瓮安县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析
城区民族中学2018-2019学年高二上学期数学期末模拟试卷含解析

城区民族中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.已知定义在R上的可导函数y=f(x)是偶函数,且满足xf′(x)<0,=0,则满足的x的范围为()A.(﹣∞,)∪(2,+∞)B.(,1)∪(1,2)C.(,1)∪(2,+∞) D.(0,)∪(2,+∞)2.若不等式1≤a﹣b≤2,2≤a+b≤4,则4a﹣2b的取值范围是()A.[5,10] B.(5,10)C.[3,12] D.(3,12)3.如果是定义在上的奇函数,那么下列函数中,一定为偶函数的是()A. B.C. D.10101化为十进制数的结果为()4.二进制数)(2A.15B.21C.33D.415.2016年3月“两会”期间,有代表提出适当下调“五险一金”的缴存比例,现拟从某工厂职工中抽取20名代表调查对这一提案的态度,已知该厂青年,中年,老年职工人数分别为350,500,150,按分层抽样的方法,应从青年职工中抽取的人数为()A. 5B.6C.7D.10【命题意图】本题主要考查分层抽样的方法的运用,属容易题.6.若曲线f(x)=acosx与曲线g(x)=x2+bx+1在交点(0,m)处有公切线,则a+b=()A.1 B.2 C.3 D.47.已知函数f(x)=,则f(0)=()A.﹣1 B.0 C.1 D.38.以的焦点为顶点,顶点为焦点的椭圆方程为()A.B.C.D.9. 如图,在平面直角坐标系中,锐角α、β及角α+β的终边分别与单位圆O 交于A ,B ,C 三点.分别作AA'、BB'、CC'垂直于x 轴,若以|AA'|、|BB'|、|CC'|为三边长构造三角形,则此三角形的外接圆面积为( )A .B .C .D .π10.某几何体的三视图如图所示,该几何体的体积是( )A .B .C .D .11.曲线y=x 3﹣2x+4在点(1,3)处的切线的倾斜角为( ) A .30°B .45°C .60°D .120°12.已知a >b >0,那么下列不等式成立的是( )A .﹣a >﹣bB .a+c <b+cC .(﹣a )2>(﹣b )2D .二、填空题13.【启东中学2018届高三上学期第一次月考(10月)】在平面直角坐标系xOy 中,P 是曲线xC y e :=上一点,直线20l x y c :++=经过点P ,且与曲线C 在P 点处的切线垂直,则实数c 的值为________. 14.若函数()ln f x a x x =-在区间(1,2)上单调递增,则实数的取值范围是__________.15.如果椭圆+=1弦被点A (1,1)平分,那么这条弦所在的直线方程是 .16.抛物线y=x 2的焦点坐标为( )A.(0,)B.(,0)C.(0,4) D.(0,2)17.将一个半径为3和两个半径为1的球完全装入底面边长为6的正四棱柱容器中,则正四棱柱容器的高的最小值为.18.如果直线3ax+y﹣1=0与直线(1﹣2a)x+ay+1=0平行.那么a等于.三、解答题19.已知S n为数列{a n}的前n项和,且满足S n=2a n﹣n2+3n+2(n∈N*)(Ⅰ)求证:数列{a n+2n}是等比数列;(Ⅱ)设b n=a n sinπ,求数列{b n}的前n项和;(Ⅲ)设C n=﹣,数列{C n}的前n项和为P n,求证:P n<.20.如图,在△ABC中,BC边上的中线AD长为3,且sinB=,cos∠ADC=﹣.(Ⅰ)求sin∠BAD的值;(Ⅱ)求AC边的长.21.已知双曲线C:与点P(1,2).(1)求过点P(1,2)且与曲线C只有一个交点的直线方程;(2)是否存在过点P的弦AB,使AB的中点为P,若存在,求出弦AB所在的直线方程,若不存在,请说明理由.22.已知函数f(x)=alnx﹣x(a>0).(Ⅰ)求函数f(x)的最大值;(Ⅱ)若x∈(0,a),证明:f(a+x)>f(a﹣x);(Ⅲ)若α,β∈(0,+∞),f(α)=f(β),且α<β,证明:α+β>2α23.设a,b互为共轭复数,且(a+b)2﹣3abi=4﹣12i.求a,b 的值.24.已知函数3()1xf xx=+,[]2,5x∈.(1)判断()f x的单调性并且证明;(2)求()f x在区间[]2,5上的最大值和最小值.城区民族中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1. 【答案】D【解析】解:当x >0时,由xf ′(x )<0,得f ′(x )<0,即此时函数单调递减, ∵函数f (x )是偶函数,∴不等式等价为f (||)<,即||>,即>或<﹣,解得0<x <或x >2,故x 的取值范围是(0,)∪(2,+∞) 故选:D【点评】本题主要考查不等式的求解,根据函数奇偶性和单调性之间的关系是解决本题的关键.2. 【答案】A 【解析】解:令4a ﹣2b=x (a ﹣b )+y (a+b )即解得:x=3,y=1即4a ﹣2b=3(a ﹣b )+(a+b ) ∵1≤a ﹣b ≤2,2≤a+b ≤4, ∴3≤3(a ﹣b )≤6 ∴5≤(a ﹣b )+3(a+b )≤10故选A【点评】本题考查的知识点是简单的线性规划,其中令4a ﹣2b=x (a ﹣b )+y (a+b ),并求出满足条件的x ,y ,是解答的关键.3. 【答案】B【解析】【知识点】函数的奇偶性【试题解析】因为奇函数乘以奇函数为偶函数,y=x 是奇函数,故是偶函数。
贵阳市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析

贵阳市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 复数2(2)i z i-=(i 为虚数单位),则z 的共轭复数为( )A .43i -+B .43i +C .34i +D .34i -【命题意图】本题考查复数的运算和复数的概念等基础知识,意在考查基本运算能力. 2. 已知a ,b 都是实数,那么“a 2>b 2”是“a >b ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件3. 已知函数f (x )=sin 2(ωx )﹣(ω>0)的周期为π,若将其图象沿x 轴向右平移a 个单位(a >0),所得图象关于原点对称,则实数a 的最小值为( )A .πB .C .D .4. 如图所示为某几何体的正视图和侧视图,则该几何体体积的所有可能取值的集合是( )A .{, }B .{,, }C .{V|≤V ≤}D .{V|0<V ≤}5. 某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量P (单位:毫克/升)与时间t (单位:小时)间的关系为0e ktP P -=(0P ,k 均为正常数).如果前5个小时消除了10%的污染物,为了消除27.1% 的污染物,则需要( )小时. A.8B.10C. 15D. 18【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用,体现“数学是有用的”的新课标的这一重要思想.6. 已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为( )A .B .C .D . =0.08x+1.237. 已知向量(,2)a m =,(1,)b n =-(0n >),且0a b ⋅=,点(,)P m n 在圆225x y +=上,则|2|a b +=( )A .34B .C .42D .32 8. 如果随机变量ξ~N (﹣1,σ2),且P (﹣3≤ξ≤﹣1)=0.4,则P (ξ≥1)等于( )A .0.1B .0.2C .0.3D .0.49. 设x ,y 满足线性约束条件,若z=ax ﹣y (a >0)取得最大值的最优解有数多个,则实数a的值为( )A .2B .C .D .310.设长方体的长、宽、高分别为2a 、a 、a ,其顶点都在一个球面上,则该球的表面积为( ) A .3πa 2 B .6πa 2 C .12πa 2D .24πa 211.设函数f (x )在x 0处可导,则等于( )A .f ′(x 0)B .f ′(﹣x 0)C .﹣f ′(x 0)D .﹣f (﹣x 0)12.若命题p :∃x ∈R ,x ﹣2>0,命题q :∀x ∈R ,<x ,则下列说法正确的是( )A .命题p ∨q 是假命题B .命题p ∧(¬q )是真命题C .命题p ∧q 是真命题D .命题p ∨(¬q )是假命题二、填空题13.若的展开式中含有常数项,则n 的最小值等于 .14.下列四个命题:①两个相交平面有不在同一直线上的三个公交点 ②经过空间任意三点有且只有一个平面 ③过两平行直线有且只有一个平面 ④在空间两两相交的三条直线必共面其中正确命题的序号是 .15.“黑白配”游戏,是小朋友最普及的一种游戏,很多时候被当成决定优先权的一种方式.它需要参与游戏的人(三人或三人以上)同时出示手势,以手心(白)、手背(黑)来决定胜负,当其中一个人出示的手势与其它人都不一样时,则这个人胜出,其他情况,则不分胜负.现在甲乙丙三人一起玩“黑白配”游戏.设甲乙丙三人每次都随机出“手心(白)、手背(黑)”中的某一个手势,则一次游戏中甲胜出的概率是 .16.如图,在三棱锥P ABC -中,PA PB PC ==,PA PB ⊥,PA PC ⊥,PBC △为等边三角形,则PC与平面ABC 所成角的正弦值为______________.【命题意图】本题考查空间直线与平面所成角的概念与计算方法,意在考查学生空间想象能力和计算能力. 17.直线l 1和l 2是圆x 2+y 2=2的两条切线,若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于 _________ 。
城区民族中学2018-2019学年高二上学期数学期末模拟试卷含解析(1)

第 2 页,共 19 页
A.7 Biblioteka B.15C.31D.63
二、填空题
13.已知 M 、N 为抛物线 y 4 x 上两个不同的点, F 为抛物线的焦点.若线段 MN 的中点的纵坐标为 2,
2
| MF | | NF | 10 ,则直线 MN 的方程为_________.
14.设 f(x)是(x2+ )6 展开式的中间项,若 f(x)≤mx 在区间[ , ]上恒成立,则实数 m 的取值范
C A
18.已知
B
=1﹣bi,其中 a,b 是实数,i 是虚数单位,则|a﹣bi|= .
【命题意图】本题考查平面向量数量积、垂径定理等基础知识,意在考查对概念理解和转化化归的数学思想.
第 3 页,共 19 页
三、解答题
19 .(本小题满分 12 分)在多面体 ABCDEFG 中,四边形 ABCD 与 CDEF 均为正方形, CF 平面
1 ,0 上单调递增,则实数的 cos x sin x cos x sin x 3a sin x cos x 4a 1 x 在 2 2
)
1 B. 1 , 7
1 1 A. , 7 1 C. ( , ] [1 , ) 7
围是 . 15.平面向量 , 满足|2 ﹣ |=1,| ﹣2 |=1,则 的取值范围 . 16.某慢性疾病患者,因病到医院就医,医生给他开了处方药(片剂),要求此患者每天早、晚间隔 小时各 服一次药,每次一片,每片 毫克.假设该患者的肾脏每 小时从体内大约排出这种药在其体内残留量的 ,并且医生认为这种药在体内的残留量不超过 毫克时无明显副作用.若该患者第一天上午点第一次 服药,则第二天上午 点服完药时,药在其体内的残留量是 毫克,若该患者坚持长期服用此药 明显副作用(此空填“有”或“无”) 17.如图所示,圆 C 中,弦 AB 的长度为 4 ,则 AB ×AC 的值为_______.
城区民族中学2018-2019学年高二上学期数学期末模拟试卷含解析(3)

城区民族中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知函数与轴的交点为,且图像上两对称轴之间的最()2sin()f x x ωϕ=+(0)2πϕ<<y (0,1)小距离为,则使成立的的最小值为()1111]2π()()0f x t f x t +--+=t A .B .C .D .6π3π2π23π2. 函数f (x )=有且只有一个零点时,a 的取值范围是()A .a ≤0B .0<a <C .<a <1D .a ≤0或a >13. 在空间中,下列命题正确的是()A .如果直线m ∥平面α,直线n ⊂α内,那么m ∥nB .如果平面α内的两条直线都平行于平面β,那么平面α∥平面βC .如果平面α外的一条直线m 垂直于平面α内的两条相交直线,那么m ⊥αD .如果平面α⊥平面β,任取直线m ⊂α,那么必有m ⊥β4. 如图所示,已知四边形ABCD 的直观图是一个边长为的正方形,则原图形的周长为()A .B . C. D .5. 函数的零点所在区间为()A .(3,4)B .(2,3)C .(1,2)D .(0,1)6. 如图,已知平面=,.是直线上的两点,是平面内的两点,且,,,.是平面上的一动点,且有,则四棱锥体积的最大值是( )A .B .C .D .7. 函数y=2x 2﹣e |x|在[﹣2,2]的图象大致为()A .B .C .D .8. 四棱锥P ﹣ABCD 的底面是一个正方形,PA ⊥平面ABCD ,PA=AB=2,E 是棱PA 的中点,则异面直线BE 与AC 所成角的余弦值是()A .B .C .D .9. 过点,的直线的斜率为,则( )),2(a M -)4,(a N 21-=||MN A .B .C .D .10180365610.已知圆方程为,过点与圆相切的直线方程为( )C 222x y +=(1,1)P -C A .B .C .D .20x y -+=10x y +-=10x y -+=20x y ++=11.已知曲线的焦点为,过点的直线与曲线交于两点,且,则2:4C y x =F F C ,P Q 20FP FQ += OPQ∆的面积等于( )A .B . CD12.如图在圆中,,是圆互相垂直的两条直径,现分别以,,,为直径作四个O AB CD O OA OB OC OD 圆,在圆内随机取一点,则此点取自阴影部分的概率是()O DABCO A .B .C .D .π1π21π121-π2141-【命题意图】本题考查几何概型概率的求法,借助圆这个载体,突出了几何概型的基本运算能力,因用到圆的几何性质及面积的割补思想,属于中等难度.二、填空题13.过椭圆+=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠F 1PF 2=60°,则椭圆的离心率为 . 14.函数f (x )=2a x+1﹣3(a >0,且a ≠1)的图象经过的定点坐标是 .15.已知f (x+1)=f (x ﹣1),f (x )=f (2﹣x ),方程f (x )=0在[0,1]内只有一个根x=,则f (x )=0在区间[0,2016]内根的个数 .16.已知一个动圆与圆C :(x+4)2+y 2=100相内切,且过点A (4,0),则动圆圆心的轨迹方程 .17.在△ABC 中,若角A为锐角,且=(2,3),=(3,m ),则实数m 的取值范围是 .18.如图是一个正方体的展开图,在原正方体中直线AB 与CD 的位置关系是 .三、解答题19.(本小题满分12分)某市拟定2016年城市建设三项重点工程,该市一大型城建公司准备参加这,,A B C三个工程的竞标,假设这三个工程竞标成功与否相互独立,该公司对三项重点工程竞标成功的概率分,,A B C 别为,,,已知三项工程都竞标成功的概率为,至少有一项工程竞标成功的概率为.a b 14()a b 12434(1)求与的值;a b (2)公司准备对该公司参加三个项目的竞标团队进行奖励,项目竞标成功奖励2万元,项目竞,,A B C A B 标成功奖励4万元,项目竞标成功奖励6万元,求竞标团队获得奖励金额的分布列与数学期望.C 【命题意图】本题考查相互独立事件、离散型随机变量分布列与期望等基础知识,意在考查学生的运算求解能力、审读能力、获取数据信息的能力,以及方程思想与分类讨论思想的应用.20.(本小题满分12分)某旅行社组织了100人旅游散团,其年龄均在岁间,旅游途中导游发现该[10,60]旅游散团人人都会使用微信,所有团员的年龄结构按分成5组,分[10,20),[20,30),[30,40),[40,50),[50,60]别记为,其频率分布直方图如下图所示.,,,,A B C D E(Ⅰ)根据频率分布直方图,估计该旅游散团团员的平均年龄;(Ⅱ)该团导游首先在三组中用分层抽样的方法抽取了名团员负责全团协调,然后从这6名团员中,,C D E 6随机选出2名团员为主要协调负责人,求选出的2名团员均来自组的概率.C21.在平面直角坐标系中,以坐标原点为极点,x轴非负半轴为极轴建立极坐标系.已知直线l过点P(1,0),斜率为,曲线C:ρ=ρcos2θ+8cosθ.(Ⅰ)写出直线l的一个参数方程及曲线C的直角坐标方程;(Ⅱ)若直线l与曲线C交于A,B两点,求|PA|•|PB|的值.22.已知函数f(x)=ax2+2x﹣lnx(a∈R).(Ⅰ)若a=4,求函数f(x)的极值;(Ⅱ)若f′(x)在(0,1)有唯一的零点x0,求a的取值范围;(Ⅲ)若a∈(﹣,0),设g(x)=a(1﹣x)2﹣2x﹣1﹣ln(1﹣x),求证:g(x)在(0,1)内有唯一的零点x1,且对(Ⅱ)中的x0,满足x0+x1>1.23.已知数列{a n}满足a1=﹣1,a n+1=(n∈N*).(Ⅰ)证明:数列{+}是等比数列;(Ⅱ)令b n=,数列{b n}的前n项和为S n.①证明:b n+1+b n+2+…+b2n<②证明:当n≥2时,S n2>2(++…+)24.已知f(x)=log3(1+x)﹣log3(1﹣x).(1)判断函数f(x)的奇偶性,并加以证明;(2)已知函数g(x)=log,当x∈[,]时,不等式f(x)≥g(x)有解,求k的取值范围.城区民族中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】A【解析】考点:三角函数的图象性质.2.【答案】D【解析】解:∵f(1)=lg1=0,∴当x≤0时,函数f(x)没有零点,故﹣2x+a>0或﹣2x+a<0在(﹣∞,0]上恒成立,即a>2x,或a<2x在(﹣∞,0]上恒成立,故a>1或a≤0;故选D.【点评】本题考查了分段函数的应用,函数零点与方程的关系应用及恒成立问题,属于基础题.3.【答案】C【解析】解:对于A,直线m∥平面α,直线n⊂α内,则m与n可能平行,可能异面,故不正确;对于B,如果平面α内的两条相交直线都平行于平面β,那么平面α∥平面β,故不正确;对于C,根据线面垂直的判定定理可得正确;对于D,如果平面α⊥平面β,任取直线m⊂α,那么可能m⊥β,也可能m和β斜交,;故选:C.【点评】本题主要考查命题的真假判断与应用,考查了空间中直线与平面之间的位置关系、平面与平面之间的位置关系,同时考查了推理能力,属于中档题.4.【答案】C【解析】考点:平面图形的直观图.5.【答案】B【解析】解:函数的定义域为(0,+∞),易知函数在(0,+∞)上单调递增,∵f(2)=log32﹣1<0,f(3)=log33﹣>0,∴函数f(x)的零点一定在区间(2,3),故选:B.【点评】本题考查函数的单调性,考查零点存在定理,属于基础题.6.【答案】A【解析】【知识点】空间几何体的表面积与体积【试题解析】由题知:是直角三角形,又,所以。
瓮安县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析

瓮安县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 双曲线的焦点与椭圆的焦点重合,则m 的值等于( )A .12B .20C .D .2. 若直线y=kx ﹣k 交抛物线y 2=4x 于A ,B 两点,且线段AB 中点到y 轴的距离为3,则|AB|=( ) A .12 B .10 C .8 D .63. 已知函数y=f (x )对任意实数x 都有f (1+x )=f (1﹣x ),且函数f (x )在[1,+∞)上为单调函数.若数列{a n }是公差不为0的等差数列,且f (a 6)=f (a 23),则{a n }的前28项之和S 28=( )A .7B .14C .28D .564. 已知函数()2111x f x x ++=+,则曲线()y f x =在点()()11f ,处切线的斜率为( ) A .1 B .1- C .2 D .2- 5. “”是“A=30°”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也必要条件6. 两个随机变量x ,y 的取值表为若x ,y 具有线性相关关系,且y ^=bx +2.6,则下列四个结论错误的是( )A .x 与y 是正相关B .当y 的估计值为8.3时,x =6C .随机误差e 的均值为0D .样本点(3,4.8)的残差为0.657. 若命题“p 或q ”为真,“非p ”为真,则( )A .p 真q 真B .p 假q 真C .p 真q 假D .p 假q 假8. +(a ﹣4)0有意义,则a 的取值范围是( ) A .a ≥2 B .2≤a <4或a >4C .a ≠2D .a ≠49. 在抛物线y 2=2px (p >0)上,横坐标为4的点到焦点的距离为5,则该抛物线的准线方程为( ) A .x=1 B .x= C .x=﹣1 D .x=﹣10.设向量,满足:||=3,||=4, =0.以,,﹣的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为( )A .3B .4C .5D .611.若某程序框图如图所示,则该程序运行后输出的值是( ) A.7B.8C. 9D. 10【命题意图】本题考查阅读程序框图,理解程序框图的功能,本质是循环语句循环终止的条件. 12.用一平面去截球所得截面的面积为2π,已知球心到该截面的距离为1,则该球的体积是( )A .π B .2πC .4πD .π二、填空题13.【启东中学2018届高三上学期第一次月考(10月)】在平面直角坐标系xOy 中,P 是曲线xC y e :=上一点,直线20l x y c :++=经过点P ,且与曲线C 在P 点处的切线垂直,则实数c 的值为________.14.【南通中学2018届高三10月月考】已知函数()32f x x x =-,若曲线()f x 在点()()1,1f 处的切线经过圆()22:2C x y a +-=的圆心,则实数a 的值为__________.15.一船以每小时12海里的速度向东航行,在A 处看到一个灯塔B 在北偏东60°,行驶4小时后,到达C 处,看到这个灯塔B 在北偏东15°,这时船与灯塔相距为 海里.16.△ABC 外接圆半径为,内角A ,B ,C 对应的边分别为a ,b ,c ,若A=60°,b=2,则c 的值为 .17.曲线y =x 2+3x 在点(-1,-2)处的切线与曲线y =ax +ln x 相切,则a =________. 18.已知向量(1,),(1,1),a x b x ==-若(2)a b a -⊥,则|2|a b -=( ) A .2 B .3 C .2 D .5【命题意图】本题考查平面向量的坐标运算、数量积与模等基础知识,意在考查转化思想、方程思想、逻辑思维能力与计算能力.三、解答题19.(本小题满分12分)一个盒子里装有编号为1、2、3、4、5的五个大小相同的小球,第一次从盒子里随机抽取2个小球,记下球的编号,并将小球放回盒子,第二次再从盒子里随机抽取2个小球,记下球的编号. (Ⅰ)求第一次或第二次取到3号球的概率;(Ⅱ)设ξ为两次取球时取到相同编号的小球的个数,求ξ的分布列与数学期望.20.已知函数f (x )=ax 2+bx+c ,满足f (1)=﹣,且3a >2c >2b . (1)求证:a >0时,的取值范围;(2)证明函数f (x )在区间(0,2)内至少有一个零点; (3)设x 1,x 2是函数f (x )的两个零点,求|x 1﹣x 2|的取值范围.21.已知斜率为2的直线l被圆x2+y2+14y+24=0所截得的弦长为,求直线l的方程.22.已知向量=(,1),=(cos,),记f(x)=.(1)求函数f(x)的最小正周期和单调递增区间;(2)将函数y=f(x)的图象向右平移个单位得到y=g(x)的图象,讨论函数y=g(x)﹣k在的零点个数.23.已知函数f(x)=sinωxcosωx﹣cos2ωx+(ω>0)经化简后利用“五点法”画其在某一个周期内的图象ππ(Ⅰ)请直接写出①处应填的值,并求函数f(x)在区间[﹣,]上的值域;(Ⅱ)△ABC的内角A,B,C所对的边分别为a,b,c,已知f(A+)=1,b+c=4,a=,求△ABC的面积.24.已知双曲线C:与点P(1,2).(1)求过点P(1,2)且与曲线C只有一个交点的直线方程;(2)是否存在过点P的弦AB,使AB的中点为P,若存在,求出弦AB所在的直线方程,若不存在,请说明理由.瓮安县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题1. 【答案】A【解析】解:椭圆的焦点为(±4,0),由双曲线的焦点与椭圆的重合,可得=4,解得m=12.故选:A .2. 【答案】C【解析】解:直线y=kx ﹣k 恒过(1,0),恰好是抛物线y 2=4x 的焦点坐标, 设A (x 1,y 1) B (x 2,y 2)抛物y 2=4x 的线准线x=﹣1,线段AB 中点到y 轴的距离为3,x 1+x 2=6,∴|AB|=|AF|+|BF|=x 1+x 2+2=8, 故选:C .【点评】本题的考点是函数的最值及其几何意义,主要解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离.3. 【答案】C 【解析】解:∵函数y=f (x )对任意实数x 都有f (1+x )=f (1﹣x ),且函数f (x )在[1,+∞)上为单调函数.∴函数f (x )关于直线x=1对称, ∵数列{a n }是公差不为0的等差数列,且f (a 6)=f (a 23),∴a 6+a 23=2.则{a n }的前28项之和S 28==14(a 6+a 23)=28.故选:C . 【点评】本题考查了等差数列的通项公式性质及其前n 项和公式、函数的对称性,考查了推理能力与计算能力,属于中档题.4. 【答案】A 【解析】试题分析:由已知得()2112x f x x x -==-,则()21'f x x=,所以()'11f =. 考点:1、复合函数;2、导数的几何意义.5.【答案】B【解析】解:“A=30°”⇒“”,反之不成立.故选B【点评】本题考查充要条件的判断和三角函数求值问题,属基本题.6.【答案】【解析】选D.由数据表知A是正确的,其样本中心为(2,4.5),代入y^=bx+2.6得b=0.95,即y^=0.95x+^=8.3时,则有8.3=0.95x+2.6,∴x=6,∴B正确.根据性质,随机误差e的均值为0,∴C正确.样2.6,当y本点(3,4.8)的残差e^=4.8-(0.95×3+2.6)=-0.65,∴D错误,故选D.7.【答案】B【解析】解:若命题“p或q”为真,则p真或q真,若“非p”为真,则p为假,∴p假q真,故选:B.【点评】本题考查了复合命题的真假的判断,是一道基础题.8.【答案】B【解析】解:∵+(a﹣4)0有意义,∴,解得2≤a<4或a>4.故选:B.9.【答案】C【解析】解:由题意可得抛物线y2=2px(p>0)开口向右,焦点坐标(,0),准线方程x=﹣,由抛物线的定义可得抛物线上横坐标为4的点到准线的距离等于5,即4﹣(﹣)=5,解之可得p=2故抛物线的准线方程为x=﹣1.故选:C.【点评】本题考查抛物线的定义,关键是由抛物线的方程得出其焦点和准线,属基础题.10.【答案】B【解析】解:∵向量ab=0,∴此三角形为直角三角形,三边长分别为3,4,5,进而可知其内切圆半径为1,∵对于半径为1的圆有一个位置是正好是三角形的内切圆,此时只有三个交点,对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,但5个以上的交点不能实现.故选B【点评】本题主要考查了直线与圆的位置关系.可采用数形结合结合的方法较为直观.11.【答案】A【解析】运行该程序,注意到循环终止的条件,有n=10,i=1;n=5,i=2;n=16,i=3;n=8,i=4;n=4,i=5;n=2,i=6;n=1,i=7,到此循环终止,故选A.12.【答案】C【解析】解:用一平面去截球所得截面的面积为2π,所以小圆的半径为:cm;已知球心到该截面的距离为1,所以球的半径为:,所以球的体积为:=4π故选:C.二、填空题13.【答案】-4-ln2【解析】点睛:曲线的切线问题就是考察导数应用,导数的含义就是该点切线的斜率,利用这个我们可以求出点的坐标,再根据点在线上(或点在曲线上),就可以求出对应的参数值。
瓮安县第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

是
T 2T
n n 1
结束
第 2 页,共 14 页
20.已知函数 f(x)=lnx 的反函数为 g(x). y=k1x 是函数 y=f(﹣x)的图象的切线,直线 m: y=k2x 是函数 y=g(x)图象的切线,求证 l⊥m (Ⅰ)若直线 l: : ; (Ⅱ)设 a,b∈R,且 a≠b,P=g( 大小,并说明理由. ),Q= ,R= ,试比较 P,Q,R 的
再左右扩展知 f(x)为周期函数. 结合图象得到函数 f(x)=x﹣[x]的最小正周期是 1. 故答案为:1. 【点评】本题考查函数的最小正周期的求法,是基础题,解题时要认真审题,注意数形结合思想的合理运用. 17.【答案】 6
第 10 页,共 14 页
【解析】解析:本题考查程序框图中的循环结构.第 1 次运行后, S 9, T 2, n 2, S T ;第 2 次运行后,
21.等差数列{an}的前 n 项和为 Sn,已知 a1=10,a2 为整数,且 Sn≤S4。
(1)求{an}的通项公式;
(2)设 bn=
,求数列{bn}的前 n 项和 Tn。
22.已知集合 A={x|x<﹣1,或 x>2},B={x|2p﹣1≤x≤p+3}. (1)若 p= ,求 A∩B; (2)若 A∩B=B,求实数 p 的取值范围.
在区间[1,2]上是减函数,
∴﹣a>2,或﹣a<1, 即 a<﹣2,或 a>﹣1, 综上得 a∈(﹣∞,﹣2)∪(﹣1,1], 故选:D 【点评】本题主要考查二次函数与反比例函数的单调性的判断,以及根据所给函数单调区间,求参数的范围.
二、填空题
13.【答案】 m>1 . 【解析】解:若命题“∃x∈R,x2﹣2x+m≤0”是假命题, 则命题“∀x∈R,x2﹣2x+m>0”是真命题, 即判别式△=4﹣4m<0, 解得 m>1, 故答案为:m>1 14.【答案】 【解析】
瓮安县高中2018-2019学年上学期高二数学12月月考试题含解析
瓮安县高中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.如图框内的输出结果是()A.2401B.2500C.2601D.27042.已知数列{a n}是等比数列前n项和是S n,若a2=2,a3=﹣4,则S5等于()A.8B.﹣8C.11D.﹣113.(m+1)x2﹣(m﹣1)x+3(m﹣1)<0对一切实数x恒成立,则实数m的取值范围是()A.(1,+∞)B.(﹣∞,﹣1)C.D.4.执行如图所示的程序框图,若输出的结果是,则循环体的判断框内①处应填()A.11?B.12?C.13?D.14?5. 若定义在R 上的函数f (x )满足:对任意x 1,x 2∈R 有f (x 1+x 2)=f (x 1)+f (x 2)+1,则下列说法一定正确的是()A .f (x )为奇函数B .f (x )为偶函数C .f (x )+1为奇函数D .f (x )+1为偶函数6. 过直线3x ﹣2y+3=0与x+y ﹣4=0的交点,与直线2x+y ﹣1=0平行的直线方程为( )A .2x+y ﹣5=0B .2x ﹣y+1=0C .x+2y ﹣7=0D .x ﹣2y+5=07. 如图,在△ABC 中,AB=6,AC=4,A=45°,O 为△ABC 的外心,则•等于( )A .﹣2B .﹣1C .1D .28. 某几何体的三视图如图所示,则该几何体为()A .四棱柱B .四棱锥C .三棱台D .三棱柱9. 直角梯形中,,直线截该梯形所得位于左边图OABC ,1,2AB OC AB OC BC ===A :l x t =形面积为,则函数的图像大致为()()S f t =10.已知函数,则要得到其导函数的图象,只需将函数()cos()3f x x π=+'()y f x =()y f x =的图象( )A .向右平移个单位 B .向左平移个单位2π2πC. 向右平移个单位D .左平移个单位23π23π11.如果a >b ,那么下列不等式中正确的是()A.B.|a|>|b|C.a2>b2D.a3>b312.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)若PA=AB,求PB与AC所成角的余弦值;(Ⅲ)当平面PBC与平面PDC垂直时,求PA的长.【考点】直线与平面垂直的判定;点、线、面间的距离计算;用空间向量求直线间的夹角、距离.二、填空题13.用1,2,3,4,5组成不含重复数字的五位数,要求数字4不出现在首位和末位,数字1,3,5中有且仅有两个数字相邻,则满足条件的不同五位数的个数是.(注:结果请用数字作答)【命题意图】本题考查计数原理、排列与组合的应用,同时也渗透了分类讨论的思想,本题综合性强,难度较大.14.函数f(x)=log a(x﹣1)+2(a>0且a≠1)过定点A,则点A的坐标为 .15.如图,E,F分别为正方形ABCD的边BC,CD的中点,沿图中虚线将边长为2的正方形折起来,围成一个三棱锥,则此三棱锥的体积是 .16.若数列{a n}满足:存在正整数T,对于任意的正整数n,都有a n+T=a n成立,则称数列{a n}为周期为T的周期数列.已知数列{a n}满足:a1>=m (m>a ),a n+1=,现给出以下三个命题:①若m=,则a5=2;②若 a 3=3,则m 可以取3个不同的值;③若 m=,则数列{a n }是周期为5的周期数列.其中正确命题的序号是 . 17.如图所示,在三棱锥C ﹣ABD 中,E 、F 分别是AC 和BD 的中点,若CD=2AB=4,EF ⊥AB ,则EF 与CD 所成的角是 .18.已知f (x )=,则f (﹣)+f ()等于 .三、解答题19.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=ax 2+lnx (a ∈R ).(1)当a=时,求f (x )在区间[1,e]上的最大值和最小值;12(2)如果函数g (x ),f 1(x ),f 2(x ),在公共定义域D 上,满足f 1(x )<g (x )<f 2(x ),那么就称g (x)为f 1(x),f 2(x)的“活动函数”.已知函数.。
瓮安县第二中学2018-2019学年上学期高二数学12月月考试题含解析
优选高中模拟试卷瓮安县第二中学 2018-2019 学年上学期高二数学 12 月月考试题含分析班级 __________姓名 __________分数 __________一、选择题1. 函数 y=x+xlnx 的单一递加区间是( )A .( 0, e ﹣2)B .( e ﹣2, +∞)C .(﹣ ∞, e ﹣ 2)D .( e ﹣2, +∞)y x,z x mym21,在拘束条件ymx,下,目标函数2的取值范围为( ). 设 m的最大值小于 ,则x y 1.A . (1,1 2)B . (1 2, )C.(1,3)D . (3, )3. 如图,四周体 D ﹣ABC 的体积为 ,且知足 ∠ ACB=60 °, BC=1 , AD+ =2 ,则四周体 D ﹣ ABC 中最长棱的长度为()A .B .2C .D .34. 假如一个几何体的三视图如下图,主视图与左视图是边长为 2 的正三角形、俯视图轮廓为正方形,(单位: cm ),则此几何体的表面积是()A .8cm 2B . cm 2C . 12 cm 2D .cm 25. 函数 f ( x ) =ax 2+2(a ﹣ 1) x+2 在区间(﹣ ∞ ,4]上为减函数,则 a 的取值范围为( )A .0< a ≤B . 0≤ a ≤C . 0< a <D . a >6. 若 a > 0, b >0, a+b=1,则 y= + 的最小值是()A .2B . 3C . 4D . 5. 会合S 0,1,2,3,4,5 , A 是 S 的一个子集 , 当 xA 时 如有x 1 A 且 x 1 A ,则称 x 为 A 的一个“孤立7,元素” .会合 B 是 S 的一个子集 , B 中含 4 个元素且 B 中无“孤立元素” ,这样的会合 B 共有个B. 5. 在复平面内,复数 z 所对应的点为 (2,1) , i 是虚数单位,则 z ( )8 1 iA . 3 iB . 3 iC . 3 iD . 3 i9. 已知直线 y=ax+1 经过抛物线 y 2=4x 的焦点,则该直线的倾斜角为()A .0B .C .D .10. “x ≠0”是“x >0”是的( )A .充足而不用要条件B .必需而不充足条件C .充足必需条件D .既不充足也不用要条件 11.已知双曲线﹣=1 ( a >0, b > 0)的左右焦点分别为 F 1, F 2,若双曲线右支上存在一点P ,使得 F 2对于直线 PF 1 的对称点恰在 y 轴上,则该双曲线的离心率e 的取值范围为()A .1< e <B . e >C . e >D .1< e <12.在定义域内既是奇函数又是减函数的是()A .y=B . y= ﹣ x+C . y=﹣ x|x|D . y=二、填空题13.设变量 x , y 知足拘束条件,则 的最小值为 .14.球 O 的球面上有四点S , A , B , C ,此中 O ,A ,B ,C 四点共面, △ ABC 是边长为 2 的正三角形,平面SAB ⊥ 平面 ABC ,则棱锥 S ﹣ ABC 的体积的最大值为.15.空间四边形 ABCD 中, E 、 F 、 G 、 H 分别是 AB 、 BC 、CD 、 DA 的中点.① 若 AC=BD ,则四边形EFGH 是 ; ② 若 AC ⊥BD ,则四边形 EFGH 是.16.设全集U=R,会合M={x|2a 1 x 4a a R},N={x|1 x 2},若N?M,则实数a的取值范围是.﹣<<,∈<<17.当x(0,1)时,函数 f xe x 1 的图象不在函数g( x) x2 ax 的下方,则实数 a 的取值范围是___________.【命题企图】此题考察函数图象间的关系、利用导数研究函数的单一性,意在考察等价转变能力、逻辑思想能力、运算求解能力.18.阅读下列图所示的程序框图,运转相应的程序,输出的n 的值等于_________.三、解答题开始19.(本小题满分 10 分)选修4-1:几何证明选讲.n 1如图, AB 是⊙O 的直径, AC 是⊙O 的切线, BC 交⊙O 于 E,过 E 的切线与 AC 交于 D. ( 1)求证: CD =DA ;S 5,T 1( 2)若 CE= 1, AB=2,求 DE 的长.S T?否是S S 4 输出 nT 2T 结束n n 120.定义在R 上的增函数y=f ( x)对随意x,y∈ R 都有 f ( x+y) =f ( x) +f (y),则(1)求 f (0);(2)证明: f( x)为奇函数;( 3)若 f (k?3x) +f ( 3x﹣ 9x﹣ 2)< 0 对随意 x∈ R 恒建立,务实数k 的取值范围.21.已知向量=( x,y),=( 1,0),且(+)?(﹣)=0.( 1)求点 Q( x, y)的轨迹 C 的方程;( 2)设曲线 C 与直线 y=kx+m 订交于不一样的两点M 、 N,又点 A ( 0,﹣ 1),当 |AM|=|AN| 时,务实数m 的取值范围.22.由四个不一样的数字1, 2, 4, x 构成无重复数字的三位数.(1)若 x=5 ,此中能被 5 整除的共有多少个?(2)若 x=9 ,此中能被 3 整除的共有多少个?(3)若 x=0 ,此中的偶数共有多少个?( 4)若全部这些三位数的各位数字之和是252,求 x.23.2008 年奥运会在中国举行,某商场估计2008 年从 1 日起前 x 个月,顾客对某种奥运商品的需求总量p( x)件与月份x 的近似关系是且x≤12),该商品的进价q( x)元与月份 x 的近似关系是q(x) =150+2x ,( x∈N* 且 x≤12).(1)写出今年第 x 月的需求量 f( x)件与月份 x 的函数关系式;(2)该商品每件的售价为 185 元,若不计其余花费且每个月都能知足市场需求,则此商场今年销售该商品的月收益估计最大是多少元?24.如图,四棱锥P ABC 中, PA ABCD , AD / / BC , AB AD AC 3,PA BC 4 , M 为线段 AD 上一点, AM 2MD , N 为 PC 的中点.(1)证明:MN / /平面PAB;(2)求直线AN与平面PMN所成角的正弦值;瓮安县第二中学 2018-2019 学年上学期高二数学 12 月月考试题含分析(参照答案)一、选择题1.【答案】 B【分析】解:函数的定义域为(0, +∞)求导函数可得f′( x) =lnx+2 ,令 f ′( x)> 0,可得 x> e﹣2,∴函数 f ( x)的单一增区间是(e﹣2, +∞)应选 B.2.【答案】 A【分析】考点:线性规划 .【方法点晴】 此题是一道对于线性规划求最值的题目, 采纳线性规划的知识进行求解;重点是弄清楚的几何意义直线 zx my 截距为 z ,作 L : x my 0 ,,,, 从而可适当直线直线向可行域内平移越向上 则的值越大mx 0 y 0 1A,z 2,mz x my 过点 A 时取最大值, y 0mx 0可求得点 的坐标可求的最大值解不等式可求而后由的范围 .3.【答案】 B【分析】解:因为AD?(BC AC sin60 V D﹣ABC= ,BC=1 ,? ? °)≥即 AD? ≥1,因为 2=AD+ ≥2 =2,当且仅当 AD= =1 时,等号建立,这时 AC= , AD=1 ,且 AD ⊥面 ABC ,因此 CD=2 ,AB= ,得 BD= ,故最长棱的长为 2.应选 B.【评论】此题考察四周体中最长的棱长,考察棱锥的体积公式的运用,同时考察基本不等式的运用,注意等号建立的条件,属于中档题.4.【答案】 C【分析】解:由已知可得:该几何体是一个四棱锥,侧高和底面的棱长均为2,故此几何体的表面积S=2×2+4 ××2×2=12cm2,应选: C.【评论】此题考察的知识点是棱柱、棱锥、棱台的体积和表面积,空间几何体的三视图,依据已知判断几何体的形状是解答的重点.5.【答案】 B【分析】解:当 a=0 时, f ( x) =﹣ 2x+2 ,切合题意当 a≠ 0 时,要使函数f( x) =ax2+2( a﹣ 1) x+2 在区间(﹣∞,4] 上为减函数∴? 0< a≤综上所述0≤ a≤应选 B【评论】此题主要考察了已知函数再某区间上的单一性求参数 a 的范围的问题,以及分类议论的数学思想,属于基础题.6.【答案】 C【分析】解:∵a> 0, b>0, a+b=1,∴ y= + =( a+b)=2+=4 ,当且仅当a=b=时取等号.∴ y= +的最小值是4.应选: C.【评论】此题考察了“乘 1 法”与基本不等式的性质,属于基础题.7.【答案】 C【分析】试题剖析:依据题中“孤立元素”定义可知,若会合 B 中不含孤立元素,则一定没有三个连续的自然数存在,全部 B 的可能状况为:0,1,3,4,0,1,3,5,0,1,4,5,0,2,3,5,0,2,4,5,1,2,4,5共6个。
瓮安县高级中学2018-2019学年上学期高二数学12月月考试题含解析
瓮安县高级中学2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( ) A .1B .2C .3D .42. 已知集合{}2|10A x x =-=,则下列式子表示正确的有( ) ①1A ∈;②{}1A -∈;③A ∅⊆;④{}1,1A -⊆.A .1个B .2个C .3个D .4个 3. 函数y=﹣lnx (1≤x ≤e 2) 的值域是( )A .[0,2]B .[﹣2,0]C .[﹣,0]D .[0,]4. 偶函数f (x )的定义域为R ,若f (x+2)为奇函数,且f (1)=1,则f (89)+f (90)为( ) A .﹣2 B .﹣1 C .0 D .1 5. 已知集合A={0,1,2},则集合B={x ﹣y|x ∈A ,y ∈A}的元素个数为( ) A .4B .5C .6D .96. 如图,正方体ABCD ﹣A 1B 1C 1D 1的棱线长为1,线段B 1D 1上有两个动点E ,F ,且EF=,则下列结论中错误的是( )A .AC ⊥BEB .EF ∥平面ABCDC .三棱锥A ﹣BEF 的体积为定值D .异面直线AE ,BF 所成的角为定值7. 已知集合{}ln(12)A x y x ==-,{}2B x x x =≤,全集U AB =,则()UC A B =( )(A ) (),0-∞ ( B ) 1,12⎛⎤-⎥⎝⎦(C ) ()1,0,12⎡⎤-∞⋃⎢⎥⎣⎦ (D )1,02⎛⎤- ⎥⎝⎦8. 拋物线E :y 2=2px (p >0)的焦点与双曲线C :x 2-y 2=2的焦点重合,C 的渐近线与拋物线E 交于非原点的P 点,则点P 到E 的准线的距离为( ) A .4 B .6 C .8D .109. 设偶函数f (x )满足f (x )=2x ﹣4(x ≥0),则{x|f (x ﹣2)<0}=( )A .{x|x <﹣2或x >4}B .{x|x <0或x >4}C .{x|x <0或x >6}D .{x|0<x <4}10.若关于x 的方程x 3﹣x 2﹣x+a=0(a ∈R )有三个实根x 1,x 2,x 3,且满足x 1<x 2<x 3,则a 的取值范围为( ) A .a>B.﹣<a <1 C .a <﹣1D .a >﹣111.设集合A={x|2x ≤4},集合B={x|y=lg (x ﹣1)},则A ∩B 等于( ) A .(1,2) B .[1,2]C .[1,2)D .(1,2]12.奇函数()f x 满足()10f =,且()f x 在()0+∞,上是单调递减,则()()210x f x f x -<--的解集为( )A .()11-,B .()()11-∞-+∞,,C .()1-∞-,D .()1+∞,二、填空题13.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()211{ 52128lnx x xf x m x mx x +>=-++≤,,,,若()()g x f x m =-有三个零点,则实数m 的取值范围是________.14.如图是甲、乙两位射击运动员的5次训练成绩(单位:环)的茎叶图,则成绩较为稳定(方差较小)的运动员是 .15.某种产品的加工需要 A ,B ,C ,D ,E 五道工艺,其中 A 必须在D 的前面完成(不一定相邻),其它工艺的顺序可以改变,但不能同时进行,为了节省加工时间,B 与C 必须相邻,那么完成加工该产品的不同工艺的排列顺序有 种.(用数字作答)16.设x R ∈,记不超过x 的最大整数为[]x ,令{}[]x x x =-.现有下列四个命题: ①对任意的x ,都有1[]x x x -<≤恒成立; ②若(1,3)x ∈,则方程{}22sincos []1x x +=的实数解为6π-;③若3n n a ⎡⎤=⎢⎥⎣⎦(n N *∈),则数列{}n a 的前3n 项之和为23122n n -;④当0100x ≤≤时,函数{}22()sin []sin1f x x x =+-的零点个数为m ,函数{}()[]13xg x x x =⋅--的零点个数为n ,则100m n +=.其中的真命题有_____________.(写出所有真命题的编号)【命题意图】本题涉及函数、函数的零点、数列的推导与归纳,同时又是新定义题,应熟悉理解新定义,将问题转化为已知去解决,属于中档题。
瓮安县第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析
瓮安县第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知直线l的参数方程为1cos sin x t y t αα=+⎧⎪⎨=⎪⎩(t 为参数,α为直线l 的倾斜角),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为4sin()3πρθ=+,直线l 与圆C 的两个交点为,A B ,当||AB 最小时,α的值为( )A .4πα=B .3πα=C .34πα=D .23πα=2. 一个椭圆的半焦距为2,离心率e=,则它的短轴长是( )A .3B.C .2D .63. 设a ,b为正实数,11a b+≤23()4()a b ab -=,则log a b =( )A.0B.1-C.1 D .1-或0【命题意图】本题考查基本不等式与对数的运算性质等基础知识,意在考查代数变形能与运算求解能力. 4. 如果过点M (﹣2,0)的直线l与椭圆有公共点,那么直线l 的斜率k 的取值范围是( )A. B.C.D.5. 给出下列各函数值:①sin100°;②cos (﹣100°);③tan (﹣100°);④.其中符号为负的是( ) A .① B .② C .③D .④6. 已知向量与的夹角为60°,||=2,||=6,则2﹣在方向上的投影为( )A .1B .2C .3D .47. O 为坐标原点,F为抛物线的焦点,P 是抛物线C 上一点,若|PF|=4,则△POF 的面积为( )A .1B.C.D .28. cos80cos130sin100sin130︒︒-︒︒等于( ) AB .12C .12- D.9. 不等式x (x ﹣1)<2的解集是( )A .{x|﹣2<x <1}B .{x|﹣1<x <2}C .{x|x >1或x <﹣2}D .{x|x >2或x <﹣1} 10.“”是“A=30°”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也必要条件11.已知||=3,||=1,与的夹角为,那么|﹣4|等于( )A .2B .C .D .1312.与椭圆有公共焦点,且离心率的双曲线方程为( )A .B .C .D .二、填空题13.已知函数f (x )=sinx ﹣cosx ,则= .14.已知函数f (x )是定义在R 上的单调函数,且满足对任意的实数x 都有f[f (x )﹣2x ]=6,则f (x )+f (﹣x )的最小值等于 .15.【盐城中学2018届高三上第一次阶段性考试】函数f (x )=x ﹣lnx 的单调减区间为 .16.已知tan β=,tan (α﹣β)=,其中α,β均为锐角,则α= .17.已知一个算法,其流程图如图,则输出结果是 .18.已知||2=a ,||1=b ,2-a 与13b 的夹角为3π,则|2|+=a b .三、解答题19.已知数列{a n}的前n项和为S n,且S n=a n﹣,数列{b n}中,b1=1,点P(b n,b n+1)在直线x﹣y+2=0上.(1)求数列{a n},{b n}的通项a n和b n;(2)设c n=a n•b n,求数列{c n}的前n项和T n.20.已知函数.(Ⅰ)若函数f(x)在区间[1,+∞)内单调递增,求实数a的取值范围;(Ⅱ)求函数f(x)在区间[1,e]上的最小值.21.武汉市为增强市民交通安全意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45],得到的频率分布直方图如图所示.(1)分别求第3,4,5组的频率;(2)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?(3)在(2)的条件下,该市决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.22.【2017-2018学年度第一学期如皋市高三年级第一次联考】设函数()1ln 1f x a x x=+-. (1)当2a =时,求函数()f x 在点()()11f ,处的切线方程; (2)讨论函数()f x 的单调性;(3)当102a <<时,求证:对任意1+2x ⎛⎫∈∞ ⎪⎝⎭,,都有1e x aa x +⎛⎫+< ⎪⎝⎭.23.在平面直角坐标系中,△ABC 各顶点的坐标分别为:A (0,4);B (﹣3,0),C (1,1) (1)求点C 到直线AB 的距离; (2)求AB 边的高所在直线的方程.24.(本小题满分12分)某媒体对“男女延迟退休”这一公众关注的问题进行名意调查,下表是在某单位(Ⅱ)从赞同“男女延迟退休”的80人中,利用分层抽样的方法抽出8人,然后从中选出2人进行陈述 发言,求事件“选出的2人中,至少有一名女士”的概率.参考公式:22()K ()()()()n ad bc a b c d a c b d -=++++,()n a b c d =+++【命题意图】本题考查统计案例、抽样方法、古典概型等基础知识,意在考查统计的思想和基本运算能力瓮安县第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题1. 【答案】A【解析】解析:本题考查直线的参数方程、圆的极坐标方程及其直线与圆的位置关系.在直角坐标系中,圆C的方程为22((1)4x y -+-=,直线l 的普通方程为tan (1)y x α=-,直线l 过定点M ,∵||2MC <,∴点M 在圆C 的内部.当||AB 最小时,直线l ⊥直线MC ,1MC k =-,∴直线l 的斜率为1,∴4πα=,选A .2. 【答案】C【解析】解:∵椭圆的半焦距为2,离心率e=,∴c=2,a=3,∴b=∴2b=2.故选:C .【点评】本题主要考查了椭圆的简单性质.属基础题.3. 【答案】B.【解析】2323()4()()44()a b ab a b ab ab -=⇒+=+,故11a b a b ab++≤⇒≤2322()44()1184()82()()a b ab ab ab ab ab ab ab ab ++⇒≤⇒=+≤⇒+≤,而事实上12ab ab +≥=,∴1ab =,∴log 1a b =-,故选B.4. 【答案】D【解析】解:设过点M (﹣2,0)的直线l 的方程为y=k (x+2),联立,得(2k 2+1)x 2+8k 2x+8k 2﹣2=0,∵过点M (﹣2,0)的直线l 与椭圆有公共点,∴△=64k 4﹣4(2k 2+1)(8k 2﹣2)≥0,整理,得k 2,解得﹣≤k ≤.∴直线l的斜率k的取值范围是[﹣,].故选:D.【点评】本题考查直线的斜率的取值范围的求法,是基础题,解题时要认真审题,注意根的判别式的合理运用.5.【答案】B【解析】解::①sin100°>0,②cos(﹣100°)=cos100°<0,③tan(﹣100°)=﹣tan100>0,④∵sin>0,cosπ=﹣1,tan<0,∴>0,其中符号为负的是②,故选:B.【点评】本题主要考查三角函数值的符号的判断,判断角所在的象限是解决本题的关键,比较基础.6.【答案】A【解析】解:∵向量与的夹角为60°,||=2,||=6,∴(2﹣)•=2﹣=2×22﹣6×2×cos60°=2,∴2﹣在方向上的投影为=.故选:A.【点评】本题考查了平面向量数量积的定义与投影的计算问题,是基础题目.7.【答案】C【解析】解:由抛物线方程得准线方程为:y=﹣1,焦点F(0,1),又P为C上一点,|PF|=4,可得y P=3,代入抛物线方程得:|x|=2,P∴S△POF=|0F|•|x P|=.故选:C.8.【答案】D试题分析:原式()()=︒︒-︒︒=︒+︒=︒=︒+︒=-︒cos80cos130sin80sin130cos80130cos210cos30180cos30=.考点:余弦的两角和公式.9.【答案】B【解析】解:∵x(x﹣1)<2,∴x2﹣x﹣2<0,即(x﹣2)(x+1)<0,∴﹣1<x<2,即不等式的解集为{x|﹣1<x<2}.故选:B10.【答案】B【解析】解:“A=30°”⇒“”,反之不成立.故选B【点评】本题考查充要条件的判断和三角函数求值问题,属基本题.11.【答案】C【解析】解:||=3,||=1,与的夹角为,可得=||||cos<,>=3×1×=,即有|﹣4|===.故选:C.【点评】本题考查向量的数量积的定义和性质,考查向量的平方即为模的平方,考查运算能力,属于基础题.12.【答案】A【解析】解:由于椭圆的标准方程为:则c2=132﹣122=25又∵双曲线的离心率∴a=4,b=3又因为且椭圆的焦点在x轴上,∴双曲线的方程为:故选A【点评】运用待定系数法求椭圆(双曲线)的标准方程,即设法建立关于a,b的方程组,先定型、再定量,若位置不确定时,考虑是否两解,有时为了解题需要,椭圆方程可设为mx2+ny2=1(m>0,n>0,m≠n),双曲线方程可设为mx2﹣ny2=1(m>0,n>0,m≠n),由题目所给条件求出m,n即可.二、填空题13.【答案】.【解析】解:∵函数f(x)=sinx﹣cosx=sin(x﹣),则=sin(﹣)=﹣=﹣,故答案为:﹣.【点评】本题主要考查两角差的正弦公式,属于基础题.14.【答案】6.【解析】解:根据题意可知:f(x)﹣2x是一个固定的数,记为a,则f(a)=6,∴f(x)﹣2x=a,即f(x)=a+2x,∴当x=a时,又∵a+2a=6,∴a=2,∴f(x)=2+2x,∴f(x)+f(﹣x)=2+2x+2+2﹣x=2x+2﹣x+4≥2+4=6,当且仅当x=0时成立,∴f(x)+f(﹣x)的最小值等于6,故答案为:6.【点评】本题考查函数的最值,考查运算求解能力,注意解题方法的积累,属于中档题.15.【答案】(0,1)【解析】考点:本题考查函数的单调性与导数的关系16.【答案】 .【解析】解:∵tan β=,α,β均为锐角,∴tan (α﹣β)===,解得:tan α=1,∴α=.故答案为:.【点评】本题考查了两角差的正切公式,掌握公式是关键,属于基础题.17.【答案】 5 .【解析】解:模拟执行程序框图,可得 a=1,a=2不满足条件a 2>4a+1,a=3不满足条件a 2>4a+1,a=4不满足条件a 2>4a+1,a=5满足条件a 2>4a+1,退出循环,输出a 的值为5.故答案为:5.【点评】本题主要考查了循环结构的程序框图,依次正确写出每次循环得到的a 的值是解题的关键,属于基本知识的考查.18.【答案】2【解析】解析:本题考查向量夹角与向量数量积的应用.a 与b 的夹角为23π,1⋅=-a b ,∴|2|+=a b 2==.三、解答题19.【答案】【解析】解:(1)∵S n =a n ﹣,∴当n ≥2时,a n =S n ﹣S n ﹣1=a n ﹣﹣,即a n =3a n ﹣1,.∵a 1=S 1=﹣,∴a 1=3.∴数列{a n }是等比数列,∴a n =3n.∵点P (b n ,b n+1)在直线x ﹣y+2=0上, ∴b n+1﹣b n =2,即数列{b n }是等差数列,又b 1=1,∴b n =2n ﹣1.(2)∵c n =a n •b n =(2n ﹣1)•3n,∵T n =1×3+3×32+5×33+…+(2n ﹣3)3n ﹣1+(2n ﹣1)3n, ∴3T n =1×32+3×33+5×34+…+(2n ﹣3)3n +(2n ﹣1)3n+1, 两式相减得:﹣2T n =3+2×(32+33+34+…+3n )﹣(2n ﹣1)3n+1,=﹣6﹣2(n ﹣1)3n+1, ∴T n =3+(n ﹣1)3n+1.20.【答案】【解析】解:(1)由已知得:f ′(x )=.要使函数f (x )在区间[1,+∞)内单调递增,只需≥0在[1,+∞)上恒成立.结合a >0可知,只需a ,x ∈[1,+∞)即可.易知,此时=1,所以只需a ≥1即可.(2)结合(1),令f ′(x )==0得.当a ≥1时,由(1)知,函数f (x )在[1,e]上递增,所以f (x )min =f (1)=0;当时,,此时在[1,)上f ′(x )<0,在上f ′(x )>0,所以此时f (x )在上递减,在上递增,所以f (x )min =f ()=1﹣lna ﹣;当时,,故此时f ′(x )<0在[1,e]上恒成立,所以f (x )在[1,e]上递减,所以f (x )min =f (e )=.【点评】本题考查了利用导数研究函数的单调性的基本思路,以及已知函数单调性求参数范围时转化为导函数在指定区间上大于零或小于零恒成立的问题的思想方法.21.【答案】【解析】解:(1)由题意可知第3组的频率为0.06×5=0.3, 第4组的频率为0.04×5=0.2, 第5组的频率为0.02×5=0.1; (2)第3组的人数为0.3×100=30, 第4组的人数为0.2×100=20, 第5组的人数为0.1×100=10; 因为第3,4,5组共有60名志愿者,所以利用分层抽样的方法在60名志愿者中抽取6名志愿者,每组抽取的人数分别为:第3组=3;第4组=2;第5组=1;应从第3,4,5组各抽取3,2,1名志愿者.(3)记第3组3名志愿者为1,2,3;第4组2名志愿者为4,5;第5组1名志愿者为6; 在这6名志愿者中随机抽取2名志愿者有:(1,2),(1,3),(1,4),(1,5),(1,6), (2,3),(2,4),(2,5),(2,6), (3,4),(3,5),(3,6), (4,5),(4,6), (5,6);共有15种,第4组2名志愿者为4,5;至少有一名志愿者被抽中共有9种,所以第4组至少有一名志愿者被抽中的概率为.【点评】本题考查列举法计算基本事件数及事件发生的概率,频率分布直方图,考查计算能力.22.【答案】(1)10x y --=;(2)见解析;(3)见解析. 【解析】试题分析:(1)当2a =时,求出导数易得()'11f =,即1k =,利用点斜式可得其切线方程;(2)求得可得()21'ax f x x -=,分为0a ≤和0a >两种情形判断其单调性;(3)当102a <<时,根据(2)可 得函数()f x 在()12,上单调递减,故()11a f f x ⎛⎫+< ⎪⎝⎭,即ln 1a a a x x a ⎛⎫+<⎪+⎝⎭,化简可得所证结论.试题解析:(1)当2a =时,()12ln 1f x x x =+-,()112ln1101f =+-=,()221'f x x x =-,()221'1111f =-=,所以函数()f x 在点()10,处的切线方程为()011y x -=⨯-,即10x y --=. (2)()1ln 1f x a x x =+-,定义域为()0+∞,,()2211'a ax f x x x x-=-=. ①当0a ≤时,()'0f x <,故函数()f x 在()0+∞,上单调递减;②当0a >时,令()'0f x =,得1x= 综上所述,当0a ≤时,()f x 在()0+∞,上单调递减;当0a >时,函数()f x 在10a ⎛⎫ ⎪⎝⎭,上单调递减,在1a ⎛⎫+∞ ⎪⎝⎭,上单调递增. (3)当102a <<时,由(2)可知,函数()f x 在10a ⎛⎫ ⎪⎝⎭,上单调递减,显然,12a >,故()1120a ⎛⎫⊆ ⎪⎝⎭,,,所以函数()f x 在()12,上单调递减,对任意1+2x ⎛⎫∈∞ ⎪⎝⎭,,都有01a x <<,所以112a x <+<.所以()11a f f x ⎛⎫+< ⎪⎝⎭,即1ln 1101a a a x x ⎛⎫++-< ⎪⎝⎭+,所以ln 1a a a x x a ⎛⎫+< ⎪+⎝⎭,即1ln 1a x x a ⎛⎫+< ⎪+⎝⎭,所以()ln 11a x a x ⎛⎫++< ⎪⎝⎭,即ln 11x aa x +⎛⎫+< ⎪⎝⎭,所以1e x aa x +⎛⎫+< ⎪⎝⎭.23.【答案】 【解析】解(1)∵,∴根据直线的斜截式方程,直线AB :,化成一般式为:4x ﹣3y+12=0,∴根据点到直线的距离公式,点C 到直线AB 的距离为;(2)由(1)得直线AB的斜率为,∴AB边的高所在直线的斜率为,由直线的点斜式方程为:,化成一般式方程为:3x+4y﹣7=0,∴AB边的高所在直线的方程为3x+4y﹣7=0.24.【答案】【解析】(Ⅰ)根据题中的数据计算:()2 240050170301506.2580320200200⨯⨯-⨯K==⨯⨯⨯因为6.25>5.024,所以有97.5%的把握认为对这一问题的看法与性别有关(Ⅱ)由已知得抽样比为81=8010,故抽出的8人中,男士有5人,女士有3人.分别设为,,,,,1,2,3a b c d e,选取2人共有{},a b,{},a c,{},a d,{},a e,{},1a,{},2a,{},3a,{},b c,{},b d,{},b e,{},1b,{},2b,{},3b,{},c d,{},c e,{},1c,{},2c,{},3c,{},d e,{},1d,{},2d,{},3d,{},1e,{},2e,{},3e,{}1,2,{}1,3,{}2,328个基本事件,其中事件“选出的2人中,至少有一名女士”包含18个基本事件,故所求概率为189=2814P=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
瓮安县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 设a ,b ∈R 且a+b=3,b >0,则当+取得最小值时,实数a 的值是( )A .B .C .或 D .32. 已知集合{| lg 0}A x x =≤,1={|3}2B x x ≤≤,则A B =( ) A .(0,3] B .(1,2]C .(1,3]D .1[,1]2【命题意图】本题考查对数不等式解法和集合的运算等基础知识,意在考查基本运算能力.3. 函数f (x )=tan (2x+),则( )A .函数最小正周期为π,且在(﹣,)是增函数B .函数最小正周期为,且在(﹣,)是减函数C .函数最小正周期为π,且在(,)是减函数D .函数最小正周期为,且在(,)是增函数4. 数列{a n }是等差数列,若a 1+1,a 3+2,a 5+3构成公比为q 的等比数列,则q=( ) A .1 B .2C .3D .45. 已知e 为自然对数的底数,若对任意的1[,1]x e∈,总存在唯一的[1,1]y ∈-,使得2ln 1yx x a y e -++= 成立,则实数a 的取值范围是( )A.1[,]e eB.2(,]e eC.2(,)e +∞D.21(,)e e e+【命题意图】本题考查导数与函数的单调性,函数的最值的关系,函数与方程的关系等基础知识,意在考查运用转化与化归思想、综合分析问题与解决问题的能力.6. 已知直线l 1:(3+m )x+4y=5﹣3m ,l 2:2x+(5+m )y=8平行,则实数m 的值为( )A .﹣7B .﹣1C .﹣1或﹣7D .7. 方程(x 2﹣4)2+(y 2﹣4)2=0表示的图形是( ) A .两个点 B .四个点 C .两条直线 D .四条直线8. 下列函数在(0,+∞)上是增函数的是( )A .B .y=﹣2x+5C .y=lnxD .y=9. 设集合A ={1,2,3},B ={4,5},M ={x|x =a +b ,a ∈A ,b ∈B},则M 中元素的个数为( )。
A3 B4 C5 D610.对于任意两个正整数m ,n ,定义某种运算“※”如下:当m ,n 都为正偶数或正奇数时,m ※n=m+n ;当m ,n 中一个为正偶数,另一个为正奇数时,m ※n=mn .则在此定义下,集合M={(a ,b )|a ※b=12,a ∈N *,b ∈N *}中的元素个数是( ) A .10个 B .15个 C .16个 D .18个11.已知函数f (x )=,则f (0)=( )A .﹣1B .0C .1D .312.某三棱椎的三视图如图所示,该三棱锥的四个面的面积中,最大的是( )A .B .8C .D .二、填空题13.分别在区间[0,1]、[1,]e 上任意选取一个实数a b 、,则随机事件“ln a b ”的概率为_________. 14.多面体的三视图如图所示,则该多面体体积为(单位cm ) .15.已知正整数m 的3次幂有如下分解规律:113=;5323+=;119733++=;1917151343+++=;…若)(3+∈N m m 的分解中最小的数为91,则m 的值为 .【命题意图】本题考查了归纳、数列等知识,问题的给出比较新颖,对逻辑推理及化归能力有较高要求,难度中等.16.若命题“∀x ∈R ,|x ﹣2|>kx+1”为真,则k 的取值范围是 .17.【泰州中学2018届高三10月月考】设二次函数()2f x ax bx c =++(,,a b c 为常数)的导函数为()f x ',对任意x R ∈,不等式()()f x f x ≥'恒成立,则222b ac +的最大值为__________.18.已知1sin cos 3αα+=,(0,)απ∈,则sin cos 7sin 12ααπ-的值为 .三、解答题19.已知f ()=﹣x ﹣1.(1)求f (x );(2)求f (x )在区间[2,6]上的最大值和最小值.20.已知曲线21()f x e x ax=+(0x ≠,0a ≠)在1x =处的切线与直线2(1)20160e x y --+= 平行.(1)讨论()y f x =的单调性;(2)若()ln kf s t t ≥在(0,)s ∈+∞,(1,]t e ∈上恒成立,求实数的取值范围.21.设f (x )=2x 3+ax 2+bx+1的导数为f ′(x ),若函数y=f ′(x )的图象关于直线x=﹣对称,且f ′(1)=0 (Ⅰ)求实数a ,b 的值 (Ⅱ)求函数f (x )的极值.22.已知,且.(1)求sin α,cos α的值;(2)若,求sin β的值.23.已知函数f(x)=,求不等式f(x)<4的解集.24.已知函数y=f(x)的图象与g(x)=log a x(a>0,且a≠1)的图象关于x轴对称,且g(x)的图象过(4,2)点.(Ⅰ)求函数f(x)的解析式;(Ⅱ)若f(x﹣1)>f(5﹣x),求x的取值范围.瓮安县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】C【解析】解:∵a+b=3,b>0,∴b=3﹣a>0,∴a<3,且a≠0.①当0<a<3时,+==+=f(a),f′(a)=+=,当时,f′(a)>0,此时函数f(a)单调递增;当时,f′(a)<0,此时函数f(a)单调递减.∴当a=时,+取得最小值.②当a<0时,+=﹣()=﹣(+)=f(a),f′(a)=﹣=﹣,当时,f′(a)>0,此时函数f(a)单调递增;当时,f′(a)<0,此时函数f(a)单调递减.∴当a=﹣时,+取得最小值.综上可得:当a=或时,+取得最小值.故选:C.【点评】本题考查了导数研究函数的单调性极值与最值、分类讨论方法,考查了推理能力与计算能力,属于难题.2.【答案】D【解析】由已知得{}=01A x x<?,故A B1[,1]2,故选D.3.【答案】D【解析】解:对于函数f(x)=tan(2x+),它的最小正周期为,在(,)上,2x+∈(,),函数f(x)=tan(2x+)单调递增,故选:D.4.【答案】A【解析】解:设等差数列{a n}的公差为d,由a1+1,a3+2,a5+3构成等比数列,得:(a3+2)2=(a1+1)(a5+3),整理得:a32+4a3+4=a1a5+3a1+a5+3即(a1+2d)2+4(a1+2d)+4=a1(a1+4d)+4a1+4d+3.化简得:(2d+1)2=0,即d=﹣.∴q===1.故选:A.【点评】本题考查了等差数列的通项公式,考查了等比数列的性质,是基础的计算题.5.【答案】B【解析】6.【答案】A【解析】解:因为两条直线l1:(3+m)x+4y=5﹣3m,l2:2x+(5+m)y=8,l1与l2平行.所以,解得m=﹣7.故选:A.【点评】本题考查直线方程的应用,直线的平行条件的应用,考查计算能力.7.【答案】B【解析】解:方程(x2﹣4)2+(y2﹣4)2=0则x2﹣4=0并且y2﹣4=0,即,解得:,,,,得到4个点.故选:B.【点评】本题考查二元二次方程表示圆的条件,方程的应用,考查计算能力.8.【答案】C【解析】解:对于A,函数y=在(﹣∞,+∞)上是减函数,∴不满足题意;对于B,函数y=﹣2x+5在(﹣∞,+∞)上是减函数,∴不满足题意;对于C,函数y=lnx在(0,+∞)上是增函数,∴满足题意;对于D,函数y=在(0,+∞)上是减函数,∴不满足题意.故选:C.【点评】本题考查了基本初等函数的单调性的判断问题,是基础题目.9.【答案】B【解析】由题意知x=a+b,a∈A,b∈B,则x的可能取值为5,6,7,8.因此集合M共有4个元素,故选B 10.【答案】B【解析】解:a※b=12,a、b∈N*,若a和b一奇一偶,则ab=12,满足此条件的有1×12=3×4,故点(a,b)有4个;若a和b同奇偶,则a+b=12,满足此条件的有1+11=2+10=3+9=4+8=5+7=6+6共6组,故点(a,b)有2×6﹣1=11个,所以满足条件的个数为4+11=15个.故选B11.【答案】B【解析】解:函数f(x)=,则f(0)=f(2)=log22﹣1=1﹣1=0.故选B.【点评】本题考查分段函数的运用:求函数值,注意运用各段的范围是解题的关键,属于基础题.12.【答案】C【解析】【分析】通过三视图分析出几何体的图形,利用三视图中的数据求出四个面的面积中的最大值. 【解答】解:由题意可知,几何体的底面是边长为4的正三角形,棱锥的高为4,并且高为侧棱垂直底面三角形的一个顶点的三棱锥,两个垂直底面的侧面面积相等为:8, 底面面积为: =4,另一个侧面的面积为: =4,四个面中面积的最大值为4;故选C .二、填空题13.【答案】1e e- 【解析】解析: 由ln a b ≥得ab e ≤,如图所有实数对(,)a b 表示的区域的面积为e ,满足条件“ab e ≤”的实数对(,)a b 表示的区域为图中阴影部分,其面积为111|a a e da e e ==-⎰,∴随机事件“ln a b ≥”的概率为1e e-.14.【答案】cm 3 .【解析】解:如图所示,由三视图可知:该几何体为三棱锥P ﹣ABC .该几何体可以看成是两个底面均为△PCD ,高分别为AD 和BD 的棱锥形成的组合体,由几何体的俯视图可得:△PCD 的面积S=×4×4=8cm 2,由几何体的正视图可得:AD+BD=AB=4cm ,故几何体的体积V=×8×4=cm 3,故答案为:cm 3【点评】本题考查由三视图求几何体的体积和表面积,根据已知的三视图分析出几何体的形状是关键.15.【答案】10【解析】3m 的分解规律恰好为数列1,3,5,7,9,…中若干连续项之和,32为连续两项和,33为接下来三项和,故3m 的首个数为12+-m m .∵)(3+∈N m m 的分解中最小的数为91,∴9112=+-m m ,解得10=m .16.【答案】 [﹣1,﹣) .【解析】解:作出y=|x ﹣2|,y=kx+1的图象,如图所示,直线y=kx+1恒过定点(0,1),结合图象可知k ∈[﹣1,﹣).故答案为:[﹣1,﹣).【点评】本题考查全称命题,考查数形结合的数学思想,比较基础.17.【答案】2【解析】试题分析:根据题意易得:()'2f x ax b =+,由()()'f x f x ≥得:()220ax b a x c b +-+-≥在R上恒成立,等价于:0{0a >≤,可解得:()22444b ac a a c a ≤-=-,则:222222241441c b ac a aa c a c c a ⎛⎫- ⎪-⎝⎭≤=++⎛⎫+ ⎪⎝⎭,令1,(0)c t t a =->,24422222t y t t t t==≤=++++,故222b ac +的最大值为2. 考点:1.函数与导数的运用;2.恒成立问题;3.基本不等式的运用 18.【解析】7sinsin sin coscos sin 12434343πππππππ⎛⎫=+=+ ⎪⎝⎭4=,sin cos 73sin 12ααπ-∴==,考点:1、同角三角函数之间的关系;2、两角和的正弦公式.三、解答题19.【答案】 【解析】解:(1)令t=,则x=,∴f (t )=, ∴f (x )=(x ≠1)…(2)任取x 1,x 2∈[2,6],且x 1<x 2, f (x 1)﹣f (x 2)=﹣=,∵2≤x 1<x 2≤6,∴(x 1﹣1)(x 2﹣1)>0,2(x 2﹣x 1)>0, ∴f (x 1)﹣f (x 2)>0, ∴f (x )在[2,6]上单调递减,…∴当x=2时,f (x )max =2,当x=6时,f (x )min =…20.【答案】(1)()f x 在1(,)e -∞-,1(,)e +∞上单调递增,在1(,0)e -,1(0,)e 上单调递减;(2)1[,)2+∞. 【解析】试题解析:(1)由条件可得221'(1)1f e e a=-=-,∴1a =, 由21()f x e x x=+,可得2222211'()e x f x e x x -=-=, 由'()0f x >,可得2210,0,e x x ⎧->⎨≠⎩解得1x e >或1x e <-;由'()0f x <,可得2210,0,e x x ⎧-<⎨≠⎩解得10x e -<<或10x e <<.所以()f x 在1(,)e -∞-,1(,)e +∞上单调递增,在1(,0)e -,1(0,)e上单调递减.(2)令()ln g t t t =,当(0,)s ∈+∞,(1,]t e ∈时,()0f s >,()ln 0g t t t =>,由()ln kf s t t ≥,可得ln ()t tk f s ≥在(0,)x ∈+∞,(1,]t e ∈时恒成立,即max ln ()t t k f s ⎡⎤≥⎢⎥⎣⎦max()()g t f s ⎡⎤=⎢⎥⎣⎦,故只需求出()f s 的最小值和()g t 的最大值. 由(1)可知,()f s 在1(0,)e 上单调递减,在1(,)e +∞上单调递增,故()f s 的最小值为1()2f e e=,由()ln g t t t =可得'()ln 10g t t =+>在区间(1,]e 上恒成立,所以()g t 在(1,]e 上的最大值为()ln g e e e e ==, 所以只需122e k e ≥=, 所以实数的取值范围是1[,)2+∞.考点:1、利用导数研究函数的单调性及求切线斜率;2、不等式恒成立问题.【方法点晴】本题主要考查的是利用导数研究函数的单调性、利用导数研究函数的最值、不等式的恒成立和导数的几何意义,属于难题.利用导数研究函数()f x 的单调性进一步求函数最值的步骤:①确定函数()f x 的定义域;②对()f x 求导;③令()0f x '>,解不等式得的范围就是递增区间;令()0f x '<,解不等式得的范围就是递减区间;④根据单调性求函数()f x 的极值及最值(闭区间上还要注意比较端点处函数值的大小).21.【答案】【解析】解:(Ⅰ)因f (x )=2x 3+ax 2+bx+1,故f ′(x )=6x 2+2ax+b从而f ′(x )=6y=f ′(x )关于直线x=﹣对称,从而由条件可知﹣=﹣,解得a=3又由于f ′(x )=0,即6+2a+b=0,解得b=﹣12(Ⅱ)由(Ⅰ)知f (x )=2x 3+3x 2﹣12x+1f ′(x )=6x 2+6x ﹣12=6(x ﹣1)(x+2) 令f ′(x )=0,得x=1或x=﹣2当x ∈(﹣∞,﹣2)时,f ′(x )>0,f (x )在(﹣∞,﹣2)上是增函数; 当x ∈(﹣2,1)时,f ′(x )<0,f (x )在(﹣2,1)上是减函数; 当x ∈(1,+∞)时,f ′(x )>0,f (x )在(1,+∞)上是增函数.从而f (x )在x=﹣2处取到极大值f (﹣2)=21,在x=1处取到极小值f (1)=﹣6.22.【答案】【解析】解:(1)将sin +cos=两边平方得:(sin+cos)2=sin2+2sin cos+cos 2=1+sin α=,∴sin α=,∵α∈(,π),∴cos α=﹣=﹣;(2)∵α∈(,π),β∈(0,),∴α+β∈(,),∵sin (α+β)=﹣<0,∴α+β∈(π,),∴cos (α+β)=﹣=﹣,则sin β=sin=sin (α+β)cos α﹣cos (α+β)sin α=﹣×(﹣)﹣(﹣)×=+=.【点评】此题考查了两角和与差的正弦函数公式,以及运用诱导公式化简求值,熟练掌握公式是解本题的关键.23.【答案】【解析】解:函数f(x)=,不等式f(x)<4,当x≥﹣1时,2x+4<4,解得﹣1≤x<0;当x<﹣1时,﹣x+1<4解得﹣3<x<﹣1.综上x∈(﹣3,0).不等式的解集为:(﹣3,0).24.【答案】【解析】解:(Ⅰ)∵g(x)=log a x(a>0,且a≠1)的图象过点(4,2),∴log a4=2,a=2,则g(x)=log2x.…∵函数y=f(x)的图象与g(X)的图象关于x轴对称,∴.…(Ⅱ)∵f(x﹣1)>f(5﹣x),∴,即,解得1<x<3,所以x的取值范围为(1,3)…【点评】本题考查对数函数的性质的应用,注意真数大于零,属于基础题.。