有理数知识点总结

合集下载

有理数字知识点总结

有理数字知识点总结

有理数字知识点总结一、有理数的基本概念有理数是可以写成分数形式的数,包括正整数、负整数和分数。

一般记作Q。

有理数集包括正整数、负整数、零和分数。

1. 正整数:1, 2, 3, …2. 负整数:-1, -2, -3, …3. 零:04. 分数:a/b(a和b都是整数,b≠0)和自然数、整数、整数和分数相比,有理数具备更广泛的适用性,它能够准确地表示各种有关量的大小,如长度、质量、时间、温度等。

二、有理数的运算有理数的运算包括加法、减法、乘法和除法。

下面我们将分别介绍有理数的四则运算。

1. 加法有理数的加法满足交换律、结合律和对称律。

(1)同号相加:两个正数相加,或者两个负数相加,其和为它们的绝对值相加,并且符号不变。

(2)异号相加:一个正数和一个负数相加,其和的绝对值为它们的绝对值相减,符号取绝对值较大的数的符号。

2. 减法有理数的减法可以转化为加法,即 a - b = a + (-b)。

(1)减去一个正数等于加上一个负数。

(2)减去一个负数等于加上一个正数。

3. 乘法有理数的乘法满足交换律、结合律和分配律。

(1)同号相乘,积为正数。

(2)异号相乘,积为负数。

4. 除法有理数的除法可以转化为乘法,即 a ÷ b = a × (1/b)。

(1)有理数相除,不等于零的数除以零是无意义的。

(2)同号相除,商为正数。

(3)异号相除,商为负数。

有理数的四则运算是数学中最基本的运算,它们在解决实际问题中起着重要的作用。

为了掌握有理数的四则运算,我们需要多做一些练习,加深对有理数运算规律的理解。

三、有理数的比较大小比较有理数的大小有以下几种方法:1. 同号比较大小:绝对值大的数更大。

2. 异号比较大小:正数大于零,负数大于负无穷小,零等于零。

3. 有理数的绝对值比较大小。

深化理解有理数的比较大小规律,对解决实际问题具有重要意义。

在实际生活中,我们经常需要比较各种有关量的大小,如温度的高低、时间的长短、质量的轻重等,而有理数的比较大小知识点正是这些实际问题的数学抽象。

有理数的知识点总结

有理数的知识点总结

有理数的知识点总结一、有理数的定义及基本性质:有理数是指所有可以表示为两个整数的比值的数,包括整数、分数和零。

有理数可以用一组整数的比值表示成两种形式:分数形式(也称作比例效应)和小数形式(也称作数列形式)。

有理数的集合通常记作Q。

有理数具有以下基本性质:1. 有理数的加法、减法、乘法和除法仍然是有理数,也就是说,有理数集合对于这四种运算是封闭的。

2. 有理数满足交换律和结合律,在加法和乘法运算中,a+b =b+a,(a+b)+c = a+(b+c);在乘法运算中,a×b = b×a,(a×b)×c= a×(b×c)。

3. 有理数乘法和除法具有倒数性质,即对于任意非零有理数a,存在一个有理数b使得a×b = 1。

4. 有理数乘法符合分配律,即对于任意有理数a、b和 c,a×(b+c) = a×b + a×c。

5. 有理数具有唯一分解性质,即任何一个非零有理数都可以唯一表示为两个整数的比值,而且这个比值对于最简分数形式是唯一的。

二、有理数的四则运算:1. 有理数的加法和减法:对于两个有理数a/b和 c/d,它们的加法定义为(a/b) + (c/d) = (ad+bc)/bd,减法定义为(a/b) - (c/d) = (ad-bc)/bd。

在进行加法和减法运算时,通常需要化简结果为最简分数形式。

2. 有理数的乘法和除法:对于两个有理数 a/b和 c/d,它们的乘法定义为(a/b) × (c/d) =ac/bd,除法定义为(a/b) ÷ (c/d) = ad/bc(其中c/d≠0)。

在进行乘法和除法运算时,同样需要化简结果为最简分数形式。

三、有理数的大小比较:在有理数集合中,任何两个有理数都可以通过大小比较运算来确定它们的相对大小。

有理数的大小比较有以下几个基本原则:1. 相同符号的有理数比较大小,绝对值越大的数为更大的数;2. 不同符号的有理数比较大小,正数大于零,零大于负数;3. 相同符号的两个有理数的绝对值比较,绝对值较小的数较小。

《有理数》的知识点汇总

《有理数》的知识点汇总

第一章有理数1.1 正数与负数1.正数和负数的概念①正数:大于0的数叫正数。

(根据需要,有时在正数前面也加上“+”)②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。

与正数具有相反意义。

③0既不是正数也不是负数。

0是正数和负数的分界,是唯一的中性数。

注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。

(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。

所以省略“+”的正数的符号是正号。

2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。

如:(3) 0表示一个确切的量。

如:0℃以及有些题目中的基准,比如以海平面为基准,则0米就表示海平面。

注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等1.2 有理数有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

3,整数也能化成分数,也是有理数注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。

2.有理数的分类总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。

有理数知识点总结

有理数知识点总结

有理数知识点总结1. 有理数的定义和性质1.1 有理数的定义有理数是可以表示为两个整数的比的数,包括整数、分数和零。

1.2 有理数的性质•有理数可以进行加、减、乘、除运算,并仍为有理数。

•有理数的加法和乘法满足交换律、结合律和分配律。

2. 有理数的表示和分类2.1 有理数的表示有理数可以用分数的形式表示,即分子和分母都是整数,并且分母不为零。

2.2 有理数的分类有理数可以分为以下几类: - 正数:大于零的有理数。

- 负数:小于零的有理数。

- 零:既不大于零也不小于零的有理数。

3. 有理数的比较和大小关系3.1 有理数的比较•对于同号的两个有理数,绝对值大的数较大。

•对于异号的两个有理数,正数较大。

3.2 有理数的大小关系•两个正数比较大小,数值大的较大。

•两个负数比较大小,数值小的较大。

•正数大于零,零大于负数。

4. 有理数的运算4.1 加法和减法有理数的加法和减法满足交换律和结合律,可以通过以下步骤进行: - 对于同号的两个有理数,将它们的绝对值相加(减),并保持符号不变。

- 对于异号的两个有理数,将它们的绝对值相减,结果的符号由绝对值较大的数决定。

4.2 乘法和除法有理数的乘法和除法满足交换律、结合律和分配律,可以通过以下步骤进行: -两个有理数的乘积的符号由乘数的符号决定。

- 两个有理数的商的符号由被除数和除数的符号决定。

5. 有理数的进一步思考5.1 有理数的无穷性有理数是无穷的,可以无限接近但无法达到某些无理数,如圆周率π和自然对数的底数e。

5.2 有理数的应用有理数在实际生活中有广泛的应用,如计算、测量、金融等领域。

在金融中,有理数可以表示货币的数量,进行利息计算等。

5.3 有理数的拓展有理数是数的一个重要分支,还有其他类型的数如无理数、实数、复数等。

无理数是无法表示为两个整数的比的数,实数是有理数和无理数的统称,而复数是实数和虚数的组合。

结论有理数是可以表示为两个整数的比的数,包括整数、分数和零。

关于有理数的知识点总结

关于有理数的知识点总结

关于有理数的知识点总结一、有理数的概念及性质1. 有理数的定义有理数是指可以表示为两个整数的比的数,它通常用分数形式表示。

实际上,每个有理数都可以写成一个整数和一个非零整数的商。

例如,2/3、-5/4、3等都是有理数。

2. 有理数的性质(1)有理数可以用分数形式表示,例如2/3、-5/4等。

(2)有理数中包括正整数、负整数、零以及所有的分数。

(3)有理数的数轴表示:有理数可以用数轴上的点来表示,正数在原点的右侧,负数在原点的左侧,0在原点上。

二、有理数的表示和分类1. 有理数的表示有理数可以用分数形式表示或者小数形式表示。

对于分数形式,它可以用a/b的形式表示,其中a为分子,b为分母;对于小数形式,它可以用有限小数或者循环小数来表示。

2. 有理数的分类有理数可以分为正数、负数和零三种。

其中正数是大于0的数,负数是小于0的数,零表示0。

三、有理数的加法和减法1. 有理数的加法(1)同号数的加法:两个正数相加或者两个负数相加,结果为正数;例如2+3=5,(-2)+(-3)=-5。

(2)异号数的加法:两个正数相加或者一个正数和一个负数相加,结果的绝对值大的减去绝对值小的,符号取绝对值大的数的符号;例如2+(-3)=-1,(-2)+3=1。

2. 有理数的减法有理数的减法可以转化为加法来进行,即a-b=a+(-b)。

也就是说,将减法问题转化为加法问题,然后按照加法的规则进行计算。

四、有理数的乘法和除法1. 有理数的乘法(1)同号数的乘法:两个正数相乘或者两个负数相乘,结果为正数;例如2*3=6,(-2)*(-3)=6。

(2)异号数的乘法:一个正数和一个负数相乘,结果为负数;例如2*(-3)=-6。

2. 有理数的除法有理数的除法同样可以转化为乘法来进行,即a/b=a*(1/b)。

也就是说,将除法问题转化为乘法问题,然后按照乘法的规则进行计算。

五、有理数的绝对值1. 有理数绝对值的定义有理数a的绝对值定义为a的非负数表示,即a的绝对值记为|a|,有两种定义形式:(1)当a>=0时,|a|=a;(2)当a<0时,|a|=-a。

有理数的知识点总结

有理数的知识点总结

有理数1. 重要观点有理数是数学中的一类数,它包括整数和分数。

有理数可以表示为两个整数的比值,其中分母不为零。

有理数的重要观点如下:1.1 有理数的定义有理数是可以表示为两个整数的比值的数,其中分母不为零。

有理数可以用分数形,其中a和b是整数,b不为零。

式表示,如ab1.2 有理数的分类有理数可以分为正有理数、负有理数和零。

正有理数是大于零的有理数,负有理数是小于零的有理数,零是整数中的特殊有理数。

1.3 有理数的运算有理数的运算包括加法、减法、乘法和除法。

有理数的加法和乘法满足交换律、结合律和分配律。

有理数的减法可以转化为加法,除法可以转化为乘法。

1.4 有理数的比较有理数的大小可以通过比较其大小关系来确定。

两个有理数a和b,如果a−b大于零,则a大于b;如果a−b小于零,则a小于b;如果a−b等于零,则a等于b。

1.5 有理数的绝对值有理数的绝对值表示有理数的距离到零的距离,可以用来表示有理数的大小。

一个有理数a的绝对值,表示为|a|,如果a大于等于零,则|a|=a;如果a小于零,则|a|=−a。

1.6 有理数的约分有理数可以进行约分操作,即将分子和分母同时除以它们的公因数,得到一个等价的有理数。

约分可以使有理数的表示更简洁。

2. 关键发现在学习有理数的过程中,我们可以发现以下关键点:2.1 有理数与整数的关系整数是有理数的一种特殊情况,可以看作分母为1的有理数。

有理数的加法、减法和乘法运算也适用于整数。

2.2 有理数的小数表示有理数可以通过将分子除以分母得到小数表示形式。

有些有理数可以精确表示为有限小数,有些有理数则会出现循环小数。

2.3 有理数的运算性质有理数的运算满足交换律、结合律和分配律。

这些运算性质使得有理数的运算更加方便和灵活。

2.4 有理数的应用有理数在日常生活和实际问题中有广泛的应用。

例如,有理数可以用来表示温度、货币、时间等实际量,并进行相关的计算。

3. 进一步思考学习有理数的过程中,我们可以深入思考以下问题:3.1 无理数与有理数的关系除了有理数,还存在一类不能表示为两个整数的比值的数,称为无理数。

有理数知识点总结

有理数知识点总结一、有理数的定义有理数是整数(正整数、0、负整数)和分数的统称。

整数可以看作是分母为1 的分数。

正整数、0、负整数统称为整数;正分数、负分数统称为分数。

例如,5 是正整数,-3 是负整数,0 是整数;1/2 是正分数,-3/4 是负分数。

二、有理数的分类1、按定义分类有理数可分为整数和分数。

整数包括正整数、0、负整数;分数包括正分数和负分数。

2、按性质分类有理数可分为正有理数、0、负有理数。

正有理数包括正整数和正分数;负有理数包括负整数和负分数。

三、有理数的基本性质1、顺序性对于任意两个有理数a 和b,在数轴上,右边的数总比左边的数大。

有理数对四则运算(加、减、乘、除)封闭,即任意两个有理数进行四则运算,其结果仍是有理数。

3、稠密性有理数在数轴上是稠密的,即在任意两个不同的有理数之间,总存在无限多个有理数。

四、数轴1、定义规定了原点、正方向和单位长度的直线叫做数轴。

2、数轴的作用数轴是理解有理数概念和运算的重要工具。

任何一个有理数都可以用数轴上的一个点来表示;反之,数轴上的每一个点都表示一个有理数。

3、数轴上两点间的距离数轴上两点间的距离等于这两点所表示的数的差的绝对值。

五、相反数1、定义只有符号不同的两个数叫做互为相反数。

0 的相反数是 0。

互为相反数的两个数的和为 0。

例如,5 的相反数是-5,因为 5 +(-5) = 0。

六、绝对值1、定义数轴上表示数 a 的点与原点的距离叫做数 a 的绝对值,记作|a|。

2、性质正数的绝对值是它本身;负数的绝对值是它的相反数;0 的绝对值是 0。

即:当 a > 0 时,|a| = a;当 a = 0 时,|a| = 0;当 a < 0 时,|a| = a。

七、有理数的大小比较1、正数大于 0,0 大于负数,正数大于负数。

2、两个负数比较大小,绝对值大的反而小。

例如,比较-3 和-5 的大小,因为|-3| = 3,|-5| = 5,3 < 5,所以-3 >-5。

有理数十五大知识点总结

有理数十五大知识点总结一、有理数的定义及性质有理数是可以表示为分数形式的数,包括整数、负整数和分数。

有理数的加、减、乘、除法满足封闭性,即两个有理数进行这四种运算得到的仍然是有理数。

二、有理数的比较有理数的大小可以通过绝对值的大小来比较。

对于两个有理数a和b,如果|a| > |b|,则a > b;如果|a| < |b|,则a < b。

三、有理数的运算1. 有理数的加法对于有理数a和b,它们的加法运算是将它们的分子通分后进行相加,然后化简得到结果。

2. 有理数的减法对于有理数a和b,它们的减法运算可以转化为加法的形式,即a - b = a + (-b)。

3. 有理数的乘法有理数a和b的乘法运算是将它们的分子和分母分别相乘得到结果。

4. 有理数的除法有理数a和b的除法运算可以转化为乘法的形式,即a ÷ b = a × (1/b)。

四、有理数的绝对值有理数a的绝对值(|a|)是a到0的距离,并且它具有非负性、单调性和三角不等式等性质。

五、有理数的乘方有理数的n次方是将这个有理数连续乘以自身n次,其中n是自然数。

六、有理数的逆运算有理数a的逆数是1/a,它满足乘法逆元的性质,即a × (1/a) = 1。

七、有理数的分数化简对于有理数的分数形式,我们可以通过化简得到最简形式,即分子和分母没有共同因子。

八、有理数的混合运算有理数的混合运算包括加减乘除等多种运算,我们需要根据具体的题目进行分析和解决。

九、有理数的小数有理数可以表示为有限小数和无限循环小数两种形式,我们可以通过逐步除以10或乘以10将有理数转化为小数形式。

十、有理数的比例对于含有有理数的比例,我们可以通过交叉乘积法则或取十法则等方法进行比例的计算和推导。

十一、有理数的线性方程对于含有有理数的线性方程,我们可以通过整理方程、去分母和解方程的方法进行求解。

十二、有理数的实际应用有理数在实际生活中应用非常广泛,涉及到金融、商业、科学等各个领域。

有理数知识点总结

有理数知识点总结有理数是数学中的一个重要概念,它是整数和分数的统称。

在数学中,有理数的性质和运算规律是我们学习的基础,下面将从有理数的定义、性质和运算规律三个方面进行总结。

一、有理数的定义有理数是可以用两个整数的比表示出来的数,即有理数是整数和分数的统称。

其中,整数是有理数的一种特殊形式,而分数则是整数的推广。

有理数的特点是可以用分数表示为有限小数或无限循环小数。

二、有理数的性质1. 有理数可以进行比较大小。

对于任意两个有理数a和b,有且只有以下三种情况之一成立:a<b,a=b,a>b。

2. 有理数可以进行加、减、乘、除运算。

有理数的加法、减法、乘法、除法运算仍然是有理数。

3. 有理数的加法和乘法满足交换律、结合律和分配律。

三、有理数的运算规律1. 加法运算规律:对于任意三个有理数a、b、c,有(a+b)+c=a+(b+c);a+b=b+a。

2. 减法运算规律:对于任意三个有理数a、b、c,有(a-b)+c=a+(b-c);a-b=-(b-a)。

3. 乘法运算规律:对于任意三个有理数a、b、c,有(a*b)*c=a*(b*c);a*b=b*a。

4. 除法运算规律:对于任意三个非零有理数a、b、c,有(a/b)/c=a/(b/c);a/b=(c/b)*a。

5. 分配律:对于任意三个有理数a、b、c,有a*(b+c)=a*b+a*c。

有理数是数学中的基本概念之一,它在实际生活中有着广泛的应用。

比如,在商业活动中,我们需要进行货币的加减乘除运算,这就涉及到有理数的运算规律;在科学研究中,我们需要对数据进行分析和比较,这也需要用到有理数的性质。

有理数是数学中重要的概念之一,它包括了整数和分数,并具有比较大小和四则运算的性质。

掌握有理数的定义、性质和运算规律,对于我们学习数学和应用数学知识都具有重要意义。

有理数知识点整理

有理数知识点整理有理数是数学中的一种数形集合,是可以用整数或者整数的比来表示的数。

有理数的主要性质是可以进行加减乘除等基本运算。

下面是对有理数的知识点进行整理。

一、有理数的定义和表示方法有理数是可以表示成分数的数,可以用整数或整数的比来表示。

二、有理数的基本运算1.有理数的加法对于任意两个有理数a和b,它们的加法运算为a+b=c,其中c也是一个有理数。

5.有理数的整除性如果在有理数a和b中,b整除a且b不等于0,则可以表示为a=n×b。

6.有理数的商的整除性如果有理数a÷b是有理数q,而q也可以表示为q=m/n,则有a=nq=bm。

这种情况称为有理数的商的整除性。

三、有理数的大小比较两个有理数相等的充分必要条件是它们的差为0。

四、有理数的绝对值有理数a的绝对值记作|a|,表示a到0的距离。

六、有理数的倒数有理数a的倒数记作1/a或a-1,表示a的倒数是1/a,其中a不等于0。

七、有理数的基本性质1.有理数的加法、减法、乘法和除法都满足结合律、交换律和分配律。

2.对于任意的有理数a,有加数等于减去它的相反数,即a+a'=0。

3.对于任意的有理数a和b,有乘数等于被除以它的倒数,即a×1/a=1。

4.有理数的加法和乘法满足可逆性。

八、有理数的比值有理数a和b之间的比a:b可以表示为a÷b或a/b。

九、有理数的平方根有理数a的平方根是一个有理数b,当b^2=a时,也就是说b是满足b×b=a的正有理数。

总之,有理数是数学中的一个重要概念,掌握有理数的定义、表示方法、基本运算、大小比较、绝对值、相反数和倒数等知识点,对于学好数学有很大的帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章: 有理数
1.1 正数与负数
在以前学过的0以外的数前面加上负号“—”的数叫负数.
与负数具有相反意义,即以前学过的0以外的数叫做正数(根据需要,有时在正数前面也加上“+”).
【说明】1.有理数由“符号”和“数值”两部分组成.(符号问题是我们在今后的学习中经常忘记的问题.)
2.正数前面的符号可以省略,负数前面的符号不能省略.
3.正数大于0,负数小于0,正数大于负数.
4.0既不是正数,也不是负数.
5.正、负数通常表示相反意义的量,这些量包括:向东与向西;收入与支出;盈利与亏损;(温度)零上与零下;(水位)上升与下降;高于与低于(水平面);(出口)增长与减少……例如:向东走2米,记作:+2米;那么向西走3米,记作—3米.
6.用正负数表示加工允许误差 例如:①图纸上注明一个零件的直径是2.03.030+
-Φmm ,表示零件的直径标准是30mm ,但是,在生产的过程中,由于生产工艺存在的误差,因此直径可以比30mm 大0.2mm ,也可以比30mm 小0.3mm.即零件的直径在29.7mm~30.2mm 之间都合格.但在这个范围以外的就不合格了.
1.2 有理数
1.2.1 有理数
有理数的概念:整数和分数统称有理数.
分类:(1)按定义分类: (2)按性质符号分类:
⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数正整数整数有理数0⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数正分数正整数正有理数有理数0
(掌握分类方法应注意两点:①不重复:即同一事物不能归纳到两个类别中;
②不疏漏:即某一事物不能在所有类别中找不到.)
【说明】1.整数分为正整数、0、负整数.
2.分数分为正分数、负分数.
1
3.无限循环小数是有理数,它可以化成分数.如0.333…=
3
阅读材料:教材95页《无限循环小数化分数》.
4.无限不循环小数是无理数,如:π.
5.没有最大的有理数,也没有最小的有理数.
6.最大的负整数是-1,最小的正整数是1。

7.几个常见的概念:非负数:指正数和零;非正数:负数和零;
1.2.2 数轴
规定了原点、正方向、单位长度的直线叫做数轴;
【说明】1.数轴有三要素:原点、正方向、单位长度。

2.数轴的画法:
①先画一条水平的直线;
②在直线的右边画箭头,表示正方向;
③在直线上任取一点,作为原点,表示数0;
④以适当的长度作为单位长度,在原点的左右两边分别标出刻度.
3.数轴的性质:
①数轴上的点与有理数一一对应关系;
②正数都大于0,负数都小于0,正数大于负数;
③数轴上的点表示的数从左往右依次增大,从右往左依次减小。

④数轴上到原点的距离相等的点有2个,一个在原点左边,一个
在原点右边,他们互为相反数.
4.利用数轴比较数的大小:数轴上的点表示的数,右边的总比左
边大.
5.数轴上点的移动用数形结合的思维方法,通过画图分析,解决
问题.
6.数轴是非常重要的数学工具,它使数和直线上的点建立了对应
关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法,同时也为下学期学习平面直角坐标系打下了坚实的基础.
1.2.3 相反数
只有符号不同的两个数叫做互为相反数。

或者说:如果两个数只有符号不同,那么其中一个数就叫另一个数的相反数;
【说明】1.正数的相反数是负数;负数的相反数是正数;0的相反数是0. 注:一个数的相反数为非负数,那么这个数是( )
2.相反数的代数意义:互为相反数的两个数相加,和为0.
3.相反数的几何意义:互为相反的两上数,在数轴上位于原点的
两则,并且与原点的距离相等.
4.相反数的读法:-(-2)读作负2的相反数.从数轴上看-2的相反
数是2,因此-(-2)=2.
5.一般地,数a 的相反数是-a.
6.有关相反数的化简,遵循符号法则:同号得正,异号得负.
1.2.4 绝对值
在数轴上表示数a 的点到原点的距离叫做数a 的绝对值.
【说明】1.几何意义:一个数的绝对值就是数轴上表示该数的点与原点的距离.
2.代数意义:一个正数的绝对值是它本身;0的绝对值是0;一个
负数的绝对值是它的相反数,可用字母a 表示如下:
⎪⎩
⎪⎨⎧<-=>=)0()0(0)0(a a a a a a
注:即: 如果a >0,那么a =a ;如果a <0,那么a =-a ;如果a=0,那么a =0
如果a =-a 那么a 满足什么条件? a =a ,那么a 满足什么条件?
3.绝对值等于a (a ≠0)的数有两个,一个在原点左边,一个在原
点右边,它们互为相反数.例如:|a|=2,则22-==a a 或(2±=a ).
4.|a|是重要的非负数,即|a|≥0;
5.理解:0a 1a a
>⇔= ; 0a 1a a
<⇔-=;
6.两个负数比较大小,绝对值大的反而小.
7.理解几个特殊的绝对值所表示的意义:
若|b a ||b ||a |+=+,则ab ≥0;(表示a 、b 同号或至少其中一个为
0).
若|b a ||b ||a |+=-,则ab ≤0;(表示a 、b 异号或至少其中一个为
0).
若|b a ||b a |-=+,则ab=0;(表示a 、b 至少其中一个为0).
1.3 有理数的加减法
1.3.1 有理数的加法
加法法则:①同号两数相加,取相同的符号,并把绝对值相加;②绝对值不等的异号两数相加,取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值;互为相反的两个数相加得0;③一个数同0相加,仍得这个数。

【说明】1.进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.
加法的交换律:两个数相加,交换加数的位置,和不变.
加法的结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,
和不变.
用加法的运算律进行简便运算的基本思路是:先把互为相反数的数相加;把同分母的分数先相加;把符号相同的数先相加;把相加得整数的数先相加.
1.3.2有理数的减法
减法法则:减去一个数等于加上这个数的相反数.
【说明】1. “两变”:一是减法变为加法;二是减数变为其相反数.
2.有理数减法常见的错误:①没有注意结果的符号;尤其是当结
果为负时,往往会忘记“-”;②仍用小学计算的习惯,不把减法变加法;③只改变运算符号,不改变减数的符号,没有把减数变成它的相反数.
几个正数或负数的和称为代数和.加减混合运算可以统一为加法运算,写成代数和的形式.例如:)(c b a c b a -++=-+.c b a -+可以读作:a 加b 减c ,也可以读作:a ,b ,-c 的代数和.有理数加减混合运算:先把减法变成加法,再按有理数加法法则进行运算.
1.4 有理数的乘除法
1.4.1 有理数的乘法
乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0.
倒数的定义:乘积是1的两个有理数互为倒数.若ab=1,则a 和b 互为倒数.
几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数.
乘法运算律:
乘法交换律:两个数相乘,交换因数的位置,积相等.用字母表示为:ab=ba.
乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.用字母表示为:(ab)c=a(bc).
乘法交换律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.用字母表示为:a(b+c) =ab+ac.
【说明】1.常见错误仍是符号问题,做题时,先定符号,再定值.
2.求一个数的倒数的方法:①求一个分数的倒数,就是把这个分数的分子、分母颠倒位置. ②求一个整数的倒数:可以把整数看成是分母为1的分数,再把分子、分母颠倒位置. ③带分数要先画成假分数,再将分子、分母颠倒位置.
1.4.2 有理数的除法
除法法则:除以一个数不等于0的数,等于乘这个数的倒数.
两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.
【说明】1.除法法则可以把除法转化为乘法.
2.有理数除法的一般步骤:
①确定商的符号;
②把除数化为它的倒数;
③利用乘法计算结果.
有理数的加减乘除混合运算:先乘除,后加减.。

相关文档
最新文档