飞行原理简介共91页文档

合集下载

飞行原理_精品文档

飞行原理_精品文档

飞行原理低速飞机翼型前缘较圆鈍高速飞机翼型前缘较尖平直机翼有极好的低速特性椭圆机翼诱导阻力最小梯形机翼矩形加椭圆优点,升阻比特性和低速特性后掠翼、三角翼高速特性基本术语:翼弦-翼型前沿到后沿的连线弦。

相对厚度(厚弦比)翼型最大厚度与弦长的比值。

翼型的中弧曲度越大表明翼型的上下表面外凸程度差别越大。

翼展-机翼翼尖之间的距离。

展弦比-机翼翼展与平均弦长的比值。

飞机展弦比越大,诱导阻力越小。

后掠角-机翼1/4弦线与机身纵轴垂直线之间夹角。

后掠角为了增大临界马赫数。

迎角相对气流方向与翼弦夹角。

临界迎角-升力系数最大时对应的迎角。

有利迎角-升阻比最大时对应的迎角。

阻力阻力=诱导阻力+废阻力诱导阻力:1、大展弦比机翼比小展弦比机翼诱导阻力小。

2、翼梢小翼可以减小飞机的诱导阻力。

3、诱导阻力与速度平方成反比。

废阻力:废阻力=压差阻力+摩擦阻力+干扰阻力1、摩擦阻力:飞机表面积越大或表面越粗糙,摩擦阻力也越大。

2、压差阻力:与迎风面积、机翼形状、迎角有关。

3、干扰阻力:废阻力大小与速度的平方成正比。

总阻力是诱导阻力和废阻力之和。

在低速(起降)时诱导阻力占主要,在高速(巡航)时废阻力占主导。

诱导阻力=废阻力时,总阻力最小,升阻比最大。

放下起落架,升阻比减小。

增升装置前缘缝翼+后缘襟翼前缘缝翼:位于机翼前缘,延缓机翼气流分离,提高最大升力系数和临界迎角。

在迎角较小时打开,会降低升力系数。

只有在接近临界迎角时打开,才能起到增升的作用。

有的飞机装有“翼尖前缘缝翼”,其主要作用是在大迎角下延缓翼尖部分的气流分离,提高副翼的效能,改善飞机横侧稳定性和操纵性。

后缘襟翼:简单襟翼+开缝襟翼+后退襟翼+后退开缝襟翼+前缘襟翼1、简单襟翼—改变了翼型弯度—升阻比降低。

2、开缝襟翼—机翼弯度增大;最大升力系数增大多,临界迎角降低不多。

3、后退襟翼—增大了机翼弯度和机翼面积,增升效果好,临界迎角降低较少。

4、后退开缝襟翼(查格襟翼+富勒襟翼)—兼有后退襟翼和开缝襟翼优点。

飞机飞行的原理图解

飞机飞行的原理图解

飞机飞行的原理图解飞机是指具有一具或多具发动机的动力装置产生前进的推力或拉力,由机身的固定机翼产生升力,在大气层内飞行的重于空气的航空器。

飞机飞行原理:1、飞机上升是根据伯努利原理,即流体(包括炝骱退流)的流速越大,其压强越小;流速越小,其压强越大。

2、飞机的机翼做成的形状就可以使通过它机翼下方的流速低于上方的流速,从而产生了机翼上、下方的压强差(即下方的压强大于上方的压强),因此就有了一个升力,这个压强差(或者说是升力的大小)与飞机的前进速度有关。

3、当飞机前进的速度越大,这个压强差,即升力也就越大。

所以飞机起飞时必须高速前行,这样就可以让飞机升上天空。

当飞机需要下降时,它只要减小前行的速度,其升力自然会变小,小于飞机的重量,它就会下降着陆了。

飞机的组成:大多数飞机都是由机翼、机身、尾翼、起落装置和动力装置五个主要部分组成。

机翼:主要功用是为飞机提供升力,以支持飞机在空中飞行,也起一定的稳定和操纵作用。

在机翼上一般安装有副翼和襟翼。

操纵副翼可使飞机滚,放下襟翼能使机翼升力系数增大。

另外,机翼上还可安装发动机、起落架和油箱等。

1.机身:主要功用是装载乘员、旅客、武器、货物和各种设备,还可将飞机的其它部件如尾翼、机翼及发动机等连接成一个整体。

2.尾翼:包括水平尾翼(平尾)和垂直尾翼(垂尾)。

水平尾翼由固定的水平安定面和可动的升降沧槌伞4怪蔽惨碓虬括固定的垂直安定面和可动的方向舵。

尾翼的主要功用是用来操纵飞机俯仰和偏转,以及保证飞机能平稳地飞行。

3.起落装置:飞机的起落架大都由减震支柱和机轮组成,作用是起飞、着陆滑跑,地面滑行和停放时支撑飞机。

4.动力装置:主要用来产生拉力和推力,使飞机前进。

其次还可为飞机上的其他用电设备提供电源等。

除了发动机本身,动力装置还包括一系列保证发动机正常工作的系统。

飞行原理简介

飞行原理简介

1.摩擦阻力——空气的物理特性之一就是粘性。当空气流过飞机表面时,由于粘性,空气同飞机表面发生摩擦,产生一个阻止飞机前进的力,这个力就是摩擦阻力。摩擦阻力的大小,决定于空气的粘性,飞机的表面状况,以及同空气相接触的飞机表面积。空气粘性越大、飞机表面越粗糙、飞机表面积越大,摩擦阻力就越大。
2.压差阻力——人在逆风中行走,会感到阻力的作用,这就是一种压差阻力。这种由前后压力差形成的阻力叫压差阻力。飞机的机身、尾翼等部件都会产生压差阻力。
②飞机的方向操纵性,就是在飞行员操纵方向舵后,飞机绕立轴偏转而改变其侧滑角等飞行特性。与俯仰角相似,在直线飞行中,每一个脚蹬位置,对应着一个侧滑角,蹬右舵,飞机产生左侧滑;蹬左舵,飞机产生右侧滑。
方向舵偏转后,同样产生方向舵枢轴力矩,飞行员需要用力蹬舵才能保持方向舵偏转角不变。方向舵偏转角越大,气动动压越大,蹬舵力越大。
4.起落装置——飞机的起落架大都由减震支柱和机轮组成,作用是起飞、着陆滑跑,地面滑行和停放时支撑飞机。
5.动力装置——动力装置主要用来产生拉力和推力,使飞机前进。其次还可为飞机上的其他用电设备提供电源等。现在飞机动力装置应用较广泛的有:航空活塞式发动机加螺旋桨推进器、涡轮喷气发动机、涡轮螺旋桨发动机和涡轮风扇发动机。除了发动机本身,动力装置还包括一系列保证发动机正常工作的系统。
①飞机的俯仰平衡是指作用于飞机的各俯仰力矩之和为零。飞机取得平衡后,不绕纵轴转动,迎角保持不变。作用于飞机的俯仰力矩很多,主要有:机翼力矩、水平尾翼力矩及拉力(推力)力矩。
影响俯仰平衡的因素:加减油门,收放襟翼、收放起落架和重心变化等。飞行中,影响飞机俯仰的因素是经常存在的。为了保持飞机的俯仰平衡,飞行员可前后移动驾驶杆偏转升降舵或使用调整片,产生操纵力矩,来保持力矩的平衡。

飞行的原理和应用知识点

飞行的原理和应用知识点

飞行的原理和应用知识点1. 简介飞行是指物体在大气中通过空气动力学原理实现在空中的移动。

飞行已经成为现代文明中不可或缺的一部分,广泛应用于民航、军事航空、航天等领域。

本文将介绍飞行的基本原理和应用的知识点。

2. 飞行原理飞行原理是指飞行器起飞、维持和改变飞行状态的科学原理。

主要涉及以下几个方面:•气动力学: 气动力学研究空气在物体表面上的作用力和物体在空气中运动的关系。

主要包括升力、阻力、势能和动能等概念。

•机翼设计: 机翼是飞行器最重要的部件之一,充当飞行中生成升力的关键组件。

机翼的形状、曲率、悬挂角度等参数对飞行性能产生重要影响。

•推进系统: 推进系统通过提供动力使飞行器前进。

常见的推进系统包括螺旋桨、喷气发动机、火箭发动机等。

•操纵系统: 操纵系统是控制飞行器方向和姿态的关键部件。

它包括舵面、操纵杆、自动驾驶系统等。

3. 飞行器的种类和应用飞行器根据不同的功能和应用可以分为多个类别,下面介绍几种常见的飞行器和其应用。

3.1 飞机飞机是一种主要依靠机翼产生升力并通过推进系统前进的飞行器。

根据用途和功能,飞机可以分为军用飞机和民用飞机两大类。

军用飞机包括战斗机、轰炸机、侦察机等,用于军事目的。

民用飞机用于民航运输、货运、救援和航空旅游等领域。

3.2 直升机直升机是一种通过旋转主旋翼产生升力并通过尾桨提供推进力的飞行器。

其特点是垂直起降能力和悬停能力。

直升机广泛应用于军事、民航、医疗救援等领域。

3.3 无人机无人机是一种不需要人操控的飞行器,通过遥控或自主导航系统进行飞行。

无人机在军事侦查、航空摄影、农业喷洒、气象观测等方面有着广泛的应用。

3.4 航天器航天器是指进入外层空间的飞行器,包括卫星、航天飞机、火箭等。

航天器常用于通信、气象监测、科学研究和太空探索等领域。

4. 飞行安全和应用技术飞行安全是飞行中最重要的问题之一。

为了保证飞行安全,飞行员需要经过专业的培训,并遵守飞行规章制度。

同时,飞行器的设计、制造和维护也要符合相关标准。

飞行原理简介 91页PPT文档

飞行原理简介 91页PPT文档
拉力力矩、垂直尾翼 和方向舵产生的力矩。⑶横侧平衡:指作用于飞机的左滚力矩和右滚力矩彼
此相等,飞机不绕 纵轴滚转。飞机的滚转力矩主要有:左、右机翼的升力对重心形成的力矩
2019/8/25
第三节、飞机的安定性
飞机的安定性就是在飞行中,当飞机受微 小扰动(如气流波动)而偏离原来状态, 并在
翼的作用、产生一个对飞机重心的安定力 2019/矩8/25 使机头左、右偏转来消除飞机侧滑的。
3、飞机的横侧安定性: 是指在飞行中,飞机受到扰动以致横侧平衡状态
遭到破坏,而在扰动消失后,收音机又 趋向于恢复原来的横侧平衡状态。飞机的横侧安
定性主要靠机翼上的反角、后掠角和垂直尾 翼的作用产生的。 飞机的方向安定性和横侧安定性之间有着密切的
2019/8/25
3.诱导阻力 伴随升力的产生而产生的阻力称为诱导阻力。诱导阻力
主要来自机翼。当机翼产生升力时,下表面的压力比上表 面的压力大,下表面的空气会绕过翼尖向上表面流去,使 翼尖气流发生扭转而形成翼尖涡流。翼尖气流扭转,产生 下洗速度,气流方向向下倾斜,形成洗流升力亦随之向后 倾斜。 日常生活中,我们有时可以看到,飞行中的飞机翼尖处拖 着两条白雾状的涡流索。这是因为旋转着的翼尖涡流内压 力很低,空气中的水蒸汽因膨胀冷却,凝结成水珠,显示 出了翼尖涡流的轨迹。 4.干扰阻力 飞机飞行中各部分气流互相干扰所引起的阻力称之为干 扰阻力
2019/8/25
3.空气密度的影响 空气密度越大,升力和阻力越大。升力、阻力的大小与空
气密度成正比。根据动压公式(g=1/2ρv,2),空气密度增大后 ,气流流过机翼时的动压变化大。所以机翼上下的压力差和 机翼前后的压力差变化也大4.机真的影响 (1)面积:升力和阻力与面积成正比。 (2)平面形状:机翼产生升力后出现涡流,使上翼面压强增 加,下翼面压强减小,机翼升力受到损失,并产生诱导阻力 。当机翼平面形状接近椭圆形时,升力损失最小,诱导阻力 也较小,平面形状为矩形的机翼升力损失较大,诱导阻力也 较大。而梯形机翼居 两者之间,因此椭圆形机翼空气动力性 能最好。 (3)展弦比:展弦比越大涡流影响所占的比例越小,升力损 失和诱导阻力也越小。

飞机能飞的原理是什么

飞机能飞的原理是什么

飞机能飞的原理是什么
飞机能够飞行的原理是多方面的,涉及到空气动力学、引擎推进、机翼设计等多个方面的知识。

首先,我们来看看飞机的机翼设计。

飞机的机翼采用了空气动力学的原理,机翼的上表面比下表面要凸出,这样就形成了一个所谓的卡门涡,使得上表面的气压比下表面小,从而产生了升力。

而升力是飞机能够飞行的重要原因之一。

其次,飞机的推进系统也是飞行的重要原理之一。

飞机通常采用喷气发动机或者螺旋桨发动机来提供推进力。

喷气发动机通过压缩空气、燃烧燃料来产生高速气流,从而产生推力,推动飞机前进。

而螺旋桨发动机则是通过旋转螺旋桨提供推进力,使飞机飞行。

此外,飞机的飞行还涉及到空气动力学的原理。

当飞机在空中飞行时,空气对飞机的作用力包括升力、阻力、重力和推进力。

通过合理的机翼设计和飞机结构设计,飞机能够克服阻力,产生足够的升力,从而保持飞行姿态。

另外,飞机的飞行还需要考虑飞行稳定性和操纵性。

飞机的稳定性是指飞机在飞行过程中能够保持平衡的能力,而操纵性则是指飞机在飞行中能够按照飞行员的指令进行各种动作。

为了保证飞机的稳定性和操纵性,飞机需要设计合理的飞行控制系统和自动驾驶系统,以及进行严格的飞行测试和模拟训练。

总的来说,飞机能够飞行的原理是多方面的,涉及到空气动力学、引擎推进、机翼设计、飞行稳定性和操纵性等多个方面的知识。

只有这些原理相互配合,飞机才能够安全、稳定地在空中飞行。

飞机的飞行原理是航空工程和航空科学的重要内容,也是现代航空技术的基础。

飞行原理_精品文档

纵向上反角:机翼安装角与水平尾翼安
装角之差叫纵向上反角 (见图2—13)
图2—13 飞机纵向上反角
2.3.2 机身的几何形状和参数
为了减小阻力,一般机身前部为圆头锥 体,后部为尖削的锥体,中间较长的部分为 等剖面柱体。表示机身几何形状特征的参数 有:机身长度 Lsh 、最大当量直径 Dsh 及其所 在轴向的相对位置和机身的长细比sh Lsh / Dsh 。
4% -6%,最大弯度位置靠前。随着飞行速度 的提高翼型的弯度也逐渐减小,高速飞机为 减小阻力,大多采用弯度为零的对称翼型 (j)。
图2-8 各种不同的翼剖面
2.机翼平面形状和参数
从飞机顶上向下看去,机翼在平面上的 投影形状叫机翼平面形状(见图2-9)。表示机 翼平面形状的参数有:
(1)机翼面积:机翼在水平面内的投影面 积叫机翼面积,用符号S表示,如图2—9中 阴影部分所示。
(1)弦线、弦长:翼型最前端的一点叫机翼前缘, 最后端的—点叫机翼后缘。连接机翼前缘和 机翼后缘的线叫弦线,也叫翼弦。弦线的长 度叫几何弦长简称弦长。用符号b表示(见图 2—7)。
(2)厚度、相对厚度:翼弦垂直线与翼型上下翼 面的交点之间距离称为翼型的厚度。厚度的 最大值称为最大厚度 Cmax 。最大厚度与弦长 之比 C (Cmax / b) 100 % 称为相对厚度。
飞行原理
Principles of Flight
长沙航空职业技术学院飞机及发动机维 修教研室
机翼(Wings)
➢ 机翼产生升力。
➢ 机翼在飞机的稳定性和操纵性中扮演重要角色,机翼上安装 的可操纵翼面主要有副翼、襟翼、前缘襟翼、前缘缝翼。
➢ 机翼还用于安装发动机、 起落架及其轮舱、油箱。
上单翼
●机翼下单的翼分类

飞行原理简介

关系,不能一个安定性很大,一个却很 小。例如,横侧安定性过强会使飞机产生飘摆。
2019/11/22
第四节、飞机的操纵性
动。(3)立轴:通过飞机重心并垂直于纵轴和横轴 的轴线,叫飞机的立铀。飞机绕立轴的转动,叫
方向偏转。
2019/11/22
第二节、飞机的平衡
飞机处于平衡状态时,飞行速度的大小和 方向都保持不变,也不绕重心转
动。飞机平衡包括以下两种平衡:
2019/11/22
1、作用力平衡 包括升力和重力平衡、拉力和阻力平衡。
后缘重新汇合向后流去。因机翼表面突起的影响,上表面
流线密集,流管细,其气流流速快、压力小;而下表面流
线较稀疏,流管粗, 其气流流速慢,压力较大。因此,
产生了上下压力差。这个压力差就是空气动力(R), 它垂
直流速方向的分力就是升力(Y)。升力维持飞机在空中飞
行。

机翼升力的着力点,即升力作用线与翼弦的交点叫压
2019/11/22
第四节 飞机的增升装置原理
飞机的增升装置主要有前缘缝翼、前缘襟 翼、后缘襟翼,增升原理主要是三条:增 大机翼弯度、增加机翼面积、增加机翼上 表面附面层能量,延缓上表面气流分离。 缝翼和襟翼开缝的主要作用就是延缓机翼 表面的气流分离,襟翼的作用主要是增加 机翼弯度和面积。
2019/11/22
2019/11/22
第三节 影响升力和阻力的因素
1.机翼迎角的影响 (1)在一定范围内,机翼迎角增加,升力则增大。因为机翼迎角增加后,
机翼上表面气流的流线更加密集,流速更块,压力更小(吸力更大),压差 更大。 (2)机翼迎角增加,阻力随之增大。因为随着机翼迎角的增加,机翼后部 的涡流区也不断扩大,压力减小;而机翼前部气流压力增大,前后压力差( 阻力)增大。机翼升力增加诱导阻力页随之增加。 2.速度的影响 相对气流的速度越大,升力和阻力就越大。实验证明:升力和阻力与速 度的平方成正比。 (1)根据柏努利定理,机翼上表面的相对气流流速越快,静压越小,上下 压力差则越大,升力就越大。 (2)气流流速越快,机翼前部的气流动压越大,受档后转换成的静压也就 越大,前后压力差也越大。压差阻力越大.另外由于相对速度大摩擦阻力 也随之增大。 。

飞行原理知识点范文

飞行原理知识点范文飞行原理是指飞机在空中稳定飞行和实现姿态调整的物理原理。

飞行原理涉及到气动力学、重力、动力和控制等多个方面的知识。

下面将详细介绍飞行原理的知识点。

1.气动力学气动力学是研究空气在物体表面上所产生的力和力矩的科学。

飞机飞行的基本原理是利用空气的运动、压力和阻力产生升力并克服重力。

其中,升力是支撑飞机的力量,重力是向下的力量。

通过控制机翼表面的气流动态,可以有效地产生升力。

2.升力和重力升力是飞机飞行的主要支撑力量,是由机翼产生的。

机翼上的反压区和高速流动的气流会产生一个向上的力,即升力。

升力的大小与机翼的面积、空气的密度和速度以及攻角有关。

当升力大于重力时,飞机就能够飞起来。

重力是指地球对飞机的吸引力,是飞机的自身重量。

在飞行中,飞机需要克服重力才能保持在空中。

3.阻力和推力阻力是飞机运动中所受到的空气阻碍力,是飞机飞行的抵消力量。

阻力的大小与飞机速度、飞行姿态以及飞机表面的粗糙度等因素有关。

减小阻力可以提高飞机的速度和燃油效率。

推力是指飞机在空中运动时向前推进的力量,是由发动机提供的。

推力的大小与发动机的功率、喷气速度以及喷嘴的方向和面积有关。

通过调整发动机的推力大小,可以控制飞行速度和飞机的姿态。

4.控制飞机的飞行姿态可以通过控制飞机的控制面来实现。

主要包括方向舵、升降舵和副翼等。

方向舵用于控制飞机的左右转向,升降舵用于控制飞机的升降运动,副翼用于控制飞机的滚转运动。

通过控制这些控制面的运动,可以改变飞机所受力的分布,从而实现飞机的姿态调整和稳定飞行。

对于大型飞机,还可以通过自动飞行系统来实现飞机的控制。

6.前进气流和气动力学飞机在飞行中通过改变机翼的迎角和应用控制面的运动,以调整机翼表面的气流动态。

不同的迎角和控制面运动会对气流产生不同的影响,从而产生不同的升力和阻力。

7.机翼结构和空气动力学机翼是飞机的主要承力构件,其结构设计需要考虑到气动力学原理。

机翼的形状和弯曲度能够影响气流在机翼上的流动和气动特性,进而影响到升力和阻力的产生。

飞机飞行的工作原理

飞机飞行的工作原理嗨,朋友们!你们有没有抬头看着天空中飞过的飞机,心里就像有只小猫在挠,特别好奇它到底是怎么飞起来的呢?今天呀,我就来给大家好好讲讲这飞机飞行的工作原理。

咱先得说说飞机的翅膀,也就是机翼。

这机翼可真是个神奇的东西,就像鸟儿的翅膀一样。

你看鸟儿在天空飞得多自在,机翼就有着类似的秘密。

机翼的形状是上凸下平的,这就像是一个小魔术的开始。

当飞机在跑道上加速向前跑的时候,空气就像一群调皮的小精灵,在机翼周围跑来跑去。

由于机翼上表面是凸起来的,空气就得跑更远的路才能从机翼前端到达后端,就好像你在一个弯曲的跑道上跑步,肯定比在直跑道上累一些吧。

而下表面平平的,空气跑的路就短。

这样一来,上表面的空气流速就比下表面快。

这时候就有个有趣的现象啦,流速快的地方压力小,流速慢的地方压力大。

这就好像在一场拔河比赛,一边力气小,一边力气大,那肯定力气大的那边会把东西往自己这边拉呀。

机翼下表面压力大,上表面压力小,这个压力差就产生了一个向上的力,这个力就叫做升力。

哇塞,就是这个升力把飞机给托起来啦。

那飞机光靠这个升力就能飞了吗?还不行呢。

飞机还有个重要的部分就是发动机。

发动机就像飞机的心脏,它提供动力。

你可以想象发动机是个超级大力士,它通过燃烧燃料,把空气往后推。

这就好比你在水里游泳,你用手往后划水,那你的身体就会往前动。

飞机发动机把空气往后推,飞机就会往前跑啦。

而且发动机的推力要足够大,才能让飞机在跑道上加速到足够快的速度,这样机翼才能产生足够的升力让飞机起飞。

我有个朋友小李,他之前就对飞机特别着迷。

有一次我们一起去机场看飞机,他就特别兴奋地跟我说:“你看这飞机,这么个大铁家伙,怎么就能飞起来呢?简直太不可思议了。

”我就笑着跟他解释这机翼和发动机的原理。

他眼睛瞪得大大的,说:“原来如此啊,就这么简单的道理就能让飞机上天,真是太神奇了。

”飞机在空中飞行的时候,还得保持平衡呢。

这就需要飞机的尾翼来帮忙了。

尾翼就像飞机的小尾巴,它可以控制飞机的俯仰、偏航和滚转。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/4/12
阻力的产生 空气动力沿气流方向的分力阻碍飞机
在空气中前进的力称为阻力,机翼的阻力 包括压差阻力、摩擦阻力和诱导阻力。
2020/4ห้องสมุดไป่ตู้12
1.压差阻力 相对气流流过机翼时,机翼前缘的气流受阻,流速减慢
,压力增大;而机翼后缘气流分离,形成涡流区,压力减 小。这样,机翼前后产生压力差形成阻力。这个阻力称为 压差阻力。 这点可以作如下理解:高速行驶的汽车后面时常扬起尘土 ,就是由于车后涡流区的空气压力小,吸起灰尘的缘故。 2.摩擦阻力 在飞行中,空气贴着飞机表面流过,由于空气具有粘性 ,与飞机表面发生摩擦,产 生了阻止飞机前进的摩擦阻 力。
后缘重新汇合向后流去。因机翼表面突起的影响,上表面
流线密集,流管细,其气流流速快、压力小;而下表面流
线较稀疏,流管粗, 其气流流速慢,压力较大。因此,
产生了上下压力差。这个压力差就是空气动力(R), 它垂
直流速方向的分力就是升力(Y)。升力维持飞机在空中飞 行。
机翼升力的着力点,即升力作用线与翼弦的交点叫压
2020/4/12
(三)尾翼 飞机尾翼包括水平尾翼和垂直尾翼。水
平尾翼由固定的水平安定面和可动的升降 舵租成。垂直尾翼则包括固定的垂直安定 面和可动的方向舵。尾翼的主要功用是用 来操纵飞机俯仰和偏转,并保证飞机能平 稳地飞行。
2020/4/12
(四)起落装置 起落装置是用来支持飞机并使它能在地
2020/4/12
第二章、飞机的升力和阻力
2020/4/12
第一节、气流特性
气流特性是指空气在流动中各点流速、压 力、密度等参数的变化规律,气流特性是 空气动力学的重要研究课题,对飞机的飞 行原理非常重要。
2020/4/12
空气动力:空气流过物体或物体在空
气中运动时,空气对物体的作用力称为空 气动力。如有风的时候,我们站着不动, 会感到有空气的力量作用在身上;没有风 的时候,我们跑步时也感到有空气的力量 作用在身上。这是空气动力的表现形式。 再如:飞机在飞行中受到的升力和阻力也 是空气动力的表现形式。
2020/4/12
气流:流动的空气称为气流,如风。 稳定气流和不稳定气流:所谓"稳定气流",
就是空气流动时,空间各点上的参数不随 时间而变化。如果空气流动时,空间各点 上的参数随时间而改变,这样的气流就是" 不稳定气流"。以下几个概念及定理都是只 适用于稳定气流。
2020/4/12
流线:在稳定气流中,空气微团流动的路
线,叫做"流线"。
流线谱:流体流过物体时整个流线组成的
图形称为流线谱。根据流线谱可从理论上 对空气动力作定性的分析。
2020/4/12
第二节 升力和阻力的产生
2020/4/12
升力
升力的产生
从空气流过机翼的流线谱可以看出:相对气流流过机翼 时,分成上下两股,分别沿机翼上表面流过,而在机翼的
2020/4/12
3.诱导阻力 伴随升力的产生而产生的阻力称为诱导阻力。诱导阻力
主要来自机翼。当机翼产生升力时,下表面的压力比上表 面的压力大,下表面的空气会绕过翼尖向上表面流去,使 翼尖气流发生扭转而形成翼尖涡流。翼尖气流扭转,产生 下洗速度,气流方向向下倾斜,形成洗流升力亦随之向后 倾斜。 日常生活中,我们有时可以看到,飞行中的飞机翼尖处拖 着两条白雾状的涡流索。这是因为旋转着的翼尖涡流内压 力很低,空气中的水蒸汽因膨胀冷却,凝结成水珠,显示 出了翼尖涡流的轨迹。 4.干扰阻力 飞机飞行中各部分气流互相干扰所引起的阻力称之为干 扰阻力
第一节 飞机一般介绍
2020/4/12
(一)机翼 飞机机翼的主要功用是产生升力,以支
持飞机在空中飞行,也起一定的稳定和操 纵作用。在机翼上一般安装有副翼和襟翼 。操纵副翼可使飞机滚转,放下襟翼能使 机翼升力增大。
2020/4/12
(二)机身 飞机机身的主要功用是装载乘员、旅客
、武器、货物和各种设备,还可将飞机的 其他部件如尾翼、机翼及发动机等连接成 一个整体。
空气的密度、温度和压力是确定空气状态 的三个主要参数。飞行中,飞机的空气动 力和大小和飞行性能的好坏都与这些参数 有关。
粘性和压缩性是空气的两种物理性质。在 飞行中,飞机之所以会受到空气阻力原因 之一就是空气有粘性。而飞机以接近音速 或者超过音速飞行时会出现阻力突增等现 象则与空气的压缩性有关。
2020/4/12
第三节 影响升力和阻力的因素
1.机翼迎角的影响 (1)在一定范围内,机翼迎角增加,升力则增大。因为机翼迎角增加后,
机翼上表面气流的流线更加密集,流速更块,压力更小(吸力更大),压差 更大。 (2)机翼迎角增加,阻力随之增大。因为随着机翼迎角的增加,机翼后部 的涡流区也不断扩大,压力减小;而机翼前部气流压力增大,前后压力差( 阻力)增大。机翼升力增加诱导阻力页随之增加。 2.速度的影响 相对气流的速度越大,升力和阻力就越大。实验证明:升力和阻力与速 度的平方成正比。 (1)根据柏努利定理,机翼上表面的相对气流流速越快,静压越小,上下 压力差则越大,升力就越大。 (2)气流流速越快,机翼前部的气流动压越大,受档后转换成的静压也就 越大,前后压力差也越大。压差阻力越大.另外由于相对速度大摩擦阻力 也随之增大。 。
面和水平面起落和停放。 陆上飞机的起落装置,大都又减震支柱
和机轮等租成。它是用于起飞、着陆滑跑, 地面滑行和停放时支撑飞机。
2020/4/12
(五)动力装置 动力装置主要用来产生拉力或推力,使
飞机前。其次还可以为飞机上的用电设备 提供电源,为空调设备等用气设备提供气 源。
2020/4/12
第二节 大气的一般介绍
力中心。
2020/4/12
机翼表面的压力分布
机翼表面上各点的压力大小,用箭头长短表示 ,凡是箭头方向朝外,表示比大气压力低的吸 力(负压力);凡是箭头方向指向机翼表面的 ,表示比大气压力高的正压。从图可以看出, 由于机翼上表面的压力所形成的升力在总升力 中占60-80%,而下表面的压力所形成的升力, 只占总升力的20-40%。所以不能认为:飞机被 支托在空中,主要是空气从机翼下面冲击机翼 的结果。
相关文档
最新文档