(word完整版)七年级数学应用题分配问题专项训练

合集下载

(完整word版)七年级应用题专项训练题

(完整word版)七年级应用题专项训练题

1.一个车间加工轴杆和轴承,每人平均每天可以加工轴杆12个或轴承16个,1根轴杆与2个轴承为一套,该车间共有90人,应该怎样调配人力,才能使每天生产的轴承和轴杆正好配套?2.一项工作,甲单独完成需要50天,乙单独完成需要40天,甲、乙合作20天后,剩下的工作由甲单独完成,那么甲还需要多少天才能完成这项工作?3.某超市有两个不同的计算器都卖64元,其中一个盈利60%,另一个亏本20%,求在这次买卖过程中,这个超市赚(亏)了多少钱?4.在某校举办的足球比赛中规定,胜一场得3分,平一场得1分,输一场不得分。

某班足球队共参加12场比赛,共得22分,已知这个队共输了2场,那么此队胜了几场?平了几场?5.一张课桌包括1块桌面和4条桌腿,1cm3 木料可制作50块桌面或200条桌腿,现在5 cm3木料,用多少木料制作桌面,多少木料制作桌腿,才能使制作的桌面和桌腿刚好配套?6.一份稿件,甲打字员单独完成需要20小时,乙打字员单独完成需要12小时。

现在先由甲打字员打若干小时,然后由乙打字员继续完成,从开始到完成共用了14小时。

问甲、乙两位打字员各打了几个小时?7.甲、乙两种商品单价之和为100元,甲商品降价10%,乙商品提价5%,调价后,甲、乙两商品的单价之和提高了2%,求甲、乙两种商品的单价。

8.在学完“有理数的运算”后,学校七年级各班选出5名学生组成一个代表队,在数学方老师在组织下进行一次知识竞赛。

竞赛规则是:每队都分别给出50道题,答对一题得3分,不答或答错一题倒扣1分。

(1)如果六班代表队最后得分142分,那么六班代表队回答对了几道题?(2)五班代表队的最后得分能为145分吗?请说明理由。

9.机械厂加工车间有85名工作,平均每人每天加工16个大齿轮或10个小齿轮,已知2个大齿轮与3个小齿轮配成一套,需分别安排多少钱工作加工大齿轮、小齿轮,才能使每天加工的大齿轮和小齿轮刚好配套?10.整理一批材料,如果由一个人单独做要用20小时,现在先安排一部分人用1小时整理,随后又增加4个和他们一起又做了2小时,恰好完成整理工作,假设每个人的工作效率相同,那么先安排整理的人员是多少人?11.小枫和小明相约到图书城去买书,小枫说:“听说花20元钱办一张会员卡,买书可享受八折优惠。

人教版七年级下册数学 二元一次方程组 分配问题训练(word 含答案)

人教版七年级下册数学 二元一次方程组  分配问题训练(word 含答案)

人教版七年级下册数学8.3 二元一次方程组---分配问题训练一、单选题1.某车间有60名工人生产太阳镜,1名工人每天可生产镜片200片或镜架50个.应如何分配工人生产镜片和镜架,才能使产品配套?设安排x名工人生产镜片,y名工人生产镜架,则可列方程组()A.60200250x yx y+=⎧⎨=⨯⎩B.6020050x yx y+=⎧⎨=⎩C.6050200x yx y+=⎧⎨=⎩D.60220050x yx y+=⎧⎨⨯=⎩2.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底16个,一个盒身与两个盒底配成一套罐头盒,现有18张白铁皮,设用x张制作盒身,y张制作盒底,可以使盒身和盒底正好配套,则所列方程组正确的是()A.181016x yx y+=⎧⎨=⎩B.1821016x yx y+=⎧⎨⨯=⎩C.1810216x yx y+=⎧⎨=⨯⎩D.181610x yx y+=⎧⎨=⎩3.某工厂有22名工人,一个工人每天可加工3个螺栓或10个螺帽,1个螺栓与4个螺帽配套,现要求工人每天加工的螺栓和螺帽完整配套且没有剩余.若设安排x个工人加工螺栓,y个工人加工螺帽,则列出正确的二元一次方程组为().A.2212100x yx y+=⎧⎨-=⎩B.223400x yx y+=⎧⎨-=⎩C.2224100x yx y+=⎧⎨-=⎩D.2212400x yx y+=⎧⎨-=⎩4.游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽.每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽是红色游泳帽的2倍.设男孩有x人,女孩有y人,则下列方程组正确的是()A.12(1)x yx y+=⎧⎨=-⎩B.2x yx y=⎧⎨=⎩C.12x yx y-=⎧⎨=⎩D.12(1)x yx y-=⎧⎨=-⎩5.刘刚同学买了两种不同的贺卡共8张,单价分别是1元和2元,共用10元.设刘刚买的两种贺卡分别为x张、y张,则下面的方程组正确的是()A.1028yxx y⎧+=⎪⎨⎪+=⎩B.128210x yx y⎧+=⎪⎨⎪+=⎩C.1028x yx y+=⎧⎨+=⎩D.8210x yx y+=⎧⎨+=⎩6.3月12日植树节,某校七年级1班参加义务植树活动,规则是女生每2人用1根竹杠挑1棵树,男生每人用1根竹杠挑2棵树,现有竹杠30根,树种50棵.如果设有x个女生,y个男生,则可列方程组是()A.+250230x yx y=⎧⎨+=⎩B.2502302yxxy⎧+=⎪⎪⎨⎪+=⎪⎩C.+2502230xyx y⎧=⎪⎨⎪+=⎩D.+2502302xyxy⎧=⎪⎪⎨⎪+=⎪⎩7.七年级学生在会议室开会,每排座位坐12人,则有11人没有座位;每排座位坐14人,则余1人独坐一排,则这间会议室的座位排数是()A.14B.13C.12D.158.用白铁皮做罐头盒.每张铁皮可制盒身16个,或制盒底48个,一个盒身与两个盒底配成一套罐头盒.现有15张白铁皮,用制盒身和盒底,可以刚好配多少套?()A.144套B.9套C.6套D.15套二、填空题9.某旅馆的客房有三人间和两人间两种,三人间每间每天60元,两人间每间每天50元,一个50人的旅游团到该旅馆住宿,租住了若干客房,且每个客房正好住满,一天共花去住宿费1100元,则三人间客房租了______间;10.现用190张铁皮做盒,一张可以做8个盒身或22个盒底,1个盒身与2个盒底配一个盒子,问用多少张铁皮制盒身、多少张铁皮制盒底,可制成一批完整的盒子?若设用x张铁皮制盒身,y张铁皮制盒底,列方程组为__________11.某中学七(2)班学生去劳动实践基地开展实践劳动,在劳动前需要分成x组,若每组11人,则余下一人,若每组12人,则有一组少4人,若每组分配7人,则该班可分成_____组.12.四川5•12大地震后,灾区急需帐篷.某企业急灾区所急,准备捐助甲、乙两种型号的帐篷共2000顶,其中甲种帐篷每顶安置6人,乙种帐篷每顶安置4人,共安置9000人.设该企业捐助甲种帐篷x顶、乙种帐篷y顶,可列方程组为_____.13.要把一张面值为20元的人民币换成零钱,现有足够的面值为1元、5元的人民币,那么共有______种换法.14.把一张面值20元的纸币换成1元和5元的两种纸币,则共有________种换法. 15.用1块A型钢板可制成4件甲种产品和1件乙种产品;用1块B型钢板可制成3件甲种产品和2件乙种产品;要生产甲种产品37件,乙种产品18件,则恰好需用A、B两种型号的钢板共______块.16.我国古典数学文献《增删算法统宗•六均输》中有这样一道题:甲、乙两人一同放牧,两人暗地里在数羊的数量.如果乙给甲9只羊,则甲的羊数量为乙的两倍;如果甲给乙9只羊,则两人的羊数量相同.则甲的羊数量为______只.三、解答题17.亚洲文明对话大会召开期间,大批的大学生志愿者参与服务工作.某大学计划组织本校只调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该大学共有多少名志愿者?(2)若同时调配36座和22座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?18.有大小两种货车,2辆大货车与3辆小货车一次可以运货12吨,5辆大货车与6辆小货车一次可以运货27吨.(1)3辆大货车和5辆小货车一次可以运货多少吨?(2)现有17吨货物需要运输,欲租用这两种货车运送,要求全部货物一次运完且每辆车必须装满,请列出所有的运输方案.19.一张方桌由1个桌面,4条桌腿组成,如果1m3木料可以做方桌的桌面50个或做桌腿300条,现有10m3木料,那么用多少立方米的木料做桌面,多少立方米的木料做桌腿,做出的桌面与桌腿,恰好能配成方桌?20.2022北京冬奥会期间,大学生志愿者参与服务工作,某大学计划组织本校全体志愿者统一乘车去会场,若单独调配40座新能源客车若干辆,则有8人没有座位;若只调配25座新能源客车,则用车数量将增加3辆,并空出7个座位.计划调配40座新能源客车多少辆?该大学共有多少名志愿者?参考答案:1.A2.B3.A4.D5.D6.D7.C8.A9.1010.190 2822 x yx y+=⎧⎨⨯=⎩11.812.x y2000 6x4y9000+=⎧⎨+=⎩13.514.315.1116.6317.(1)计划调配36座新能源客车6辆,该大学共有218名志愿者(2)需调配36座客车3辆,22座客车5辆18.(1)3辆大货车与5辆小货车一次可以运货19吨(2)租1辆甲种货车和7辆乙种货车,或租3辆甲种货车和4辆乙种货车,或租5辆甲种货车和1辆乙种货车19.用6 m3的木料做桌面,4 m3的木料做桌腿,恰好能配成方桌300张20.计划调配40座新能源客车4辆,该大学共有168名志愿者。

完整版七年级数学一元一次方程应用题专题练习

完整版七年级数学一元一次方程应用题专题练习

完整版七年级数学一元一次方程应用题专题练习七年级数学一元一次方程应用题专题练1.分配问题例题1:某班学生阅读图书,每人分3本,则剩余20本;每人分4本,则还缺25本。

问这个班有多少学生?解析:设班级人数为x,则根据题意,可以列出如下方程组:3x + 20 = 4x - 25解得:x = 45,因此这个班有45名学生。

变式1:某校组织师生春游,只租用45座客车,刚好坐满;只租用60座客车,可少租一辆,且余30个座位。

请问参加春游的师生共有多少人?解析:设参加春游的师生共有x人,则根据题意,可以列出如下方程组:45x = 60(x-1) + 30解得:x = 36,因此参加春游的师生共有36人。

2.调配与配套问题变式1:某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套,现要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?解析:设生产甲零件的天数为x,生产乙零件的天数为y,则根据题意,可以列出如下方程组:3x + 2y = 30120x + 100y = 最大值解得:x = 10,y = 0或y = 15.因此,在30天内生产最多的成套产品的方法是:连续生产10天甲零件,再连续生产15天乙零件。

变式2:用白铁皮做罐头盒,每张铁片可制盒身10个或制盒底30个。

一个盒身与两个盒底配成一套罐头盒。

现有100张白铁皮,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分利用白铁皮?解析:设制盒身的张数为x,制盒底的张数为y,则根据题意,可以列出如下方程组:x + 3y = 1002x = y解得:x = 20,y = 40.因此,应该用20张铁片制盒身,40张铁片制盒底。

变式3:一台挖土机和200名工人在水利工地挖土和运土,已知挖土机每天能挖土800立方米,每名工人每天能挖土3立方米或运土5立方米。

如何分配挖土和运土人数,使挖出的土能及时运走?解析:设运土工人的人数为x,挖土工人的人数为y,则根据题意,可以列出如下方程组:3y + 5x = 800x + y = 200解得:x = 100,y = 100.因此,应该让100名工人运土,100名工人挖土。

(完整word版)初一数学一元一次方程应用题各类型经典题

(完整word版)初一数学一元一次方程应用题各类型经典题

初一数学一元一次方程应用题各类型经典题一、行程问题:包括相遇、追击、环形跑道和飞行、航行的速度问题其基本关系是:路程=时间×速度(一)相遇问题的等量关系:甲行距离+乙行距离=总路程(二)追击问题的等量关系:(1)同时不同地:慢者行的距离+两者之间的距离=快者行的距离(2)同地不同时:甲行距离=乙行距离或慢者所用时间=快者所用时间+多用时间(三)环形跑道常用等量关系:(1)同时同向出发:快的走的路程-环行跑道周长=慢的走的路程(第一次相遇)(2)同时反向出发:甲走的路程+乙走的路程=环行周长(第一次相遇)(四)航行问题常用的等量关系:(1)顺水速度=静水速度+水流速度(2)逆水速度=静水速度-水流速度(3)顺速–逆速= 2水速;顺速+ 逆速= 2船速(4)顺水的路程= 逆水的路程例题1、甲、乙两地相距162公里,一列慢车从甲站开出,每小时走48公里,一列快车从乙站开出,每小时走60公里试问:1)两列火车同时相向而行,多少时间可以相遇?2)两车同时反向而行,几小时后两车相距270公里?3)若两车相向而行,慢车先开出1小时,再用多少时间两车才能相遇?4)若两车相向而行,快车先开25分钟,快车开了几小时与慢车相遇?5)两车同时同向而行(快车在后面),几小时后快车可以追上慢车?6)两车同时同向而行(慢车在后面),几小时后两车相距200公里?例题2、某连队从驻地出发前往某地执行任务,行军速度是6千米/小时,18分钟后,驻地接到紧急命令,派遣通讯员小王必须在一刻钟内把命令传达到该连队,小王骑自行车以14千米/小时的速度沿同一路线追赶连队,问是否能在规定时间内完成任务?练习:1、小明每天早上要在7:20之前赶到距家1000米的学校上学,一天,小明以80米/分的速度出发,5分后,小明的爸爸发现他忘了带语文书,于是,爸爸立即以180米/分的速度去追小明,并且在途中追上了他。

问:(1)爸爸追上小明用了多长时间?(2)追上小明时,距离学校还有多远?2、一架飞机飞行两城之间,顺风时需要5小时30分钟,逆风时需要6小时,已知风速为每小时24公里,求两城之间的距离和无风时飞机的速度?3、甲、乙两人环绕周长是400米的跑道散步,如果两人从同一地点背道而行,那么过2分钟他们两人就要相遇。

完整版)七年级配套问题应用题

完整版)七年级配套问题应用题

完整版)七年级配套问题应用题1.某车间有28名工人,他们生产螺栓和螺母。

每个工人每小时平均能生产12个螺栓或18个螺母。

如何分配工人来生产螺栓和螺母,使它们能够完美地搭配(一个螺栓需要两个螺母)?2.包装厂有42名工人,他们可以生产圆形铁片和长方形铁片。

每个工人每小时平均可以生产120张圆形铁片或80张长方形铁片。

如果将两张圆形铁片和一张长方形铁片组合在一起,就可以制作出一个密封圆桶。

如何安排工人的生产任务,才能使圆形和长方形铁片的配套合理?3.某部队派出一支由25人组成的小分队参加防汛抗洪斗争。

每个人每小时可以装18袋泥土,或者每两个人每小时可以抬14袋泥土。

如何安排这些人的工作,才能使装泥和抬泥的任务密切配合,同时确保清场干净?4.某车间加工机轴和轴承。

每个工人每天平均可以加工15个机轴或10个轴承。

该车间共有80名工人。

一根机轴和两个轴承可以组成一套。

如何分配工人来加工机轴和轴承,才能使每天生产的机轴和轴承能够完美地配套?5.某车间有22名工人。

每个工人每天可以生产1200个螺钉或2000个螺母。

一个螺钉需要配两个螺母。

为了使每天生产的螺钉和螺母能够完美地搭配,应该安排多少工人来生产螺钉和螺母?6.某服装厂加工车间有54名工人。

每个工人每天可以加工8件上衣或10条裤子。

如何分配这些工人,才能使每天生产的上衣和裤子能够完美地配套?7.制作一张桌子需要1个桌面和4个桌腿。

一立方米的木材可以制作20个桌面,或者制作400条桌腿。

现在有12立方米的木材。

如何计划用料,才能制作尽可能多的桌子?。

人教版七年级上册数学第一章有理数应用题专项训练(word版含答案)

人教版七年级上册数学第一章有理数应用题专项训练(word版含答案)

人教版七年级上册数学第一章有理数应用题专项训练1.某出租车沿某南北方向的公路上载客,约定前北为正,向南为负.某天自A地出发到收工时所走路线(单位:千米)为:+10,﹣3,+4,﹣8,+13,﹣2,+12,+8.(1)问收工时距A地多远?(2)若每千米路程耗油0.15升,问从A地出发到收工共耗油多少升?2.某自行车厂计划平均每天生产200辆,但是由于种种原因,实际每天生产量与计划量相比有出入.表是某周的生产情况(超产记为正,减产记为负):(1)根据记录的数据可知该厂星期三生产自行车多少辆?(2)产量最多的一天比产量最少的一天多生产自行车多少辆?3.出租车一天下午以家为出发地在东西方向营运,向东为正方向,向西为负方向,行车里程(单位:km)依先后载客次序记录如下:+8,﹣9,﹣7,+6,﹣3,﹣14,+5,+12(1)该出租车师傅将最后一名乘客送达到目的地,出租车离家有多远?(2)该出租车师傅下午离家最远有多少千米?(3)若汽车耗油量为0.2升/千米,这天下午接送乘客,出租车共耗油多少升?(4)若出租车起步价为10元,起步里程为3km(包括3km),超过部分每千米啊1.2元,问这天下午该出租车师傅的营业额是多少元?4.哈市出租车司机李师傅某天的营运全都是在一条东西方向的大街上运行的,若规定从出发点向东方向为正,向西方向为负,他这天走的里程如下:(单位:千米)-3,+4,-12,-5,+6,-8,-7,+9,-10,+11(1)李师傅第四次运营后的位置在出发点的哪个方向?多少千米处?(2)若每千米耗油0.04升,则这天营运耗油多少升?5.某服装厂一周计划生产2800套运动服,计划平均每天生产400套,超出计划产量的记为“+”,不足计划产量的记为“-”,下表记录的是该厂某一周的生产情况:表中星期六的记录情况被墨水涂污了.(1)根据记录可知,星期六工厂生产多少套运动服?(2)产量最多的一天比产量最少的一天多生产多少套运动服?(3)该服装厂工资结算方式如下:①每人每天基本工资200元.①以每天完成400套为标准,若当天超额完成任务,超额部分每套奖励10元;若当天未完成生产任务,则少生产一套扣掉15元.该服装厂采用流水作业方式生产,当天所得奖金总额按人均分配,若该工厂这一周每天都有20名工人生产,则这一周服装厂实际需要付给该工厂每名工人多少元?6.某市股民小张上星期五买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况(单位:元):(1)本周三收盘时,每股是多少元?(2)本周内最高价是每股多少元?最低价是每股多少元?(3)若小张在本周四交易,问他的盈利情况如何?(交易时的手续费忽略不计)7.据新闻报道,渝万高铁于即将通车,为了保证安全,某动车检修小组沿铁路检修,约定前进为正,后退为负,某天自甲地出发到收工时所走路线(单位:km)为+10,-3,+4,-2,-9,+13,-2,+12,+8,+5;问:(1)检修小组第几次回到甲地?(2)收工时距甲地多远?(3)若每千米耗电25度,则从甲地出发到收工共耗电多少度.8.某水果店以每箱40元的价格从水果批发市场购进8箱苹果.若以每箱净重10千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重的记录如下:-1,1,0,-2,-1,-1,-2,1.(1)这8箱苹果的总重量是多少千克?(2)如果把这些苹果全部以零售的形式卖掉,水果店将获利50%,那么苹果零售价应定为每千克多少元?(3)若第一天水果店以(2)中的单价售出了全部苹果的60%,第二天因害怕剩余的苹果腐烂变质,决定降价把剩余的苹果按原零售价的七五折销售完.请计算该水果店在销售这批苹果过程中盈利多少元?9.本市图书馆上周借书记录如下(超过100册记为正,不超过100册记为负):(1)上周星期三比星期四多借出多少册书?(2)上周平均每天借出多少册书?10.一辆出租车一天上午从某商场出发在东西大街上运行,若规定向东为正,向西为负,行车里程(单位:km)依次如下:+9,-8,-5,+6,-8,+9,-3,-7,-5,+10.(1)将最后一名乘客送到目的地,出租车离该商场有多远?(2)按出租车每行驶100km油耗为10L,1L汽油的售价为7.2元,计算出租车在该上午消耗汽油的金额是多少元?(3)如果不计其它成本,只计消耗的汽油费用,每千米收费3元,计算这名司机挣(或赔)了多少元?11.2020年新冠肺炎疫情的蔓延,使得医用口罩销量大幅增加,某口罩加工厂每名工人计划每天生产300个医用口罩,一周生产2100个.由于种种原因,实际每天生产量与计划量相比有出入.下表是工人小王某周的生产情况(超产记为正,减产记为负).(1)根据记录的数据可知,小王星期五生产口罩______个;(2)根据表格记录的数据可知,小王本周实际生产口罩数量为______个;(3)若该厂实行每周计件工资制,每生产一个口罩可得0.8元,若超额完成周计划工作量,则超过部分每个另外奖励0.2元;若完不成每周的计划量,则少生产一个扣0.25元,小王这一周的工资总额是多少元?(4)若该厂实行每日计件工资制,每生产一个口罩可得0.8元.若超额完成每日计划工作量,则超过部分每个另外奖励0.2元;若完不成每天的计划量,则少生产一个扣0.25元,小王这一周的工资总额是多少元?12.有一批试剂,每瓶标准剂量为250毫升,现抽取8瓶样品进行检测,超过或不足标准剂量的部分分别用正、负数表示,记录结果如下(单位:毫升):+6,-2,+3,+10,-6,+5,-15,-8.(1)这8瓶样品试剂的总剂量是多少?(2)若增加或者减少每瓶试剂剂量的人工费为10元/毫升,求将这8瓶样品试剂再加工制作成标准剂量需要多少人工费?13.有6筐白菜,以每筐25千克为标准质量,超过的千克数记作正数,不足的千克数记作负数,称量后的记录如图.请回答下列问题:(1)这6筐白菜中最接近标准质量的这筐白菜为____________千克.(2)与标准质量相比,这6筐白菜总计超过或不足多少千克?14.某水果店以每箱200元的价格从水果批发市场购进20箱樱桃,若以每箱净重10千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重的记录如下表:(1)求n的值及这20箱樱桃的总重量;(2)若水果店打算以每千克25元销售这批樱桃,若全部售出可获利多少元;(3)实际上该水果店第一天以(2)中的价格只销售了这批樱桃的60%,第二天因为害怕剩余樱桃腐烂,决定降价把剩余的樱桃以原零售价的70%全部售出,水果店在销售这批樱桃过程中是盈利还是亏损,盈利或亏损多少元.15.随着手机的普及,微信的兴起,许多人做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售.刚大学毕业的小明把自家的冬枣产品也放到了网上实行包邮销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);(1)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售________斤;(2)本周实际销售总量是否达到了计划数量?试说明理由;(3)若冬枣每斤按8元出售,每斤冬枣需要小明支付的平均运费是3元,那么小明本周销售冬枣实际共得多少元?16.出租车司机小李某天下午的运营是在南北走向的大街进行的,假定向南为正,向北为负,他那天下午行驶里程(单位:km)如下:+15,-3,+14,-11,+10,+4,-26(1)小李在送第几位乘客时行驶的路程最远?(2)小李送完最后一位乘客时所处的地点,在他最初出发地的什么方向?距离出发地多远?(3)若汽车耗油量为0.1L/km,这天下午汽车一共耗油多少升?17.新华文具用品店最近购进了一批钢笔,进价为每支6元,为了合理定价,在销售前五天试行机动价格,卖出时每支以10元为标准,超过10元的部分记为正,不足10元的部分记为负.文具店记录了这五天该钢笔的售价情况和售出情况,如表所示:(1)这五天中赚钱最多的是第_____天,这天赚钱_____元.(2)新华文具用品店这五天出售这种钢笔一共赚了多少钱?18.某股民上星期六买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况:(单位:元)(1)星期三收盘时每股是多少元?(2)本周内最高价是每股多少元?最低价是每股多少元?(3)已知该股民买进股票时付了0.15%的手续费,卖出时需付成交额0.15%的手续费和0.1%的交易税,如果他一直观望到星期六才将股票全部卖出,请算算他本周的收益如何?19.某城市治安巡逻队员乘车沿东西方向的一条主干线进行巡逻.某天早上从A地出发,晚上最后到达B地,约定向东为正方向,当天的行驶记录如下(单位:千米):+18,﹣9,+7,﹣12,﹣4,+12,﹣5,﹣6(1)B地在A地何方,相距多少千米?(2)问巡逻队员在距A地最远时的最远距离是多少千米?(3)每千米耗油0.6升,每升4.5元,这天共耗油费用为多少元?20.某冷库一天的冷冻食品进出记录如下表(运进用正数表示,运出用负数表示);(1)这天冷库的冷冻食品的质量相比原来是增加了还是减少了?请说明理由;(2)根据实际情况,现有两种方案:方案一:运进每吨冷冻食品费用200元,运出每吨冷冻食品费用400元;方案二:不管运进还是运出每吨冷冻食品费用都是300元.从节约运费的角度考虑,选择哪一种方案比较合算?参考答案:1.(1)34千米(2)9升2.(1)192辆(2)25辆3.(1)在家的西方,离家有2km(2)19千米(3)12.8升(4)128元4.(1)西方,16 千米(2)3升5.(1)星期六生产了448套运动服(2)多生产56套运动服(3)需付给每名工人1435元6.(1)34.5元(2)35.5元,26元(3)盈利5000元7.(1)第五次回到了甲地(2)距离甲地36km(3)从甲地出发到收工共耗电1700度8.(1)这8箱苹果的总重量是75千克(2)苹果的零售价应定为每千克6.4元(3)该水果店在销售这批苹果过程中盈利112元9.(1)上周星期三比星期四多借出39册书(2)上周平均每天借出105册书10.(1)出租车在商场西面,距商场2km处(2)消耗汽油的金额是50.4元(3)这名司机挣了159.6元11.(1)291(2)2111(3)1691元(4)1689.85元12.(1)1993毫升;(2)550元13.(1)24.5(2)总计超过3千克14.(1)5n ,203千克;(2)1075元;(3)是盈利的,盈利466元.15.(1)29(2)达到了计划数量(3)3585元16.(1)小李在送最后一位乘客时行车里程最远;(2)在他最初出发地的正南方向,距离出发地3km;(3)这天下午汽车共耗油8.3升17.(1)4,96(2)360元18.(1)34.5元(2)35.5元;26元(3)赚889.5元19.(1)B地在A地东方,相距1千米处(2)18千米(3)197.1元20.(1)减少了,理由见解析(2)从节约运费的角度考虑,选择方案二比较合算。

(完整word版)七年级一元一次方程解应用题分类【大量题目】【经典全面】

(完整word版)七年级一元一次方程解应用题分类【大量题目】【经典全面】

列方程解应用题第一讲和、差、倍、分,盈亏等实际问题的解法1.和、差、倍、分问题例1 小明做了一个实验,把黄豆育成豆芽后,重量可以增加7.5倍,如果小明想要得到3400千克黄豆芽,需要多少千克黄豆?2.盈亏问题例2 用化肥若干千克给一块麦田追肥,每公顷6kg还差17 kg;每公顷5kg就余下3kg.问这块麦田有多少公顷?共有化肥多少千克?3.劳力调配问题例3 在甲处劳动的有52人,在乙处劳动的有23人,现从甲、乙两地共调12人到丙处劳动,使在甲处劳动的人数是在乙处劳动人数的2倍,求应该从甲、乙两处各调走多少人?4.产品配套问题例4星光服装厂接受生产一些某种型号的学生服装的订单,已知每3m长的某种布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,计划用750 m长的这种布料生产学生服。

应分别用多少布料生产上衣和裤子才能恰好配套?共能生产多少套5.比赛积分问题例5 在一次有12队参加的足球循环赛(每两个队之间赛且只赛一场),规定胜一场计3分,平一场计1分,负一场计0分,某队在这次循环赛中胜场比负场多2场,结果共积18分,问该队战平几场?6.容积(体积)问题例6 一个容器装47 L水,另一个容器装58 L水。

如果将第二个容器的水倒满第一个容器,那么第二个容器剩下的水相当于这个容器容量的一半;如果将第一个容器的水倒满第二个容器,那么第一个容器的水相当于这个容器容积的三分之一,求这两个容器的容量各是多少?基础达标演练l.一桶油连桶重8 kg,油用去一半后连桶重4.5 kg,则桶中原有油多少?2.在甲处工作的有272人,在乙处工作的有196人,如果乙处工作人数是甲处工作人数的1/3,应从乙处调多少人到甲处?3.某课外兴趣小组的女生占全组人数的1/3,再加人6名女生后,女生人数就占原来的一半,问此课外兴趣小组原有多少人?4.甲、乙两仓共有大米50 t,从甲仓取出1/10,从乙仓取出2/5,则两仓所剩大米相等。

七年级一元一次方程:分配问题应用题(答案)

七年级一元一次方程:分配问题应用题(答案)

《一元一次方程:分配问题》应用题1、某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母。

为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?解:设x名工人生产螺钉,则有(22-x)人生产螺母,可得:2×1200x=2000(22-x)x=10所以生产螺母的人数为:22-10=12(人)2、某车间有28名工人生产螺栓和螺母,每人每小时平均能生产螺栓12个或螺母18个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套(一个螺栓配两个螺母)?3、某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套,现要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?【解】设安排生产甲零件的天数为x天,则安排生产乙零件的天数为(30-x)天,根据题意可得:2×120x=3×100(30-x),解得:x=50/3,则30-50/3=40/3(天),答:安排生产甲零件的天数为15天,安排生产乙零件的天数为12天4、用白铁皮做罐头盒,每张铁片可制盒身10个或制盒底30个。

一个盒身与两个盒底配成一套罐头盒。

现有100张白铁皮,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分利用白铁皮?【解】设用x张做盒身,则做盒底为(100-x)张则:2×10x=30(100-x),x=60.100-x =100-60=40.答:用60张做盒身,40张做盒底.5、用白铁皮做罐头盒,每张铁皮可制盒身16个,或盒底43个,一个盒身与两个盒底配成一套罐头盒。

现有150张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒?【解】设 用(150-x )张制盒身,x 张制盒底x x 43)150(162=-⨯ x = 64 答:用86张制盒身,64张制盒底6、一批学生在礼堂就座,如果一条长凳上坐3人,就有25人没有座位;如果一条长凳上坐4人,就正好空出19条长凳,问这批学生共有多少人?【解】328人7、一批学生乘汽车去观看“2008北京奥运会”如果每辆汽车乘48人,那么还多4人;如果每辆汽车乘50人,那么还有6个空位,求汽车和学生各有多少?【解】设汽车有x 辆,则650448-=+x x 5=∴x 答: 汽车5辆,学生244人8、把一些图书分给某班学生阅读,如果每人分3本,则 剩余20本;如果每人分4本,则还缺25本.问这个班有多少 学生?设这个班有x 个学生,则3x+20=4x-25x=459、某水利工地派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应怎样安排人员,正好能使挖出的土及时运走?【解】设X 人挖土,运土的则有(48-X)人,则:5X=3×(48-X )5X=144-3X 8X=144X=18 48-X=30答:应安排18人挖土,30人运土10、某校组织师生春游,如果只租用45座客车,刚好坐满;如果只租用60座客车,可少租一辆,且余30个座位.请问参加春游的师生共有多少人?【解】设租x辆45做客车45x=60(x-1) -3045x=60x-90 15x=90x=6 6×45=270人11、某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.•已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,•求这一天有几个工人加工甲种零件.12、有两个工程队,甲工程队有32人,乙工程队有28人,如果是甲工程队的人数是工程队人数的2倍,需从乙工程队抽调多少人到甲工程队?13、某班同学利用假期参加夏令营活动,分成几个小组,若每组7人还余1人,若每组8人还缺6人,问该班分成几个小组,共有多少名同学?14、机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?15、某厂一车间有64人,二车间有56人。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分配问题
1、某厂要在5天内完成18台拖拉机的装配任务,甲车间每天能装配2台,乙车间每天能
装配3台,应如何分配两车间的装配任务,使两车间的工作天数都是整天数?
2、有三个桶,容积比为7:8:9,原来甲桶盛水12千克,乙桶盛水200千克,丙桶盛水210
千克,把190公斤的水分别注入三个桶中恰好都注满,求三个桶各注水多少千克?
3、甲、乙、丙三个粮仓共存粮70吨,甲与乙存粮比为1:3,乙与丙存粮比为1:2,求甲、
乙、丙三个粮仓分别存粮多少吨?
4、三台拖拉机工耕地228亩,已知甲、乙两拖拉机耕地的亩数比是1:2,乙、丙两拖拉机
耕地的亩数比是5:3,求三抬拖拉机各耕地多少亩?
5、地板砖厂的坯料由白土、砂土、石膏、水按25:2:1:6的比例配制而成,先将前三种坯
料称好,共5600千克,应加多少千克的水后搅拌?这前三种坯料各称了多少千克?
6、某农户养鸡鸭一群,卖掉15只鸭后,鸡鸭只数比为2:1,在此以后,又卖掉45只鸡,
这时鸡鸭只数比为1:5,则该农户原来养鸭的只数是多少?
7、红旗机械厂生产甲、乙两种机器,甲种机器每台销售价为4万元,乙种机器每台销售价
为5万元。

(1)为使销售额达到120万元,若两种机器要生产,则应安排生产甲、乙两种机器各多少台?
(2)若市场对甲种机器的需求量不超过20台,对乙种机器的需求量不超过15台,工厂为确保120万元销售额,应如何安排生产计划?
8、某仓库有甲种货物20件和乙种货物29件要运往百货公司.每辆大卡车每次可运甲种货
物5件或运甲种货物4件和乙种货物3件;每辆小卡车每次可运乙种货物10件或运甲种货物2件和乙种货物5件.每辆大卡车每次的远费为300元,每辆小卡车每次的远费为180元.
(1)用大卡车运甲种货物,小卡车运乙种货物,需大、小卡车各几辆次?
(2)大、小卡车每次都同时装运甲、乙两种货物,需大、小卡车各几辆次?
(3)(1),(2)两种运输方案哪一种的运输费用省,较省一种的运输费用是多少?
9、某厂生产A,B两种不同型号的机器,按原生产计划安排,A型机的生产成本为每台3
万元,B型机的生产成本为每台2万元,完成全部计划的总成本为69万元.进一步核算发现,若把原计划中A型机的产量增加5台,B型机的产量减少5台,则A型机的成本将降为每台2.5万元,B型机的成本升为每台2.1万远,生产的总成本为64.7万元.
求原计划中A,B两种机器共生产多少台.。

相关文档
最新文档