七年级数学应用题专题训练(1)
完整版七年级数学一元一次方程应用题专题练习

完整版七年级数学一元一次方程应用题专题练习七年级数学一元一次方程应用题专题练1.分配问题例题1:某班学生阅读图书,每人分3本,则剩余20本;每人分4本,则还缺25本。
问这个班有多少学生?解析:设班级人数为x,则根据题意,可以列出如下方程组:3x + 20 = 4x - 25解得:x = 45,因此这个班有45名学生。
变式1:某校组织师生春游,只租用45座客车,刚好坐满;只租用60座客车,可少租一辆,且余30个座位。
请问参加春游的师生共有多少人?解析:设参加春游的师生共有x人,则根据题意,可以列出如下方程组:45x = 60(x-1) + 30解得:x = 36,因此参加春游的师生共有36人。
2.调配与配套问题变式1:某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套,现要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?解析:设生产甲零件的天数为x,生产乙零件的天数为y,则根据题意,可以列出如下方程组:3x + 2y = 30120x + 100y = 最大值解得:x = 10,y = 0或y = 15.因此,在30天内生产最多的成套产品的方法是:连续生产10天甲零件,再连续生产15天乙零件。
变式2:用白铁皮做罐头盒,每张铁片可制盒身10个或制盒底30个。
一个盒身与两个盒底配成一套罐头盒。
现有100张白铁皮,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分利用白铁皮?解析:设制盒身的张数为x,制盒底的张数为y,则根据题意,可以列出如下方程组:x + 3y = 1002x = y解得:x = 20,y = 40.因此,应该用20张铁片制盒身,40张铁片制盒底。
变式3:一台挖土机和200名工人在水利工地挖土和运土,已知挖土机每天能挖土800立方米,每名工人每天能挖土3立方米或运土5立方米。
如何分配挖土和运土人数,使挖出的土能及时运走?解析:设运土工人的人数为x,挖土工人的人数为y,则根据题意,可以列出如下方程组:3y + 5x = 800x + y = 200解得:x = 100,y = 100.因此,应该让100名工人运土,100名工人挖土。
七年级数学配套应用题专项训练

七年级数学配套应用题专项训练一、行程问题1. 题目甲、乙两人从相距36千米的两地相向而行。
如果甲比乙先走2小时,那么他们在乙出发后2.5小时相遇;如果乙比甲先走2小时,那么他们在甲出发后3小时相遇。
甲、乙两人每小时各走多少千米?解析设甲每小时走公式千米,乙每小时走公式千米。
当甲比乙先走2小时,甲先走的路程为公式千米,两人共同走的时间是公式小时,共同走的路程为公式千米,可得到方程公式。
当乙比甲先走2小时,乙先走的路程为公式千米,两人共同走的时间是3小时,共同走的路程为公式千米,可得到方程公式。
对第一个方程进行化简:公式,即公式,两边同时乘以2得到公式。
对第二个方程进行化简:公式,即公式。
用公式减去公式:公式公式公式,解得公式。
把公式代入公式,得到公式,公式,公式,解得公式。
2. 题目一艘船在两个码头之间航行,水流速度是3千米/小时,顺水航行需要2小时,逆水航行需要3小时,求两码头之间的距离。
解析设船在静水中的速度为公式千米/小时。
顺水速度公式船在静水中的速度+水流速度,即公式千米/小时;逆水速度公式船在静水中的速度-水流速度,即公式千米/小时。
根据路程 = 速度×时间,且两个码头之间的距离不变。
顺水航行的路程为公式千米,逆水航行的路程为公式千米,则公式。
展开方程得公式。
移项可得公式,解得公式。
两码头之间的距离为公式千米。
二、工程问题1. 题目一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,还需要几天完成?解析把这项工程的工作量看作单位“1”。
甲单独做需要10天完成,则甲每天的工作效率为公式;乙单独做需要15天完成,则乙每天的工作效率为公式。
两人合作4天完成的工作量为公式。
先计算括号内的值:公式。
那么两人合作4天完成的工作量为公式。
剩下的工作量为公式。
乙单独完成剩下的工作量需要的时间为公式天。
2. 题目某工程,甲工程队单独做40天完成,若乙工程队单独做30天后,甲、乙两工程队再合作20天完成。
人教版七年级上册数学第一章有理数应用题专项训练(word版含答案)

人教版七年级上册数学第一章有理数应用题专项训练1.某出租车沿某南北方向的公路上载客,约定前北为正,向南为负.某天自A地出发到收工时所走路线(单位:千米)为:+10,﹣3,+4,﹣8,+13,﹣2,+12,+8.(1)问收工时距A地多远?(2)若每千米路程耗油0.15升,问从A地出发到收工共耗油多少升?2.某自行车厂计划平均每天生产200辆,但是由于种种原因,实际每天生产量与计划量相比有出入.表是某周的生产情况(超产记为正,减产记为负):(1)根据记录的数据可知该厂星期三生产自行车多少辆?(2)产量最多的一天比产量最少的一天多生产自行车多少辆?3.出租车一天下午以家为出发地在东西方向营运,向东为正方向,向西为负方向,行车里程(单位:km)依先后载客次序记录如下:+8,﹣9,﹣7,+6,﹣3,﹣14,+5,+12(1)该出租车师傅将最后一名乘客送达到目的地,出租车离家有多远?(2)该出租车师傅下午离家最远有多少千米?(3)若汽车耗油量为0.2升/千米,这天下午接送乘客,出租车共耗油多少升?(4)若出租车起步价为10元,起步里程为3km(包括3km),超过部分每千米啊1.2元,问这天下午该出租车师傅的营业额是多少元?4.哈市出租车司机李师傅某天的营运全都是在一条东西方向的大街上运行的,若规定从出发点向东方向为正,向西方向为负,他这天走的里程如下:(单位:千米)-3,+4,-12,-5,+6,-8,-7,+9,-10,+11(1)李师傅第四次运营后的位置在出发点的哪个方向?多少千米处?(2)若每千米耗油0.04升,则这天营运耗油多少升?5.某服装厂一周计划生产2800套运动服,计划平均每天生产400套,超出计划产量的记为“+”,不足计划产量的记为“-”,下表记录的是该厂某一周的生产情况:表中星期六的记录情况被墨水涂污了.(1)根据记录可知,星期六工厂生产多少套运动服?(2)产量最多的一天比产量最少的一天多生产多少套运动服?(3)该服装厂工资结算方式如下:①每人每天基本工资200元.①以每天完成400套为标准,若当天超额完成任务,超额部分每套奖励10元;若当天未完成生产任务,则少生产一套扣掉15元.该服装厂采用流水作业方式生产,当天所得奖金总额按人均分配,若该工厂这一周每天都有20名工人生产,则这一周服装厂实际需要付给该工厂每名工人多少元?6.某市股民小张上星期五买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况(单位:元):(1)本周三收盘时,每股是多少元?(2)本周内最高价是每股多少元?最低价是每股多少元?(3)若小张在本周四交易,问他的盈利情况如何?(交易时的手续费忽略不计)7.据新闻报道,渝万高铁于即将通车,为了保证安全,某动车检修小组沿铁路检修,约定前进为正,后退为负,某天自甲地出发到收工时所走路线(单位:km)为+10,-3,+4,-2,-9,+13,-2,+12,+8,+5;问:(1)检修小组第几次回到甲地?(2)收工时距甲地多远?(3)若每千米耗电25度,则从甲地出发到收工共耗电多少度.8.某水果店以每箱40元的价格从水果批发市场购进8箱苹果.若以每箱净重10千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重的记录如下:-1,1,0,-2,-1,-1,-2,1.(1)这8箱苹果的总重量是多少千克?(2)如果把这些苹果全部以零售的形式卖掉,水果店将获利50%,那么苹果零售价应定为每千克多少元?(3)若第一天水果店以(2)中的单价售出了全部苹果的60%,第二天因害怕剩余的苹果腐烂变质,决定降价把剩余的苹果按原零售价的七五折销售完.请计算该水果店在销售这批苹果过程中盈利多少元?9.本市图书馆上周借书记录如下(超过100册记为正,不超过100册记为负):(1)上周星期三比星期四多借出多少册书?(2)上周平均每天借出多少册书?10.一辆出租车一天上午从某商场出发在东西大街上运行,若规定向东为正,向西为负,行车里程(单位:km)依次如下:+9,-8,-5,+6,-8,+9,-3,-7,-5,+10.(1)将最后一名乘客送到目的地,出租车离该商场有多远?(2)按出租车每行驶100km油耗为10L,1L汽油的售价为7.2元,计算出租车在该上午消耗汽油的金额是多少元?(3)如果不计其它成本,只计消耗的汽油费用,每千米收费3元,计算这名司机挣(或赔)了多少元?11.2020年新冠肺炎疫情的蔓延,使得医用口罩销量大幅增加,某口罩加工厂每名工人计划每天生产300个医用口罩,一周生产2100个.由于种种原因,实际每天生产量与计划量相比有出入.下表是工人小王某周的生产情况(超产记为正,减产记为负).(1)根据记录的数据可知,小王星期五生产口罩______个;(2)根据表格记录的数据可知,小王本周实际生产口罩数量为______个;(3)若该厂实行每周计件工资制,每生产一个口罩可得0.8元,若超额完成周计划工作量,则超过部分每个另外奖励0.2元;若完不成每周的计划量,则少生产一个扣0.25元,小王这一周的工资总额是多少元?(4)若该厂实行每日计件工资制,每生产一个口罩可得0.8元.若超额完成每日计划工作量,则超过部分每个另外奖励0.2元;若完不成每天的计划量,则少生产一个扣0.25元,小王这一周的工资总额是多少元?12.有一批试剂,每瓶标准剂量为250毫升,现抽取8瓶样品进行检测,超过或不足标准剂量的部分分别用正、负数表示,记录结果如下(单位:毫升):+6,-2,+3,+10,-6,+5,-15,-8.(1)这8瓶样品试剂的总剂量是多少?(2)若增加或者减少每瓶试剂剂量的人工费为10元/毫升,求将这8瓶样品试剂再加工制作成标准剂量需要多少人工费?13.有6筐白菜,以每筐25千克为标准质量,超过的千克数记作正数,不足的千克数记作负数,称量后的记录如图.请回答下列问题:(1)这6筐白菜中最接近标准质量的这筐白菜为____________千克.(2)与标准质量相比,这6筐白菜总计超过或不足多少千克?14.某水果店以每箱200元的价格从水果批发市场购进20箱樱桃,若以每箱净重10千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重的记录如下表:(1)求n的值及这20箱樱桃的总重量;(2)若水果店打算以每千克25元销售这批樱桃,若全部售出可获利多少元;(3)实际上该水果店第一天以(2)中的价格只销售了这批樱桃的60%,第二天因为害怕剩余樱桃腐烂,决定降价把剩余的樱桃以原零售价的70%全部售出,水果店在销售这批樱桃过程中是盈利还是亏损,盈利或亏损多少元.15.随着手机的普及,微信的兴起,许多人做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售.刚大学毕业的小明把自家的冬枣产品也放到了网上实行包邮销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);(1)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售________斤;(2)本周实际销售总量是否达到了计划数量?试说明理由;(3)若冬枣每斤按8元出售,每斤冬枣需要小明支付的平均运费是3元,那么小明本周销售冬枣实际共得多少元?16.出租车司机小李某天下午的运营是在南北走向的大街进行的,假定向南为正,向北为负,他那天下午行驶里程(单位:km)如下:+15,-3,+14,-11,+10,+4,-26(1)小李在送第几位乘客时行驶的路程最远?(2)小李送完最后一位乘客时所处的地点,在他最初出发地的什么方向?距离出发地多远?(3)若汽车耗油量为0.1L/km,这天下午汽车一共耗油多少升?17.新华文具用品店最近购进了一批钢笔,进价为每支6元,为了合理定价,在销售前五天试行机动价格,卖出时每支以10元为标准,超过10元的部分记为正,不足10元的部分记为负.文具店记录了这五天该钢笔的售价情况和售出情况,如表所示:(1)这五天中赚钱最多的是第_____天,这天赚钱_____元.(2)新华文具用品店这五天出售这种钢笔一共赚了多少钱?18.某股民上星期六买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况:(单位:元)(1)星期三收盘时每股是多少元?(2)本周内最高价是每股多少元?最低价是每股多少元?(3)已知该股民买进股票时付了0.15%的手续费,卖出时需付成交额0.15%的手续费和0.1%的交易税,如果他一直观望到星期六才将股票全部卖出,请算算他本周的收益如何?19.某城市治安巡逻队员乘车沿东西方向的一条主干线进行巡逻.某天早上从A地出发,晚上最后到达B地,约定向东为正方向,当天的行驶记录如下(单位:千米):+18,﹣9,+7,﹣12,﹣4,+12,﹣5,﹣6(1)B地在A地何方,相距多少千米?(2)问巡逻队员在距A地最远时的最远距离是多少千米?(3)每千米耗油0.6升,每升4.5元,这天共耗油费用为多少元?20.某冷库一天的冷冻食品进出记录如下表(运进用正数表示,运出用负数表示);(1)这天冷库的冷冻食品的质量相比原来是增加了还是减少了?请说明理由;(2)根据实际情况,现有两种方案:方案一:运进每吨冷冻食品费用200元,运出每吨冷冻食品费用400元;方案二:不管运进还是运出每吨冷冻食品费用都是300元.从节约运费的角度考虑,选择哪一种方案比较合算?参考答案:1.(1)34千米(2)9升2.(1)192辆(2)25辆3.(1)在家的西方,离家有2km(2)19千米(3)12.8升(4)128元4.(1)西方,16 千米(2)3升5.(1)星期六生产了448套运动服(2)多生产56套运动服(3)需付给每名工人1435元6.(1)34.5元(2)35.5元,26元(3)盈利5000元7.(1)第五次回到了甲地(2)距离甲地36km(3)从甲地出发到收工共耗电1700度8.(1)这8箱苹果的总重量是75千克(2)苹果的零售价应定为每千克6.4元(3)该水果店在销售这批苹果过程中盈利112元9.(1)上周星期三比星期四多借出39册书(2)上周平均每天借出105册书10.(1)出租车在商场西面,距商场2km处(2)消耗汽油的金额是50.4元(3)这名司机挣了159.6元11.(1)291(2)2111(3)1691元(4)1689.85元12.(1)1993毫升;(2)550元13.(1)24.5(2)总计超过3千克14.(1)5n ,203千克;(2)1075元;(3)是盈利的,盈利466元.15.(1)29(2)达到了计划数量(3)3585元16.(1)小李在送最后一位乘客时行车里程最远;(2)在他最初出发地的正南方向,距离出发地3km;(3)这天下午汽车共耗油8.3升17.(1)4,96(2)360元18.(1)34.5元(2)35.5元;26元(3)赚889.5元19.(1)B地在A地东方,相距1千米处(2)18千米(3)197.1元20.(1)减少了,理由见解析(2)从节约运费的角度考虑,选择方案二比较合算。
2023-2024年人教版七年级上册数学期末一元一次方程应用题专题训练(含答案)

2023-2024年人教版七年级上册数学期末一元一次方程应用题专题训练1.一艘船在甲码头到乙码头顺流行驶,用了2小时;再从乙码头返回甲码头逆水行驶,用了3小时,已知这艘船在静水中航行的速度为15千米/小时,则水流的速度为多少千米每小时?2.一艘船从甲码头到乙码头顺流而行,用了2.5 h;从乙码头返回甲码头逆流而行,用了3 h.已知水流的速度是2 km/h,求船在静水中的平均速度.3.某中学学生步行到郊外旅行,七年级(1)班学生组成前队,步行速度为4千米/小时,七(2)班的学生组成后队,速度为6千米/小时;前队出发1小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回联络,他骑车的速度为10千米/小时.(1)后队追上前队需要多长时间?(2)后队追上前队的时间内,联络员走的路程是多少?(3)七年级(1)班出发多少小时后两队相距2千米?4.鄞州公园计划在园内的坡地上栽种树苗和花圃,树苗和花苗的比例是1:25,已知每人每天种植树苗3棵或种植花苗50棵,现有15人参与种植劳动.(1)怎样分配种植树苗和花苗的人数,才能使得种植任务同时完成?(2)现计划种植树苗60棵,花苗1500棵,要求在3天内完成,原有人数能完成吗?如果完成,请说明理由;如不能完成,请问至少派多少人去支援才能保证3天内完成任务?5.某工厂加工螺栓、螺帽,已知每1块金属原料可以加工成3个螺栓或4个螺帽(说明:每块金属原料无法同时既加工螺栓又加工螺帽),已知1个螺栓和2个螺帽组成一个零件,为了加工更多的零件,要求螺栓和螺帽恰好配套.请列方程解决下列问题:(1)现有20块相同的金属原料,问最多能加工多少个这样的零件?(2)若把26块相同的金属原料全部加工完,问加工的螺栓和螺帽恰好配套吗?说明理由(3)若把块相同的金属原料全部加工完,为了使这样加工出来的螺栓与螺帽恰好配套,请求出所满足的条件.6.红星纺织厂为了应对疫情需求,安排甲、乙两个车间生产防疫口罩.第一周甲、乙两个车间各生产5天后,乙车间周六加班多生产1天,结果两个车间生产的口罩数量一样多:第二周甲、乙两个车间各生产4天后乙车间又多生产口罩3000个,结果甲车间比乙车间仍多生产口罩1000个.(1)甲、乙两车间每天生产口罩各多少个?(2)第三周,纺织厂又接到生产40000个口罩的订单,且要求必须4天完成任务,同时甲车间要抽调一半的工人去生产防护服,因此,甲车间生产口罩的效率只有原来的一半,厂部要求乙车间必须提高口罩生产效率,保证按时完成任务,乙车间生产效率提高的百分比是多少?7.请根据图中提供的信息,回答下列问题:(1)一个水瓶是多少元?(2)商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买个水瓶和个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)n n 520要2个桶底才能构成一个铁桶,为使每天生产的桶身和桶底刚好配套,应该安排生产桶身和桶底的工人各多少名?15.某中学库存若干套桌椅,准备修理后支援贫困山区学校.现有甲、乙两木工组,甲每天修理桌椅16套,乙每天修桌椅比甲多8套,甲单独修完这些桌椅比乙单独修完多用20天,学校每天付甲组80元修理费,付乙组120元修理费.(1)该中学库存多少套桌椅?(2)在修理过程中,学校要派一名工人进行质量监督,并且付给他每天10元生活补助费,现有三种修理方案, A 方案:由甲单独修理;B 方案:由乙单独修理;C 方案:甲、乙合作同时修理.你认为哪种方案省时又省钱?为什么?16.某超市进行新年促销活动,将某种年货礼包按原价的9折销售,此时的利润率为12.5%.若这种年货礼包的进价为每个80元(1)年货礼包的原售价是多少元?(2)开展促销活动后,实际销量为按原价销售时的3倍,则实际利润和未开展促销活动时相比,是增多,不变,还是减少?请通过计算说明.17.某工厂中秋节前要制作一批盒装月饼,每盒装4块大月饼和6块小月饼,制作1块大月饼要用面粉,1块小月饼要用面粉.(1)若制作若干盒月饼共用了面粉,请问制作大小两种月饼各用了多少面粉?(2)在(1)的条件下,已知制作一个精美月饼包装盒的成本为5元,面粉的进价为25元/千克,在不计其它成本的情况下,工厂想达到的利润率,则应如何制定每盒月饼的出厂价?18.为进一步加强居民对电信诈骗的防范意识,提高对电信诈骗的鉴别、自我保护能力,营造全民反诈的浓厚氛围,我校志愿者积极配合社区开展反诈骗宣传工作,志愿者们准备印制一些反诈骗宣传小册子,利用中秋国庆假期到公园里开展防诈骗、反诈骗宣传活0.05kg 0.02kg 640kg 50%参考答案:13.(1)48(2)该户居民3月份用水4t ,4月份用水11t 14.(1)(2)30名工人生产桶身,36名工人生产桶底15.(1)该中学库存桌椅960套.(2)选择C 方案省时又省钱.16.(1)100元(2)增多17.(1)制作大月饼用了面粉,制作小月饼用了面粉(2)每盒月饼的出厂价应定为26元18.(1)印刷册,两家的印刷总费用是相等(2)乙店是打七五折优惠19.(1),(2)若交费时间为1年,选择方案一更合适,(3)交费时间为10个月时,两种方案费用相同20.(1)这个公司要加工960件新产品(2)该公司应选择第③种方案,由两个工厂合作同时完成时,既省钱,又省时间18400kg 240kg 403004000M x =+6001000N x =+。
人教版七年级数学上册应用题专题归纳(1)

列一元一次方程解应用题的常见题型(设未知数,找等量关系列方程)一. 和差倍分的问题问题的特点:已知两个量之间存在合倍差关系,可以求这两个量的多少。
基本方法:以和倍差中的一种关系设未知数并表示其他量,选用余下的关系列出方程。
1. 一个数的 2 倍与 10 的和等于 18,则这个数是_______。
一个数的二分之一与 3 的差等于 2,则这个数是_______。
一个数的 3 倍比 10 大 2,则这个数是_______。
2.一个机床厂今年第一季度生产机床180台,比去年同期的二倍多36台,去年一季度产量多少台?3.某学校组织10名优秀学生春游,预计费用若干元,后来又来了2名同学,原来的费用不变,这样每人可以少摊3元,则原来每人需要付费多少元?4.七年级二班有45人报名参加了文学社或书画社,已知参加文学社的人数比参加书画社的人数多5人,两个社都参加的有20人,问参加书画社的有多少人?二. 等积变形问题此类问题的关键在“等积”上,是等量关系的所在,必须掌握常见几何图形的面积、体积公式。
“等积变形”是以形状改变而体积不变为前提。
1. 把内径为 200mm,高为 500mm 的圆柱形铁桶,装满水后慢慢地向内径为 160mm,高为 400mm 的空木桶装满水后,铁桶内水位下降了多少?2. 要锻造一个直径为8cm,高为4cm的圆柱形毛坯,至少应截取直径为4cm的圆钢多少cm。
三. 相遇问题(相向而行):这类问题的相等关系是:各人走路之和等于总路程或同时走时两人所走的时间相等为等量关系。
对应公式:路程=速度×时间快者路程+慢者路程=总路程(慢者速度+快者速度)×相遇时间=相遇路程1. 甲、乙两车从相距 264 千米的 A、B 两地同时出发相向而行,甲速是乙速的 1.2 倍,4 小时相遇,求乙速?2. 甲、乙两站相距 600 千米,慢车从甲地出发,每小时行 40 千米,快车从乙地出发,每小时行 60 千米,若慢车先行 50 分钟,快车再开出,又行一段时间后遇到慢车,求快车开出多少小时两车相遇?3. A、B 两地相距 75 千米,一辆汽车以 50 千米/时的速度从 A 地出发,另一辆汽车以 40 千米/时速度从 B 地出发,两车同时出发,相向而行,经过几小时两车相距 30 千米?四. 追及问题(同向而行):这类问题的等量关系是:两人的路程差等于追及的路程或以追及时间为等量关系。
人教版七年级上册数学第一章有理数应用题专题训练

人教版七年级上册数学第一章有理数应用题专题训练1.有8箱苹果,以每箱20千克为标准,超过的千克数记为正数,不足的千克数记为负数,称后的记录如下:1.5,-3,-1,0.5,1,-2,2,-2.5,与标准质量相比较,这8箱苹果总计超过或不足多少千克?8箱苹果总质量是多少千克?2.某水果店以每箱40元的价格从水果批发市场购进8箱苹果.若以每箱净重10千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重的记录如下:-1,1,0,-2,-1,-1,-2,1. (1)这8箱苹果的总重量是多少千克?(2)如果把这些苹果全部以零售的形式卖掉,水果店将获利50%,那么苹果零售价应定为每千克多少元?(3)若第一天水果店以(2)中的单价售出了全部苹果的60%,第二天因害怕剩余的苹果腐烂变质,决定降价把剩余的苹果按原零售价的七五折销售完.请计算该水果店在销售这批苹果过程中盈利多少元?3.某快递员骑车从快递公司出发,沿东西方向行驶,依次到达A 地、B 地、C 地、E 地.将向东行驶的路程(单位:km )记为正,向西行驶的路程记为负,则该快递员行驶的各段路程依次对应为:2-,3-,7+,1+,7-,最后该快递员回到快递公司. (1)以快递公司为原点,用1个单位长度表示1km ,在如图所示的数轴上标出表示A 、B 、C 、D 、E 五个地方的位置,并求出B 地与D 地之间的距离;(2)该快递员从公司出发直至回到该公司,一共骑行了多少km ?4.快递小哥骑摩托车从快递公司出发负责送货,向东走了4千米到达小明家,继续走了1.5千米到达小红家,又向西走了10千米到达小丽家,最后回到快递公司.(1)以快递公司为原点,以向东的方向为正方向,用1个单位长度表示1千米,请你在数轴轴上标出小明、小红、小丽家的位置; (2)小明家与小丽家相距多远?(3)若摩托车每千米耗油0.03升,那么快递小哥这次送货共耗油多少升?5.超市购进8筐白菜,以每筐25kg 为准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:1.5,3-,2,0.5-,1,2-,2-, 2.5-. (1)这8筐白菜一共多少千克?(2)超市计划这8筐白菜按每千克3元销售,为促销超市决定打九折销售,求这8筐白菜现价比原价便宜了多少钱?6.聪聪和慧慧为了合理计划自己的开支,每天坚持记录自己当天的收支情况如下表,是她们上周各天收支情况(记收入为正,单位:元)根据上表回答下列问题:(1)分别说出聪聪这一行中10,0,-2各数的实际意义. (2)把上表补充完整.7.某口罩加工厂每名工人计划每天生产400个医用口罩,由于种种原因,实际每天生产量与计划量相比有出入.如下表是工人小王某周的生产情况(超产记为正,减产记为负):(1)根据记录的数据可知,小王星期五生产口罩多少个?(2)根据表格记录的数据,求出小王本周实际生产口罩数量.8.出租车司机王师傅某天早上营运时是在东西走向的大街上进行的,如果规定向东为正,向西为负,他这天早上所接六位乘客的行车里程(km)如下:﹣2,+5,﹣4,+1,﹣6,﹣2(1)将最后一位乘客送到目的地时,王师傅在早上出发点的什么位置?(2)若汽车耗油量为0.1L/km,这天早上王师傅接送乘客,出租车共耗油多少升?(3)若出租车起步价为6元,起步里程为2km(包括2km),超过部分(不足1km按1km计算)每千米1.5元,王师傅这天早上共得车费多少元?9.某一出租车一天下午以市民之家为出发地在东西方向营运,向东为正,向西为负,行车里程(单位:km)依先后次序记录如下:+9、-3、-5、+4、-8、+6.(1)将最后一名乘客送到目的地,出租车离市民之家出发点多远?在市民之家的什么方向?(2)若每千米的价格为3元,司机一个下午的营业额是多少?10.某粮库原有大米132吨,一周内该粮库大米的进出情况如表:(运进大米记作“+”,运出大米记作“﹣”).。
七年级数学应用题带答案

七年级数学应用题带答案七年级数学应用题带答案1【题目1】b处的兔子和a处的狗相距56米。
兔子从b处逃跑,狗同时从a处跳出追兔子,狗一跳2米,狗跳3次的时间和兔子跳4次的时间相同。
兔子跳出112米后被狗追上,问兔子一跳多少米?【解答】狗和兔子的速度比是(112+56):112=3:2,狗跳3次跳了2×3=6米,兔子就跳6×2/3=4米,所以兔子每跳一次4÷4=1米【题目2】甲乙两车分别从a、b两地同时开出,相对而行,4小时后甲车行了全程的1/4,乙车行的`路程比全程的12.5%少60千米,甲乙两车继续行驶735千米相遇。
求ab两地相距多少千米?【解答】735-60=675千米占全程的1-1/4-12.5%=5/8,所以两地之间的距离是675÷5/8=1080千米。
【题目3】火车每分钟行1050米,从车头与一个路标并列到车尾离开这个路标3分钟后一辆摩托车以每分钟1200米的速度从这个路标出发,摩托车出发25分钟后,与火车的车头正好并列,求这列火车的长。
【解答】摩托车行了1200×25=30000米,车尾行了1050×(25+3)=29400米。
所以火车长30000-29400=600米。
【题目4】在同一路线上有abcd四个人,每人的速度固定不变。
已知a在12时追上c,14时时与d迎面相遇,16时时与b迎面相遇。
而b在17时时与c迎面相遇,18时追上d,那么d在几时迎面遇到c。
【解答】把12时ab的距离看作单位1,四人速度分别用abcd来表示。
a+b=1/4,b+c=1/5。
2(a+d)+6(b-d)=4(a+b),得出b-d=1/2(a+b)=1/2×1/4=1/8,12时c和d相距2×(1/4-1/8)=1/4,c+d=1/5-1/8=3/40,所以需要的时间是1/4÷3/40=10/3小时,即在15时20分的时候c和d相遇。
人教版七年级数学上册第三章《一元一次方程》应用题专题训练(一)

人教版七年级数学上册第三章《一元一次方程》应用题专题训练(三)1.如图,将长方形ABCD分割成1个灰色长方形与148个面积相等的小正方形.若灰色长方形之长与宽的比为5:3,则AD:AB=()A.5:3 B.7:5 C.23:14 D.47:292.小李年初向建设银行贷款5万元用于购房,年利率为5%,按复利计算,若这笔借款分15次等额归还,每年1次,15年还清,并从借后次年年初开始归还,问每年应还大约()A.4819元B.4818元C.4817元D.4816元3.正方形ABCD的轨道上有两个点甲与乙,开始时甲在A处,乙在C处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1cm,乙的速度为每秒5cm,已知正方形轨道ABCD的边长为2cm,则乙在第2018次追上甲时的位置()A.AB上B.BC上C.CD上D.AD上4.李飒的妈妈买了几瓶饮料,第一天,他们全家喝了全部饮料的一半零半瓶;第二天,李飒招待来家中做客的同学,又喝了第一天剩下的饮料的一半零半瓶;第三天,李飒喝了剩下的一半零半瓶,正好喝完,则妈妈买的饮料一共有()A.5瓶B.6瓶C.7瓶D.8瓶5.某企业接到为地震灾区生产活动房的任务,此企业拥有九个生产车间,现在每个车间原有的成品活动房一样多,每个车间的生产能力也一样.有A、B两组检验员,其中A组有8名检验员前两天时间将第一、二车间的所有成品(原来的和这两天生产的)检验完毕后,再去检验第三、四车间所有成品,又用去三天时间;同时这五天时间B组检验员也检验完余下的五个车间的所有成品.如果每个检验员的检验速度一样快,那么B组检验员人数为()A.8人B.10人C.12人D.14人6.桌面上有甲、乙、丙三个圆柱形的杯子,杯深均为15公分,各装有10公分高的水,且表记录了甲、乙、丙三个杯子的底面积.今小明将甲、乙两杯内一些水倒入丙杯,过程中水没溢出,使得甲、乙、丙三杯内水的高度比变为3:4:5.若不计杯子厚度,则甲杯内水的高度变为多少公分?()底面积(平方公分)甲杯60乙杯80丙杯100A.5.4 B.5.7 C.7.2 D.7.57.在某月的月历中圈出相邻的3个数,其和为15.这3个数的位置可能是()A.B.C.D.8.小淇在某月的日历中圈出相邻的三个数,算出它们的和是19,那么这三个数的位置可能是()A.B.C.D.9.一家商店将某种服装按成本价提高40%后标价,又以8折优惠卖出,结果每件服装仍可获利24元,则这种服装每件的成本是()A.100元B.180元C.200元D.205元10.有一玻璃密封器皿如图①,测得其底面直径为20厘米,高20厘米,先内装蓝色溶液若干.若如图②放置时,测得液面高10厘米;若如图③放置时,测得液面高16厘米;则该玻璃密封器皿总容量为()立方厘米.(结果保留π)A.1250πB.1300πC.1350πD.1400π11.将连续的奇数1,3,5,7,9,……排成如图所示的数表,则十字形框中的五数之和能等于2020吗?能等于2021吗?()A.能,能B.能,不能C.不能,能D.不能,不能12.某超市正在热销一种商品,其标价为每件12元,打8折销售后每件可获利2元,该商品每件的进价为()A.7.4元B.7.5元C.7.6元D.7.7元13.某商场购进一批服装,又恰巧碰到双十一的促销活动,商场决定将这批服装按标价的五折销售,若打折后每件服装可获纯利润60元,其利润率为10%;若双十一过后,该商场按这批服装的标价打八折出售,那么获得的纯利润是()A.264元B.396元C.456元D.660元14.小明和小亮进行100米赛跑,两人在同一起跑线上,结果第一次比赛时小明胜10米;在进行第二次比赛时,小明的起跑线比原来起跑线推后10米,如果两次他们速度不变,则第二次结果().A.小亮胜B.小明胜C.同时到达D.不能确定15.在古代生活中,有很多时候也要用到不少的数学知识,比如有这样一道题:隔墙听得客分银,不知人数不知银.七两分之多四两,九两分之少半斤.(注:古秤十六两为一斤)请同学们想想有几人,几两银?()A.六人,四十四两银B.五人,三十九两银C.六人,四十六两银D.五人,三十七两银16.如图,小刚将一个正方形纸片剪去一个宽为5cm的长条后,再从剩下的长方形纸片上剪去一个宽为6cm的长条,如果两次剪下的长条面积正好相等,求两个所剪下的长条的面积之和为()A.215cm2B.250cm2C.300cm2D.320cm217.某商场为换季大清仓,以每件120元的价格出售两件衬衫,其中一件盈利20%,另一件亏损20%,那么在这次买卖中商场()A.不亏不赚B.亏了10元C.赚了10元D.赚了20元18.甲、乙两地相距1500千米.飞机从甲地到乙地是顺风,需2小时;从乙地返回甲地是逆风,需2.5小时.则飞机往返的平均速度是()千米/时.A.700 B.666C.675 D.65019.小华在某月的日历上圈出相邻的四个数,算出这四个数的和是36,则这个数阵的形式可能是()A.B.C.D.20.中国古代数学著作《算法统宗》中有这样一段记载,“三百七十八里关;初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是;有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到关口,则此人第一和第六这两天共走了()A.102里B.126里C.192里D.198里21.将连续的奇数1、3、5、7、9、,按一定规律排成如图:图中的T字框框住了四个数字,若将T字框上下左右移动,按同样的方式可框住另外的四个数.若将T字框上下左右移动,则框住的四个数的和不可能得到的数是()A.22 B.70 C.182 D.20622.小明在某月的日历上圈出了三个数a,b,c,并求出了它们的和为39,则这三个数在日历中的排位位置不可能的是()A.B.C.D.23.某套课外书的进价为80元/套,标价为200元/套,“双11”期间某网店打x折销售,此时可获利25%,则x为()A.7 B.6 C.5 D.424.如图,在矩形ABCD中,BC=15cm,动点P从点B开始沿BC边以每秒2cm的速度运动;动点Q从点D开始沿DA边以每秒1cm的速度运动,点P和点Q同时出发,当其中一点到达终点时,另一点也随之停止运动,设动点的运动时间为t秒,则当t=()秒时,四边形ABPQ为矩形.A.3 B.4 C.5 D.625.运动场环形跑道周长400米,小林跑步的速度是爷爷的二倍,他们从同一起点沿跑道的同一方向同时出发,5min 后小林第一次与爷爷相遇,小林跑步的速度是()米/分.A.120 B.160 C.180 D.200参考答案1.解:设灰色长方形的长上摆5x个小正方形,宽上摆3x个小正方形,2(5x+3x)+4=148x=95x=45,3x=27,AD=45+2=47,AB=27+2=29,=.故选:D.2.解:设每年应还x元,则根据题意可知:50000×(1+0.05)15=x×(1+0.05)14+x×(1+0.05)13+ (x)用计算器得出:x=4817故选:C.3.解:设乙走x秒第一次追上甲.根据题意,得5x﹣x=4解得x=1.∴乙走1秒第一次追上甲,则乙在第1次追上甲时的位置是AB上;设乙再走y秒第二次追上甲.根据题意,得5y﹣y=8,解得y=2.∴乙再走2秒第二次追上甲,则乙在第2次追上甲时的位置是BC上;同理:∴乙再走2秒第三次次追上甲,则乙在第3次追上甲时的位置是CD上;∴乙再走2秒第四次追上甲,则乙在第4次追上甲时的位置是DA上;乙在第5次追上甲时的位置又回到AB上;∴2018÷4=504 (2)∴乙在第2018次追上甲时的位置是BC上.故选:B.4.解:设妈妈买的饮料一共有x瓶,则第一天喝了(x+0.5)瓶,那么剩下(x﹣x﹣0.5)瓶,则第二天喝了(x﹣x﹣0.5)+0.5(瓶),那么剩下(x﹣x﹣0.5)﹣[(x﹣x﹣0.5)+0.5](瓶),所以第三天喝了{(x﹣x﹣0.5)﹣[(x﹣x﹣0.5)+0.5]}+0.5(瓶),(x+0.5)+[(x﹣x﹣0.5)+0.5]+{(x﹣x﹣0.5)﹣[(x﹣x﹣0.5)+0.5]}+0.5=x,解得x=7.故选:C.5.解:设每个车间原有成品a件,每个车间每天生产b件产品,根据检验速度相同得:,解得a=4b;则A组每名检验员每天检验的成品数为:2(a+2b)÷(2×8)=12b÷16=b.那么B组检验员的人数为:5(a+5b)÷(b)÷5=45b÷b÷5=12(人).故选:C.6.解:设后来甲、乙、丙三杯内水的高度为3x、4x、5x,根据题意得:60×10+80×10+100×10=60×3x+80×4x+100×5x,解得:x=2.4,则甲杯内水的高度变为3×2.4=7.2(公分).故选:C.7.解:A、设最小的数是x.x+x+7+x+7+1=15x=0故本选项不符合题意;B、设最小的数是x.x+x+6+x+7=15,x=.故本选项不符合题意.C、设最小的数是x.x+x+1+x+8=15,x=2,故本选项符合题意.D、设最小的数是x.x+x+1+x+7=15,x=,故本选项不符合题意.故选:C.8.解:A、设最小的数是x.x+x+7+x+7+1=19x=故本选项不符合题意;B、设最小的数是x.x+x+6+x+7=19,x=2.故本选项符合题意.C、设最小的数是x.x+x+1+x+7=19,x=,故本选项不符合题意.D、设最小的数是x.x+x+1+x+8=19,x=,故本选项不符合题意.故选:B.9.解:设这种服装每件的成本是x元,依题意,得:80%×(1+40%)x﹣x=24,解得:x=200.故选:C.10.解:设该玻璃密封器皿总容量为Vcm3,π×102×10=V﹣π×102×(20﹣16),解得,V=1400π,故选:D.11.解:由表格中的数据可知,这五个数的和等于十字形中间的数的5倍,设十字形中间的数为x,令5x=2020,解得x=404,∵404不是奇数,∴十字形框中的五数之和不能等于2020,再令5x=2021,得x=404.2,∵404.2不是奇数,∴十字形框中的五数之和不能等于2021,故选:D.12.解:设该商品每件的进价为x元,依题意,得:12×0.8﹣x=2,解得:x=7.6.故选:C.13.解:设该服装的标价为x元,由题意得,0.5x﹣60=,解得:x=1320.所以1320×80%﹣=456(元)故选:C.14.解:第一次小明跑100米和小亮跑90米的时间相等,则设小明的速度是a,小亮的速度是a,设第二次比赛,小明经过x秒追上小亮,ax=x+10,∴x=,∴a×=90米,∴小亮跑了90米时,就被小明追上,∴小明胜.故选:B.15.解:设有x两银,,解得,x=46,则人数为:=6,即有6个人,46两银,故选:C.16.解:设原来正方形纸的边长是xcm,则第一次剪下的长条的长是xcm,宽是5cm,第二次剪下的长条的长是(x ﹣5)cm,宽是6cm,则5x=6(x﹣5),解得:x=3030×5×2=300(cm2),答:两个所剪下的长条的面积之和为300cm2.故选:C.17.解:设两件衣服的进价分别为x、y元,根据题意得:120﹣x=20%x,y﹣120=20%y,解得:x=100,y=150,∴120+120﹣100﹣150=﹣10(元).即亏了10元.故选:B.18.解:设飞机往返的平均速度是x千米/时,根据题意,得(2.5+2)x=1500×2.解得x=666.故选:B.19.解:设第一个数为x,根据已知:A:得得x+x+6+x+7+x+8=36,则x=3.75不是整数,故本选项不可能.B:得x+x+1+x+8+x+9=36,则x=4.5不是整数,故本选项不可能.C:得x+x+1+x+7+x+8=36,则x=5,为正数符合题意.D:得x+x+1+x+6+x+7=36,则x=5.5不是整数,故本选项不可能.故选:C.20.解:设第六天走的路程为x里,则第五天走的路程为2x里,依此往前推,第一天走的路程为32x里,依题意,得:x+2x+4x+8x+16x+32x=378,解得:x=6.32x=192,6+192=198,答:此人第一和第六这两天共走了198里,故选:D.21.解:由题意,设T字框内处于中间且靠上方的数为2n﹣1,则框内该数左边的数为2n﹣3,右边的为2n+1,下面的数为2n﹣1+10,∴T字框内四个数的和为:2n﹣3+2n﹣1+2n+1+2n﹣1+10=8n+6.故T字框内四个数的和为:8n+6.A、由题意,令框住的四个数的和为22,则有:8n+6=22,解得n=2.符合题意.故本选项不符合题意;B、由题意,令框住的四个数的和为70,则有:8n+6=70,解得n=8.符合题意.故本选项不符合题意;C、由题意,令框住的四个数的和为182,则有:8n+6=182,解得n=22.符合题意.故本选项不符合题意;D、由题意,令框住的四个数的和为206,则有:8n+6=206,解得n=25.由于数2n﹣1=49,排在数表的第5行的最右边,它不能处于T字框内中间且靠上方的数,所以不符合题意.故框住的四个数的和不能等于206.故本选项符合题意;故选:D.22.解:A、设最小的数是x,则x+(x+1)+(x+8)=39,解得x=10,故本选项不符合题意;B、设最小的数是x,则x+(x+8)+(x+14)=39,解得x=,故本选项符合题意;C、设最小的数是x,则x+(x+8)+(x+16)=39,解得x=5,故本选项不符合题意;D、设最小的数是x,则x+(x+1)+(x+2)=39,解得:x=12,故本选项不符合题意.故选:B.23.解:根据题意得:200×﹣80=80×25%,解得:x=5.故选:C.24.解:设动点的运动时间为t秒,由题意,得15﹣t=2t.解得t=5.故选:C.25.解:设爷爷的速度为x米/分钟,则小林的速度为2x米/分钟,根据题意得:5×(2x﹣x)=400,解得:x=80,∴2x=160.答:爷爷的速度为80米/分钟,小林的速度为160米/分钟.故选:B.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学上册应用题专题训练
一、选择题:
1,一个三位数百位、十位、个位数字分别是4、3、m,这个三位数是()A、430+m B、43m C、43+m D、400+3m
2,一个三位数百位、十位、个位数字分别是m、2n、2,这个三位数是()A、m2n2 B、4mn C、100m+20n+2n+2 D、2mn+2
3,据“x减去y的差的8倍等于8”的数量关系可列方程为()
A、x-8y=8 B、8(x-y)=8 C、8x-y=8 D、x-y=8×84,如果一个自然数的2倍加12等于这个自然数与3之和的3倍,则这个自然数为()
A、3 B、4 C、5 D、3或4或5
5,一只船顺水航行速度为a千米/小时,逆水速度为b千米/小时,(a>b>0),则水流速度为()
A、(a -b )千米/小时
B、(a /2-b)千米/小时
C、(a -b /2)千米/小时
D、(a -b )/2千米/小时
6,甲、乙二人都从A地出发到B地去办事,甲以5千米/小时的速度,先走16分钟,乙以13千米/小时的速度后走,追上甲的时间为()
A、10小时B、1/6小时C、80/13小时D、6小时
7,有A、B两桶油,从A桶倒出1/4进B桶,B桶比A桶还少6千克油。
A桶原有油()
A、72千克B、63千克C、18千克D、36千克
8,某校八年级学生数学竞赛共有20道题目,每答对一道计5分,不答或答错一道扣1分。
得70分要答对的题目数是()
A、14道
B、15道
C、16道
D、17道
二、填空题:
9,一个长方形的宽为xcm,长是宽的3倍,另一个长方形长比它少5cm,宽比它的宽的一半多1cm,且已知第二个长方形的面积是第一个面积的1/2,求x。
可列方程为___________________。
10,将长、宽、高分别为312毫米、297毫米、74毫米的长方形瓷盆中的满盆水倒入一个内径为200毫米、高为x毫米的水桶中,正好倒满,求x。
根据题意列方程为_________________。
11,一项工程甲单独做要4天完成,乙单独做要8天完成。
甲做1天后,二人合作再用x天完成,求x。
根据题意列方程为________________。
12,甲在城北,乙在城南,两人相距6.3千米,甲以4.2千米/小时的速度向北行进,乙以4.8千米/小时的速度向南行进,则____小时后,两人相距19.8千米。
13,把黄豆育成豆芽后,重量可以增加2.5倍,如果要得到1400千克黄豆芽,需要_________千克黄豆。
14,青年义务服务队甲队原有40人,乙队原有186人,因任务需要,甲队人力应加强,现从预备队调来2人,再从乙队支援____人后,甲队人数刚好是乙队人数的一半。
15,九年级共有四个班,学校组织电脑活动小组,四个班共有34人参加,四个班参加人数之比为5:4:3:5,这四个班中参加电脑活动人数最少的班级有_人。
16,母亲今年38岁,女儿今年12岁,年后母亲年龄正好是女儿年龄的3倍。
17,甲、乙二人分别以500米/分和300米/分的速度在400米环形跑道上同时同地同向而行,经过_____分钟两人第三次相遇。
18,开学期间,商家为了促销,进行打折销售,某种书包先打了七折,后又打了五折,现在售价为7元,这种书包原价为_____元。
三、列方程解应用题:
19,周末二好友上山狩猎,他们将打好的兔和野鸡放在一个包里,总共有35个头,94只脚,兔和野鸡各多少只?
20,A、B两地间的路程为360千米,甲车从A地出发开往B地,每小时行驶72千米,甲车出发25分钟后,乙车从B地出发开往A地,每小时行驶48千米,两车相遇后,各自仍按原速度原方向行驶;那么相遇后两车再相距100千米时,甲车从出发开始,共行驶了多少千米?
21,红光服装厂要生产一批某种型号的学生服,已知每3米长的某种布料可做上衣2件,或做裤子3条,计划用600米长的这种布料生产学生服,应分别用多少布料生产上衣和裤子,才能恰好配套?共能生产多少套?
22,一种商品的进价是1500元,预定售价1800元,甲出售前把售价提高20%再打八折出售,乙出售前把售价打九折后再出售,问甲、乙两个售货员出售商品的利润率,哪个更高些?
23,飞飞班上有40位同学,他想在生日时请客,因此到超市花了175元钱买果冻与巧克力共40个。
若果冻每两个15元,巧克力每3个10元,则他买多少果冻?。