数学课本应用题-难--------------------------------------------------------------------------作者: _____________--------------------------------------------------------------------------日期: _____________七年级数学(上)课本应用题-难一.选择题(共8小题)1.某班把1400元奖学金按照两种奖项奖给22名学生,其中一等奖每人200元,二等奖每人50元,设获得一等奖的学生人数为x人,其中列方程不正确的是()A.200x+50(22﹣x)=1400 B.1400﹣200x=50(22﹣x)C.=22﹣x D.50x+200(22﹣x)=14002.小新出生时父亲28岁,现在父亲的年龄是小新的3倍,现在小新的年龄是()岁.A.14 B.15 C.16 D.173.把一根长100cm的木棍锯成两段,若使其中一段的长比另一段的2倍少5cm,则锯出的木棍的长不可能为()A.70cm B.65cm C.35cm D.35cm或65cm4.几个人共同种一批树苗,如果每人种10棵,则剩下6棵树苗未种:如果每人种12棵,则缺6棵树苗,求这批树苗有多少棵?设有x棵树苗,则下列方程为()A.10x+6=12x﹣6 B.10x﹣6=12x+6 C.D.5.有一些相同的房间需要粉刷墙面,一天4名一级技工去粉刷10个房间,结果其中有32m2墙面未来得及粉刷;同样时间内7名二级技工粉刷了15个房间之外,还多粉刷了另外的4m2墙面.每名一级技工比二级技工一天多粉刷10m2墙面,设每个房间需要粉刷的墙面面积为x平方米,一级技工每天粉刷y平方米,下列方程正确有几个()①﹣+10=0;②15(4y+32)=70(y﹣10)﹣40③=;④=+10.A.4 B.3 C.2 D.16.现对某商品降价20%促销,为了使销售总金额不变,销售量要比按原价销售时增加()A.15% B.20% C.25% D.30%7.有一群鸽子和一些鸽笼,如果每个鸽笼住6只鸽子,则剩余3只鸽子无鸽笼可住;如果再飞来5只鸽子,连同原来的鸽子,每个鸽笼刚好住8只鸽子,问有多少个鸽笼?设有x个鸽笼,则依题意可得方程()A.6(x+3)=8(x﹣5)B.6(x﹣3)=8(x+5)C.6x﹣3=8x+5 D.6x+3=8x﹣58.现在父亲的年龄是儿子年龄的3倍,七年前父亲的年龄是儿子年龄的5倍,则父亲和儿子现在的年龄分别是()A.42岁,14岁B.48岁,16岁C.36岁,12岁D.39岁,13岁二.填空题(共8小题)9.方程的解:解方程就是求出使方程中等号左右两边的未知数的值,这个值就是方程的解.(1)在x=3,x=0,x=﹣2中,方程5x+7=7﹣2x的解是.(2)在x=1000和x=2000中,方程0.52x﹣(1﹣0.52)x=80的解是.10.根据“x与4之和的1.2倍等于x与14之差的3.6倍”列出方程为:.11.在一张普通的日历中,相邻三行里同一列的三个日期数之和为30,则这一列三个数中最大的数为.12.一列火车匀速行驶,经过一条长400m的隧道需要20s的时间,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10s.求这列火车的长度.若设火车的长度为x m,根据题意列方程,得.13.某商店有两种相册,每本小相册比大相册的进价少10元,而它们的售后的利润额相同,其中,每本小相册的利润率为30%,每本大相册的利润率为20%,则大相册的进价为元.14.用A4纸在某誊印社复印文件,复印页数不超过20时,每页收费0.12元;复印页数超过20时,超过部分每页收费降为0.09元,在某图书馆复印同样的文件,不论复印多少页,每页收费0.1元.复印张数时,图书馆的收费比较低.15.某中学的学生自己动手整修操场,如果让七年级学生单独工作,需要7.5h 完成;如果让八年级学生单独工作,需要5h完成.如果让七、八年级一起工作1h,再由八年级单独完成剩余部分.设共需x小时完成,则可列方程.16.元代朱世杰所著的《算学启蒙》里有这样一道题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”请你回答:良马天可以追上驽马.三.解答题(共26小题)17.一个两位数个位上的数是1,十位上的数是x,把1与x对调,新两位数比原两位数小18,x应是哪个方程的解?你能想出x是几吗?18.小新和小明是双胞胎,他们出生时父亲的年龄是30岁,现在父亲的年龄是兄弟俩年龄和的3倍,求现在小新的年龄.19.列方程解应用题:环形跑道一周长400米,沿跑道跑多少周,可以跑3000米?20.张华和李明登一座山,张华每分登高10m,并且先出发30min,李明每分登高15m,两人同时登上山顶.设张华登山用了xmin,如何用含x的式子表示李明登山所用时间?试用方程求x的值,由x的值能求出山高吗?如果能,山高多少米?21.两辆汽车从相距84km的两地同时出发相向而行,甲车的速度比乙车的速度快20km/h,半小时后两车相遇,两车的速度各是多少?22.在风速为24km/h的条件下,一架飞机顺风从A机场飞到B机场要用2.8h,它逆风飞行同样的航线要用3h.求(1)无风时这架飞机在这一航线的平均航速;(2)两机场之间的航程是多少?23.甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都匀速前进.已知两人在上午8时同时出发,到上午10时,两人相距36千米,到中午12时,两人又相距36千米.(1)求A、B两地间的距离;(2)如果两人到达目的地后都立即按原路返回出发地,求何时两人还相距36千米.24.小刚和小强分别从A、B两地出发,小刚骑自行车,小强步行,沿同一线路相向匀速而行,出发两小时两人相遇,相遇时小刚比小强多走了24千米,相遇后0.5小时小刚到达B点.(1)两人的行驶速度各是多少?(2)相遇时经过多少时间小强到达A地?(3)AB两地相距多少千米?25.运动场的跑道一圈长400米,小健练习骑自行车,平均每分骑350米,小康练习跑步,平均每分跑250米.(1)两人从同一处同时反向出发,经多长时间首次相遇?(2)若两人从同一处同时同向出发,经过多少时间首次相遇?26.一辆汽车已行驶了12000km,计划每月再行驶800km,几个月后这辆汽车将行驶20800km?27.(1)洗衣机厂今年计划生产洗衣机25500台,其中Ⅰ型、Ⅱ型、Ⅲ型三种洗衣机的数量比为1:2:14,这三种洗衣机计划各生产多少台?(2)若4x2﹣2x+5=7,求式子2x2﹣x+1的值.28.随着农业技术的现代化,节水型灌溉得到逐步推广.喷灌和滴灌是比浸灌节水的灌溉方式.灌溉三块同样大的试验田,第一块用浸灌方式,第二块用喷灌方式,第三块用滴灌方式.后两种方式用水量分别是浸灌的25%和15%.(1)设第一块试验田用水x t,则另两块试验田的用水量各如何表示?(2)如果三块试验田共用水420t,每块试验田各用水多少吨?29.一些相同的房间需要粉刷墙面.一天3名一级技工去粉刷8个房间,结果其中有50m2墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间之外,还多粉刷了另外的40m2墙面,已知每名同级别的技工每天的工作效率相同,每名一级技工比二级技工一天多粉刷10m2墙面.求每个一级技工和二级技工每天粉刷的墙面各是多少平方米?30.列一元一次方程解应用题某校学生自己动手整修操场,如果让七年级学生单独工作,需要7.5小时完成;如果让八年级学生单独工作,需要5小时完成,如果让七、八年级学生一起工作1小时,再由八年级学生单独完成剩余部分,共需要多少小时完成?31.整理一批数据,由一人做需80h完成,现在计划先由一些做2h,再增加5人做8h,可以完成这项工作的,问怎样安排参与整理数据的具体人数?32.用A型和B型机器生产同样的产品,已知5台A型机器一天的产品装满8箱后还剩4个,7台B型机器一天的产品装满11箱后还剩1个,每台A型机器比B型机器一天多生产1个产品,求每箱装多少个产品?33.某糕点厂中秋节前要制作一批盒装月饼,每盒中装2块大月饼和4块小月饼.制作1块大月饼要用0.05kg面粉,1块小月饼要用0.02kg面粉.现共有面粉4500kg,问制作两种月饼应各用多少面粉,才能生产最多的盒装月饼?(用一元一次方程解答)34.用A4纸在某誊印社复印文件,复印页数不超过20时每页收费0.12元;复印页数超过20时,超过部分每页收费0.09元.在某图书馆复印同样的文件,不论复印多少页,每页收费0.1元,如何根据复印的页数选择复印的地点使总价格比较便宜?35.制作一张桌子要用一个桌面和4条桌腿,1m3木材可制作20个桌面或400条桌腿,现有12m3木材.(1)应怎样计划用料才能制作尽可能多的桌子呢?(2)这样制作,一共能制作多少套?36.下表中记录了一次试验中时间与温度的数据:(1)如果温度的变化是均匀的,21min时的温度是多少?(2)什么时间的温度是34℃?0 5 10 15 20 25时间(min)10 25 40 55 70 85温度(℃)37.在某誊印社复印文件,复印页数不超过20时,每页收费0.12元;复印页数超过20时,超过部分每页收费降为0.09元.在某图书馆复印同样的文件,不论复印多少页,每页收费0.1元.设需要复印文件x页(x为正整数),请根据表中提供的信息回答下列问题:(Ⅰ)用含有x的式子填写下表:x≤20 x>200.12x誉印社计费/元0.1x图书馆计费/元(Ⅱ)当x为何值时,两处收费相等;(Ⅲ)当40<x<50时,你认为在哪里复印省钱?(直接写出结果即可)38.在某复印社复印文件,复印页数不超过50时,每页收费0.11元,超过部分每页收费降为0.08元.在某图书馆复印同样的文件,不论复印多少页,每页收费0.09元.设需要复印文件x页(x为正整数),请根据表中提供的信息回答下列问题:(1)用含有x的式子填写如表:x≤50 x>500.11x复印店计费/元0.09x图书馆计费/元(2)当x为何值时,两种收费相等;(3)当你有一本书要复印、页码共有200页,你认为在哪里复印省钱?(直接写出结果即可)39.某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答.下表记录了5个参赛者的得分情况.参赛者答对题数答错题数得分A 20 0 100B 19 1 94C 18 2 88D 14 6 64E 10 10 40(1)参赛者F得76分,他答对了几道题?(2)参赛者G说他得80分,你认为可能吗?为什么?40.注意:为了使同学们更好地解答本题,我们提供了一种分析问题的方法,你可以依据这个方法要求完成本题的解答,也可以选用其他方法,按照解答题的一般要求进行解答即可.“丰收1号”油菜籽的平均每公顷产量为2400kg,含油率为40%.“丰收2号”油菜籽比“丰收1号”的平均每公顷产量提高了300kg,含油率提高了10个百分点,某村去年种植“丰收1号”油菜,今年改种“丰收2号”油菜,虽然种植面积比去年减少3公顷,但是所产油菜籽的总产油量比去年提高了3750kg.这个村去年和今年种植油菜的面积各是多少公顷?注:本题中含油率=(1)分析:根据问题中的数量关系,用含x的式子填表:种植面积(公顷)每公顷产量(kg)含油率总产油量(kg)去年x 2400 40%今年2400+300 40%+10%(Ⅱ)求出问题的解.41.一家游泳馆每年6〜8月出售夏季会员证,每张会员证80元,只限本人使用,凭证购入场券每张1元,不凭证购入场券每张3元.请根据你学过的知识解决下列问题,并写出解题过程:(1)什么情况下,购会员证与不购证付一样的钱?(2)什么情况下,购会员证比不购证更合算?(2)什么情况下,不购会员证比购证更合算?42.甲组的4名工人3月份完成的总工作量比此月人均定额的4倍多20件,乙组的5名工人3月份完成的总工作量比此月人均定额的6倍少20件.(1)如果两组工人实际完成的此月人均工作量相等,那么此月人均定额是多少件?(2)如果甲组工人实际完成的此月人均工作量比乙组的多2件,则此月人均定额是多少件?(3)如果甲组工人实际完成的此月人均工作量比乙组的少2件,则此月人均定额是多少件?七年级数学(上)课本应用题-难参考答案与试题解析一.选择题(共8小题)1.某班把1400元奖学金按照两种奖项奖给22名学生,其中一等奖每人200元,二等奖每人50元,设获得一等奖的学生人数为x人,其中列方程不正确的是()A.200x+50(22﹣x)=1400 B.1400﹣200x=50(22﹣x)C.=22﹣x D.50x+200(22﹣x)=1400【解答】解:A、符合200×一等奖人数+50×二等奖人数=1400,正确;B、符合1400﹣200×一等奖人数=50×二等奖人数,正确;C、符合(1400﹣200×一等奖人数)÷50=二等奖人数,正确;D、50应乘(22﹣x),错误.故选D.2.小新出生时父亲28岁,现在父亲的年龄是小新的3倍,现在小新的年龄是()岁.A.14 B.15 C.16 D.17【解答】解:设小新现在的年龄为x岁,则父亲现在的年龄是3x岁,由题意得,3x﹣x=28,解得:x=14;即:小新现在的年龄为14岁.故选:A.3.把一根长100cm的木棍锯成两段,若使其中一段的长比另一段的2倍少5cm,则锯出的木棍的长不可能为()A.70cm B.65cm C.35cm D.35cm或65cm【解答】解:设一段为x,则另一段为(2x﹣5),由题意得,x+2x﹣5=100,解得:x=35(cm),则另一段为:65(cm).故选:A4.几个人共同种一批树苗,如果每人种10棵,则剩下6棵树苗未种:如果每人种12棵,则缺6棵树苗,求这批树苗有多少棵?设有x棵树苗,则下列方程为()A.10x+6=12x﹣6 B.10x﹣6=12x+6 C.D.【解答】解:设有x棵树苗,根据题意得=.故选C.5.有一些相同的房间需要粉刷墙面,一天4名一级技工去粉刷10个房间,结果其中有32m2墙面未来得及粉刷;同样时间内7名二级技工粉刷了15个房间之外,还多粉刷了另外的4m2墙面.每名一级技工比二级技工一天多粉刷10m2墙面,设每个房间需要粉刷的墙面面积为x平方米,一级技工每天粉刷y平方米,下列方程正确有几个()①﹣+10=0;②15(4y+32)=70(y﹣10)﹣40③=;④=+10.A.4 B.3 C.2 D.1【解答】解:设每个房间需要粉刷的墙面面积为x平方米,一级技工每天粉刷y平方米,根据题意可得:①﹣+10=0,15x﹣4错误,10x+32错误,应为15x+4,10x﹣32,故此选项错误;②15(4y+32)=70(y﹣10)﹣40,利用粉刷的速度得出等式,正确,③=,利用粉刷的速度得出等式,正确;④=+10,正确;故选:B.6.现对某商品降价20%促销,为了使销售总金额不变,销售量要比按原价销售时增加()A.15% B.20% C.25% D.30%【解答】解:设销售单价为a,销售量为b,销售量要比按原价销售时增加m,则销售总金额为ab,根据题意列得:(1﹣20%)a•(1+m)b=ab,解得:m=25%.故选C.7.有一群鸽子和一些鸽笼,如果每个鸽笼住6只鸽子,则剩余3只鸽子无鸽笼可住;如果再飞来5只鸽子,连同原来的鸽子,每个鸽笼刚好住8只鸽子,问有多少个鸽笼?设有x个鸽笼,则依题意可得方程()A.6(x+3)=8(x﹣5)B.6(x﹣3)=8(x+5)C.6x﹣3=8x+5 D.6x+3=8x﹣5【解答】解:有x个鸽笼,根据题意每个鸽笼住6只鸽子,则剩余3只鸽子无鸽笼可住;如果再飞来5只鸽子,连同原来的鸽子,每个鸽笼刚好住8只鸽子知:6x+3=8x﹣5,故选D.8.现在父亲的年龄是儿子年龄的3倍,七年前父亲的年龄是儿子年龄的5倍,则父亲和儿子现在的年龄分别是()A.42岁,14岁B.48岁,16岁C.36岁,12岁D.39岁,13岁【解答】解:设儿子现在的年龄是x岁,依题意得:3x﹣7=5(x﹣7).解得x=14.则3x=42.即父亲和儿子现在的年龄分别是42岁,14岁.故选:A.二.填空题(共8小题)9.方程的解:解方程就是求出使方程中等号左右两边的未知数的值,这个值就是方程的解.(1)在x=3,x=0,x=﹣2中,方程5x+7=7﹣2x的解是x=0.(2)在x=1000和x=2000中,方程0.52x﹣(1﹣0.52)x=80的解是x=2000.【解答】解:(1)将x=3代入,左边=22,右边=1,故不是;将x=0代入,左边=7,右边=7,故x=0是方程的解;将x=﹣2代入,左边=﹣3,右边=11,故不是;(2)将x=1000代入,左边=40,右边=80,故不是;将x=2000代入,左边=80=右边,x=2000是方程的解.故答案为x=0,x=2000.10.根据“x与4之和的1.2倍等于x与14之差的3.6倍”列出方程为: 1.2(x+4)=3.6(x﹣14).【解答】解:x与4之和的1.2倍可以表示为:1.2(x+4),x与14之差的3.6倍可以表示为3.6(x﹣14),由题意得:1.2(x+4)=3.6(x﹣14),故答案为:1.2(x+4)=3.6(x﹣14).11.在一张普通的日历中,相邻三行里同一列的三个日期数之和为30,则这一列三个数中最大的数为17.【解答】解:设中间的数为x,其它两个为x﹣7与x+7,根据题意得:x﹣7+x+x+7=30,解得:x=10,则这一列三个数中最大的数为10+7=17;故答案为:17.12.一列火车匀速行驶,经过一条长400m的隧道需要20s的时间,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10s.求这列火车的长度.若设火车的长度为x m,根据题意列方程,得.【解答】解:设这列火车的长度是x米,由题意,得.故答案为:13.某商店有两种相册,每本小相册比大相册的进价少10元,而它们的售后的利润额相同,其中,每本小相册的利润率为30%,每本大相册的利润率为20%,则大相册的进价为30元.【解答】解:设大相册的进价为x元,则小相册的进价为(x﹣10)元.根据题意得30%•(x﹣10)=20%•x,解得x=30(元).答:大相册的进价为30元.故答案为30.14.用A4纸在某誊印社复印文件,复印页数不超过20时,每页收费0.12元;复印页数超过20时,超过部分每页收费降为0.09元,在某图书馆复印同样的文件,不论复印多少页,每页收费0.1元.复印张数小于60页时,图书馆的收费比较低.【解答】解:设复印张数为x,当x>20时,打印社收费为:2.4+0.09(x﹣20);图书馆收费为:0.1x;由题意得,2.4+0.09(x﹣20)=0.1x,解得:x=60.故当x为60时,两处收费相等;当x>60时,在打印社复印文件便宜,当x<60时,在某图书馆复印更省钱.故答案是:小于60页.15.某中学的学生自己动手整修操场,如果让七年级学生单独工作,需要7.5h 完成;如果让八年级学生单独工作,需要5h完成.如果让七、八年级一起工作1h,再由八年级单独完成剩余部分.设共需x小时完成,则可列方程+x=1.【解答】解:设共需要x小时完成,由题意得+x=1,解得:x=4.答:共需要4小时完成.故答案为:+x=1.16.元代朱世杰所著的《算学启蒙》里有这样一道题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”请你回答:良马20天可以追上驽马.【解答】解:设良马x日追及之,根据题意得:240x=150(x+12),解得:x=20.答:良马20日追上驽马.三.解答题(共26小题)17.一个两位数个位上的数是1,十位上的数是x,把1与x对调,新两位数比原两位数小18,x应是哪个方程的解?你能想出x是几吗?【解答】解:根据题意列方程得:10x+1﹣18=10+x解得:x=3,答:原来的两位数是31.18.小新和小明是双胞胎,他们出生时父亲的年龄是30岁,现在父亲的年龄是兄弟俩年龄和的3倍,求现在小新的年龄.【解答】解:设小新现在的年龄为x岁,因为父亲的年龄是兄弟俩年龄和的3倍,则父亲现在的年龄是6x岁,由题意得,6x﹣x=30,解得:x=6.答:小新现在的年龄为6岁.19.列方程解应用题:环形跑道一周长400米,沿跑道跑多少周,可以跑3000米?【解答】解:设沿跑道跑x周,可以跑3000米,由题意得:400x=3000解得:x=7.5答:沿跑道跑7.5周,可以跑3000米.20.张华和李明登一座山,张华每分登高10m,并且先出发30min,李明每分登高15m,两人同时登上山顶.设张华登山用了xmin,如何用含x的式子表示李明登山所用时间?试用方程求x的值,由x的值能求出山高吗?如果能,山高多少米?【解答】解:可以.由题意得,李明登山所用时间为(x﹣30)min,列方程得:10x=15(x﹣30),解得:x=90,则山高为:90×10=900(m).答:山高为900米.21.两辆汽车从相距84km的两地同时出发相向而行,甲车的速度比乙车的速度快20km/h,半小时后两车相遇,两车的速度各是多少?【解答】解:设乙车的速度为xkm/h,甲车的速度为(x+20)km/h,由题意得,(x+x+20)×0.5=84,解得:x=74,则甲车速度为:74+20=94(km/h).答:甲车的速度为94km/h,乙车的速度为74km/h.22.在风速为24km/h的条件下,一架飞机顺风从A机场飞到B机场要用2.8h,它逆风飞行同样的航线要用3h.求(1)无风时这架飞机在这一航线的平均航速;(2)两机场之间的航程是多少?【解答】解:(1)设无风时飞机的航速是x千米/时,依题意得:2.8×(x+24)=3×(x﹣24),解得:x=696.答:无风时飞机的航速是696千米/时.(2)由(1)知,无风时飞机的航速是696千米/时,则3×(696﹣24)=2016(千米).答:两机场之间的航程是2016千米.23.甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都匀速前进.已知两人在上午8时同时出发,到上午10时,两人相距36千米,到中午12时,两人又相距36千米.(1)求A、B两地间的距离;(2)如果两人到达目的地后都立即按原路返回出发地,求何时两人还相距36千米.【解答】解:(1)∵两人是上午8时同时出发,上午10时相距36千米,中午12时又相距36千米,∴两人2小时走了36﹣(﹣36)=72千米,两人1小时走了72÷2=36千米,从8时到10时走了36×2=72千米,再加上相距的36千米,A,B两地间的距离是72+36=108千米.(2)两人到达目的地再返回,又相距36千米,两人实际走了108×3﹣36=288千米,用了288÷36=8小时从上午8时出发,用了8小时,所以应是下午4时.24.小刚和小强分别从A、B两地出发,小刚骑自行车,小强步行,沿同一线路相向匀速而行,出发两小时两人相遇,相遇时小刚比小强多走了24千米,相遇后0.5小时小刚到达B点.(1)两人的行驶速度各是多少?(2)相遇时经过多少时间小强到达A地?(3)AB两地相距多少千米?【解答】解:(1)设小强的速度为x千米/小时,则小刚的速度为(x+12)千米/小时.根据题意得:2x=0.5(x+12),解得:x=4.x+12=4+12=16.答:小强的速度为4千米/小时,小刚的速度为16千米/小时.(2)设在经过y小时,小强到达目的地.根据题意得:4y=2×16,解得:y=8.答:在经过8小时,小强到达目的地.(3)2×4+2×16=40(千米).答:AB两地相距40千米.25.运动场的跑道一圈长400米,小健练习骑自行车,平均每分骑350米,小康练习跑步,平均每分跑250米.(1)两人从同一处同时反向出发,经多长时间首次相遇?(2)若两人从同一处同时同向出发,经过多少时间首次相遇?【解答】解:(1)设两人从同一处同时反向出发,经x分钟时间首次相遇,根据题意得:(350+250)x=400,解得:x=,则两人从同一处同时反向出发,经分钟首次相遇;(2)设两人从同一处同时同向出发,经过y分钟首次相遇,根据题意得:(350﹣250)y=400,解得:y=4,则两人从同一处同时同向出发,经过4分钟首次相遇.26.一辆汽车已行驶了12000km,计划每月再行驶800km,几个月后这辆汽车将行驶20800km?【解答】解:设x个月后这辆汽车将行驶20800km.根据题意得:12000+800x=20800.解得:x=11.答;11个月后这辆汽车将行驶20800km.27.(1)洗衣机厂今年计划生产洗衣机25500台,其中Ⅰ型、Ⅱ型、Ⅲ型三种洗衣机的数量比为1:2:14,这三种洗衣机计划各生产多少台?(2)若4x2﹣2x+5=7,求式子2x2﹣x+1的值.【解答】解:(1)设Ⅰ型、Ⅱ型、Ⅲ型三种洗衣机分别生产x、2x、14x台,依题意得:x+2x+14x=25500解得:x=1500∴2x=2×1500=3000,14x=14×1500=21000答:Ⅰ型、Ⅱ型、Ⅲ型三种洗衣机分别生产1500、3000、21000台.(2)∵4x2﹣2x+5=7,∴4x2﹣2x=2,∴2x2﹣x=1,∴2x2﹣x+1=1+1=228.随着农业技术的现代化,节水型灌溉得到逐步推广.喷灌和滴灌是比浸灌节水的灌溉方式.灌溉三块同样大的试验田,第一块用浸灌方式,第二块用喷灌方式,第三块用滴灌方式.后两种方式用水量分别是浸灌的25%和15%.(1)设第一块试验田用水x t,则另两块试验田的用水量各如何表示?(2)如果三块试验田共用水420t,每块试验田各用水多少吨?【解答】解:(1)第一块试验田用水x t,第二块用水量是25%xt,第三块用水量是15%xt;(2)由题意得:x+25%x+15%x=420,解得:x=300,25%×300=75(t),15%×300=45(t),答:第一块试验田用水300t,第二块用水量是75t,第三块用水量是45t.29.一些相同的房间需要粉刷墙面.一天3名一级技工去粉刷8个房间,结果其中有50m2墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间之外,还多粉刷了另外的40m2墙面,已知每名同级别的技工每天的工作效率相同,每名一级技工比二级技工一天多粉刷10m2墙面.求每个一级技工和二级技工每天粉刷的墙面各是多少平方米?【解答】解:设每个二级技工每天刷 xm2,则每个一级技工每天刷(x+10)m2依题意得解得x=112x+10=122,答:每个一级和二级技工每天粉刷的墙面各是 122 和 112平方米.30.列一元一次方程解应用题某校学生自己动手整修操场,如果让七年级学生单独工作,需要7.5小时完成;如果让八年级学生单独工作,需要5小时完成,如果让七、八年级学生一起工作1小时,再由八年级学生单独完成剩余部分,共需要多少小时完成?【解答】解:设共需要x小时完成,根据题意得:+x=1,解得:x=.答:共需要小时完成.31.整理一批数据,由一人做需80h完成,现在计划先由一些做2h,再增加5人做8h,可以完成这项工作的,问怎样安排参与整理数据的具体人数?【解答】解:设先安排x人参与整理数据,由题意得:×2+×(x+5)×8=,解得:x=2.答:计划先由2人整理这组数据.32.用A型和B型机器生产同样的产品,已知5台A型机器一天的产品装满8箱后还剩4个,7台B型机器一天的产品装满11箱后还剩1个,每台A型机器比B型机器一天多生产1个产品,求每箱装多少个产品?【解答】解:设B型机器一天生产x个产品,则A型机器一天生产(x+1)个产品,由题意得,=,解得:x=19,7x﹣1=132,132÷11=12(个).答:每箱装12个产品.33.某糕点厂中秋节前要制作一批盒装月饼,每盒中装2块大月饼和4块小月饼.制作1块大月饼要用0.05kg面粉,1块小月饼要用0.02kg面粉.现共有面粉4500kg,问制作两种月饼应各用多少面粉,才能生产最多的盒装月饼?(用一元一次方程解答)【解答】解:设用xkg面粉制作大月饼,则利用(4500﹣x)kg制作小月饼,根据题意得出:÷2=÷4,解得:x=2500,则4500﹣2500=2000(kg).答:用2500kg面粉制作大月饼,2000kg制作小月饼,才能生产最多的盒装月饼.34.用A4纸在某誊印社复印文件,复印页数不超过20时每页收费0.12元;复印页数超过20时,超过部分每页收费0.09元.在某图书馆复印同样的文件,不论复印多少页,每页收费0.1元,如何根据复印的页数选择复印的地点使总价格比较便宜?【解答】解:设当复印文件页数为x时,在某誊印社及某图书馆复印价格相同,根据题意得:0.12×20+0.09(x﹣20)=0.1x,解得:x=60.∴当复印文件页数小于60时,选择某图书馆价格便宜;当复印文件为60页时,选择某誊印社及某图书馆复印价格相同;当复印文件页数超过60时,选择某誊印社价格便宜.。

七年级上册数学应用题20道及答案题目简短

七年级上册数学应用题20道及答案题目简短

七年级上册数学应用题20道及答案题目简短1.有一根铁丝,第一次用去了他的一半少1米,第二次用去了剩余铁丝的一半还多1米,结果这根铁丝还剩余2.5米,问这根铁丝原来长多少米?2.将内径为200mm的圆柱形水桶中的满桶水倒入一个内部长\宽\高分别为300mm.300mm.80mm的长方形铁盒中,正好倒满,求圆柱形水桶中的水高?3.列车在中途受阻,耽误了6分钟,然后将时速由原来的每小时40千米提高到每小时50千米,问这样走多少千米,就可以将耽误的时间补上?4.某学校七年级(1)班组织课外活动,准备举行一次羽毛球比赛,去商店购买羽毛球拍和羽毛球,每副球拍25元,每只球2元,甲商店说:"羽毛球及球拍都打9折优惠",乙商店说"买一副球拍赠送2只羽毛球,(1)学校准备花90元钱全部用于买2副羽毛球拍及羽毛球若干只,问到哪家商店购买更合算?(2)若必须买2副羽毛球拍,则应当买多少只羽毛球时到两家商店才一样合算?5.甲\乙\丙三位同学向贫困地区的少年儿童捐赠图书,已知这三位同学捐赠图书的册数的比是5:6:9 ,如果甲\丙两位同学捐书册数的和是乙捐书册数的2倍还多12册,那么他们各捐书多少册?参考答案:1.解设:这根铁丝原来长X米。

X-[1/2(1/2X-1)+1]=2.5X=42.解设:高为Xmm100·100·Л·X=300·300·80X=720Л3.解设:走X千米X/50=[X-(40·6/60)]/40X= 204.甲:打9折后球拍为:22.5元/只球为1.8元/只球拍22.5·2=45元球:(90-45)÷1.8=25(只)乙: 25·2=50(元){送两只球}需要买的球:(90-50)÷2=20(只)一共的球:20+2=22(只)甲那里可以买25只,而乙只能买22只.所以,甲比较合算。

初一上册数学应用题

初一上册数学应用题

初一上册数学应用题一、小明买了5支铅笔和3块橡皮,共花费10元。

已知每支铅笔比每块橡皮贵0.5元,问每支铅笔的价格是?A. 1元B. 1.5元C. 2元D. 2.5元(答案:C)二、某班级进行数学测试,平均分是75分,其中男生平均分78分,女生平均分72分,若男生人数是女生的1.5倍,问班级总人数是多少?A. 30人B. 40人C. 50人D. 60人(答案:D)三、一列火车以60km/h的速度从A地开往B地,同时另一列火车以80km/h的速度从B地开往A地,两列火车在途中相遇。

若A、B两地相距400km,问它们相遇时各自行驶了多少时间?A. 2小时B. 2.5小时C. 3小时D. 3.5小时(答案:A)四、某果园有苹果树和梨树共100棵,其中苹果树的数量是梨树的3倍多10棵。

问苹果树有多少棵?A. 60棵B. 70棵C. 75棵D. 80棵(答案:C)五、小李计划用20元买笔记本和铅笔,已知每本笔记本3元,每支铅笔1元,且买的铅笔数比笔记本数的2倍少1。

问小李最多能买几本笔记本?A. 3本B. 4本C. 5本D. 6本(答案:B)六、一个水池有甲、乙两个进水管,单独开放甲管6小时可以注满水池,单独开放乙管8小时可以注满。

若两管同时开放,问多少小时可以注满水池?A. 3小时B. 3.4小时C. 4.8小时D. 5小时(答案:C)七、小张和小王同时从家出发去学校,小张步行的速度是5km/h,小王骑自行车的速度是15km/h。

小王到校后发现忘记带作业,立即以原速返回,途中与小张相遇。

若他们家到学校的距离是6km,问他们相遇时小王已经骑行了多远?A. 9kmB. 12kmC. 15kmD. 18km(答案:A)八、某商店进行打折促销,原价为x元的商品打八折后售价为y元,则y与x的关系式为?A. y = 0.8xB. y = x - 0.8C. y = x + 0.2D. y = 0.8 - x(答案:A)。

七年级上册数学应用题及答案大全

七年级上册数学应用题及答案大全

七年级上册数学应用题及答案大全一、有理数运算1. 某人的银行卡上存有 200 元钱,他取了 120 元钱,还了一笔帐,付了 67 元钱,最后他的银行卡上还剩下多少钱?答:银行卡上还剩下 13 元钱。

2. 某家饭店有 5 桌客人,每桌消费 78 元钱,另外还有一桌消费了 120 元钱。

饭店的总收入是多少?答:饭店的总收入是 510 元钱。

3. 汽车每小时行驶 56 公里,从 A 市到 B 市要行驶 448 公里,需要多长时间?答:汽车需要行驶 8 小时。

二、比例与比例应用1. 一朵花每天太阳下山后的 6 小时内会开放 9 朵花瓣,如果这朵花一天中太阳落山的时间为 18:30,那么它最晚开放多少朵花瓣?答:这朵花最晚开放 45 朵花瓣。

2. 一家糖果店有 4 种不同重量的糖果,它们的价格比分别是 1:2:3:4,如果第一种糖果每克 0.4 元,那么第四种糖果每克多少钱?答:第四种糖果每克 1.2 元。

3. 好视力党员比例是 3:7,全国共有 8000 万好视力人群,那么党员中好视力人群的人数是多少?答:好视力的党员人数是 3600 万。

三、平均数1. 某班有 50 个学生,他们的总成绩为 2500 分,平均分是多少?答:平均分是 50 分。

2. 一家餐厅一天供应 300 份饭菜,若中午饭时间供应的饭菜量是晚饭的 1.5 倍,中午共供应多少份饭菜?答:中午共供应 150 份饭菜。

3. 用一张面积为 20 $\mathrm{dm}^{2}$ 的长方形纸板剪出 5 个形状相同的小正方形,每个小正方形的面积是多少平方厘米?答:每个小正方形的面积是 20 平方厘米。

四、百分数1. 一桶汽油原价是 280 元,打了 8 折之后的价格是多少?答:打折后的价格是 224 元。

2. 某商场清仓促销,商品原价标价 60 元,打了 2 折的折扣,折后价格是多少?答:折后价格是 12 元。

3. 某自行车厂每条自行车生产 100 元的成本,标价 300 元,最终实际售价是标价的 80%,每条自行车的利润是多少?答:每条自行车的利润是 40 元。

初一上册数学应用题100道

初一上册数学应用题100道

初一上册数学应用题100道1.一匹跑得快的马每天走240里,另一匹跑得慢的马每天走150里。

如果慢马先走12天,快马需要几天才能追上慢马?2.有一根铁丝,第一次用去了它的一半少1米,第二次用去了剩余铁丝的一半还多1米。

结果这根铁丝还剩余2.5米。

问这根铁丝原来长多少米?3.将内径为200mm的圆柱形水桶中的满桶水倒入一个内部长、宽、高分别为300mm、300mm、80mm的长方形铁盒中,正好倒满。

求圆柱形水桶中的水高?4.列车在中途受阻,耽误了6分钟,然后将时速由原来的每小时40千米提高到每小时50千米。

问这样走多少千米,就可以将耽误的时间补上?5.甲、乙、丙三位同学向贫困地区的少年儿童捐赠图书。

已知这三位同学捐赠图书的册数的比是5:6:9.如果甲、丙两位同学捐书册数的和是乙捐书册数的2倍还多12册,那么他们各捐书多少册?6.姐姐步行速度是75米/分,妹妹步行速度是45米/分。

在妹妹出发20分钟后,姐姐出发去追妹妹。

问:多少分追上?7.小张和小王同时骑摩托车从A地向B地出发。

小张的车速是每小时40公里,小王的车速是每小时48公里。

小王到达B地后立即向回返,又骑了15分钟后与小张相遇。

那么A地与B地之间的距离是多少公里?8.小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后马上返回)。

他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇。

问他们两人第四次相遇的地点离乙村几千米?9.小张与小王从甲地去乙地,小张早出发1小时,但晚到1小时。

他每小时走4千米,小王每小时走6千米。

则甲、乙两地的距离为多少千米?10.甲、乙两人练跑步,从同一地点出发。

甲每分钟跑250米,乙每分钟跑200米。

甲比乙晚出发3分钟,结果两人同时到达终点。

求两人所跑的路程。

(用方程解答)11.甲、乙两班学生共有80名。

如果乙班学生去甲班5名,那么甲、乙两班人数的比正好是1:1.原来甲、乙两班各有学生多少名?12.甲班和乙班都为灾区捐款,捐款总数相同,均在300元到400元之间。

七年级数学上册应用题及答案

七年级数学上册应用题及答案

七年级数学上册应用题及答案1.运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车运。

还需要运几次才能完成运输?答:还需要运7次才能完成运输。

解析:剩余煤的重量为29.5-3*4=17.5吨,而每次用2.5吨的货车运输,所以还需要运17.5÷2.5=7次。

2.一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是多少米?答:它的高是10米。

解析:根据梯形的面积公式,(上底+下底)×高÷2=90,代入已知数据得到(7+11)×高÷2=90,解得高为10米。

3.某车间计划四月份生产零件5480个。

已生产了9天,再生产908个就能完成生产计划。

这9天中平均每天生产多少个?答:这9天中平均每天生产500个。

解析:设这9天中每天平均生产x个,则有9x+908=5480,解得x=500.4.甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米。

已知甲每小时行45千米,乙每小时行多少千米?答:乙每小时行40千米。

解析:设乙每小时行x千米,则有45*3+x*3=272-17,解得x=40.5.某校六年级有两个班,上学期数学平均成绩是85分。

已知六1班40人,平均成绩为87.1分;六2班有42人,平均成绩是多少分?答:六2班的平均成绩是83分。

解析:设六2班的平均成绩为x分,则有40*87.1+42x=85*82,解得x=83.6.学校买来10箱粉笔,用去250盒后,还剩下550盒。

平均每箱多少盒?答:平均每箱80盒。

解析:设平均每箱x盒,则有10x=250+550,解得x=80.7.四年级共有学生200人,课外活动时,80名女生都去跳绳。

男生分成5组去踢足球,平均每组多少人?答:平均每组32人。

解析:设男生平均每组x人,则有5x+80=200,解得x=32.8.食堂运来150千克大米,比运来的面粉的3倍少30千克。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

!一元一次方程应用题知能点1:市场经济、打折销售问题(1)商品利润=商品售价-商品成本价×100%(2)商品利润率=商品利润商品成本价(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.1. 某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元优惠价是多少元2. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少(3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元若设这种自行车每辆的进价是x元,那么所列方程为()%×(1+80%)x-x=50 B. 80%×(1+45%)x - x = 50 C. x-80%×(1+45%)x = 50 %×(1-45%)x - x = 50 4.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折.5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价.),知能点2:方案选择问题6.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,•经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行粗加工,每天可加工16吨,如果进行精加工,每天可加工6吨,•但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行精加工,没来得及进行加工的蔬菜,•在市场上直接销售.【方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为哪种方案获利最多为什么|7.某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50•元月基础费,然后每通话1分钟,再付电话费元;“神州行”不缴月基础费,每通话1•分钟需付话费元(这里均指市内电话).若一个月内通话x分钟,两种通话方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的函数关系式(即等式).(2)一个月内通话多少分钟,两种通话方式的费用相同(3)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算,8.某地区居民生活用电基本价格为每千瓦时元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费。

(1)某户八月份用电84千瓦时,共交电费元,求a.(2)若该用户九月份的平均电费为元,则九月份共用电多少千瓦时•应交电费是多少元9.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3•种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.(2)若商场销售一台A种电视机可获利150元,销售一台B 种电视机可获利200元,•销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案<10.小刚为书房买灯。

现有两种灯可供选购,其中一种是9瓦的节能灯,售价为49元/盏,另一种是40瓦的白炽灯,售价为18元/盏。

假设两种灯的照明效果一样,使用寿命都可以达到2800小时。

已知小刚家所在地的电价是每千瓦时元。

(1).设照明时间是x小时,请用含x的代数式分别表示用一盏节能灯和用一盏白炽灯的费用。

(费用=灯的售价+电费)(2).小刚想在这种灯中选购两盏。

假定照明时间是3000小时,使用寿命都是2800小时。

请你设计一种费用最低的选灯照明方案,并说明理由。

{[知能点3储蓄、储蓄利息问题(1)顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。

利息的20%付利息税(2)利息=本金×利率×期数 本息和=本金+利息 利息税=利息×税率(20%)(3)%,100⨯=本金每个期数内的利息利润—11. 某同学把250元钱存入银行,整存整取,存期为半年。

半年后共得本息和元,求银行半年期的年利率是多少(不计利息税)12. 为了准备6年后小明上大学的学费20000元,他的父亲现在就参加了教育储蓄,下面有三种教育储蓄方式:;(1)直接存入一个6年期;(2)先存入一个三年期,3年后将本息和自动转存一个三年期;(3)先存入一个一年期的,后将本息和自动转存下一个一年期;你认为哪种教育储蓄方式开始存入的本金比较少'13.小刚的爸爸前年买了某公司的二年期债券4500元,今年到期,扣除利息税后,共得本利和约4700元,问这种债券的年利率是多少(精确到%).14.(北京海淀区)白云商场购进某种商品的进价是每件8元,销售价是每件10元(销售价与进价的差价2元就是卖出一件商品所获得的利润).现为了扩大销售量,•把每件的销售价降低x%出售,•但要求卖出一件商品所获得的利润是降价前所获得的利润的90%,则x应等于().A.1 B.1.8 C.2 D.1015.用若干元人民币购买了一种年利率为10% 的一年期债券,到期后他取出本金的一半用作购物,剩下的一半和所得的利息又全部买了这种一年期债券(利率不变),到期后得本息和1320元。

问张叔叔当初购买这咱债券花了多少元\&…知能点4:工程问题工作量=工作效率×工作时间工作效率=工作量÷工作时间工作时间=工作量÷工作效率完成某项任务的各工作量的和=总工作量=116. 一件工作,甲独作10天完成,乙独作8天完成,两人合作几天完成~17. 一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程18. 一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池—19.一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作20.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.•已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,•求这一天有几个工人加工甲种零件.21.一项工程甲单独做需要10天,乙需要12天,丙单独做需要15天,甲、丙先做3天后,甲因事离去,乙参与工作,问还需几天完成.知能点5:若干应用问题等量关系的规律(1)和、差、倍、分问题此类题既可有示运算关系,又可表示相等关系,要结合题意特别注意题目中的关键词语的含义,如相等、和差、几倍、几分之几、多、少、快、慢等,它们能指导我们正确地列出代数式或方程式。

|增长量=原有量×增长率现在量=原有量+增长量(2)等积变形问题常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式 V=底面积×高=S·h= r2h②长方体的体积 V=长×宽×高=abc22.某粮库装粮食,第一个仓库是第二个仓库存粮的3倍,如果从第一个仓库中取出20吨放入第二个仓库中,第二个仓库中的粮5。

问每个仓库各有多少粮食食是第一个中的723.一个装满水的内部长、宽、高分别为300毫米,300毫米和80•毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到毫米, ≈).《24.长方体甲的长、宽、高分别为260mm,150mm,325mm,长方体乙的底面积为130×130mm2,又知甲的体积是乙的体积的倍,求乙的高知能点6:行程问题基本量之间的关系:路程=速度×时间时间=路程÷速度速度=路程÷时间(1)相遇问题(2)追及问题快行距+慢行距=原距快行距-慢行距=原距(3)航行问题顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度(抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.25. 甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。

(1)慢车先开出1小时,快车再开。

两车相向而行。

问快车开出多少小时后两车相遇(2)两车同时开出,相背而行多少小时后两车相距600公里(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。

故可结合图形分析。

》&26. 甲乙两人在同一道路上从相距5千米的A、B两地同向而行,甲的速度为5千米/小时,乙的速度为3千米/小时,甲带着一只狗,当甲追乙时,狗先追上乙,再返回遇上甲,再返回追上乙,依次反复,直至甲追上乙为止,已知狗的速度为15千米/小时,求此过程中,狗跑的总路程是多少27. 某船从A地顺流而下到达B地,然后逆流返回,到达A、B 两地之间的C地,一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时。

A、C两地之间的路程为10千米,求A、B两地之间的路程。

}28.有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.29.已知甲、乙两地相距120千米,乙的速度比甲每小时快1千米,甲先从A地出发2小时后,乙从B地出发,与甲相向而行经过10小时后相遇,求甲乙的速度;30.一队学生去军事训练,走到半路,队长有事要从队头通知到队尾,通讯员以18米/分的速度从队头至队尾又返回,已知队伍的行进速度为14米/分。

相关文档
最新文档